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The quantum dynamics of correlated fermionic or bosonic many-body systems following external excitation
can be successfully studied using nonequilibrium Green functions (NEGFs) or reduced density matrix methods.
Approximations are introduced via a proper choice of the many-particle self-energy or decoupling of the
BBGKY-hierarchy, respectively. These approximations are based on Feynman’s diagram approaches or on
cluster expansions into single-particle and correlation operators. In a recent paper [E. Schroedter, J.-P. Joost,
and M. Bonitz, Condens. Matter Phys. 25, 23401 (2022)] we presented a different approach in which, instead of
equations of motion for the many-particle NEGF (or density operators), equations for the correlation functions
of fluctuations are analyzed. In particular, we derived the stochastic GW and polarization approximations that
are closely related to the nonequilibrium GW approximation. Here, we extend this approach to the computation
of two-time observables depending on the specific ordering of the underlying operators. In particular, we apply
this extension to the calculation of the density correlation function and dynamic structure factor of correlated
Hubbard clusters in and out of equilibrium.
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I. INTRODUCTION

The dynamics of quantum many-body systems follow-
ing external excitation are of high interest in many areas,
such as dense plasmas, nuclear matter, ultracold atoms,
or correlated solids. There is a large variety of methods
available to simulate such systems, which include real-time
quantum Monte Carlo, density matrix renormalization group
approaches, time-dependent density functional theory, and
quantum kinetic theory. Among the many-particle observables
that are accessible in experiments, a central role is played
by the correlation functions of density or spin fluctuations
and the corresponding dynamic structure factors; see, e.g.,
Ref. [1] for an overview. To compute these quantities with
correlation effects taken into account, there exist a variety
of equilibrium simulations. The most accurate results have
been obtained from quantum Monte Carlo simulations for
correlated solids (e.g., Refs. [2–4]), as well as warm dense
matter [5–7] where also the nonlinear response has been
analyzed [8–10]. In addition, there exist a variety of nonequi-
librium approaches, including dynamical mean-field theory
(e.g., Refs. [11,12]), time-dependent DMRG (e.g., Ref. [13]),
and nonequilibrium Green functions (NEGFs) (cf. Ref. [14]
and references therein).

Here we concentrate on the NEGF approach [15–17] be-
cause it can rigorously describe the quantum dynamics of
correlated systems in more than one dimension; see, e.g.,
Ref. [18]. However, NEGF simulations are computationally
expensive, primarily due to their cubic scaling with the sim-
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ulation time Nt (number of time steps). Only recently could
linear scaling with Nt be achieved within the G1-G2 scheme
[19,20], which could be demonstrated even for advanced
self-energies, including the GW and the T -matrix approxima-
tions. Even the nonequilibrium dynamically screened ladder
approximation, which self-consistently combines dynamical
screening and strong coupling, is now feasible, at least for
lattice models [21,22].

The advantage of time linear scaling of the G1-G2 scheme
comes at a price: the simultaneous propagation of the time-
diagonal single-particle and correlated two-particle Green
functions, G1(t ) and G2(t ), requires a large computational
effort for computing and storing all matrix elements of G2.
For example, the CPU time of GW -G1-G2 simulations scales
as N6

b , where Nb is the basis dimension. Even though this
difficulty can be relieved using massively parallel computer
hardware or embedding self-energy approaches [16,23], it is
well worth it to look for alternative formulations of the prob-
lem that are more suitable for computations, ideally without
loss of accuracy.

In Ref. [24], an alternative formulation of the quan-
tum many-body problem was presented that is based on
a stochastic approach to the dynamics of quantum fluctu-
ations. Extending earlier stochastic concepts in the kinetic
theory of classical systems, due to Klimontovich (see, e.g.,
Refs. [25–27]), and quantum systems by Ayik, Lacroix
[28–30], and many others (see, e.g., Refs. [31,32]), we derived
an equation of motion for the single-particle fluctuations, δĜ
[see Eq. (8) below], that is equivalent to the nonequilibrium
GW approximation in the weak-coupling limit.

Here we extend the results of Ref. [24] to the nonequi-
librium dynamics of two-time quantities (and their Fourier
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transform) such as the density correlation function (and the
dynamic structure factor). This first requires us to obtain a
semiclassical approach to the computation of commutators of
operators. This is achieved within a multiple ensembles (MEs)
approach. With this extension, we are then able to compute the
density response function and dynamic structure factor, both
in the ground state and for a far-from-equilibrium situation
following an external excitation. This constitutes a significant
extension of the quantum fluctuations approach of Ref. [24]
that is applicable to large systems and long simulation times.

This paper is structured as follows. In Sec. II we introduce
the quantum fluctuations approach and establish its connec-
tion to the exchange-correlation function of NEGF theory.
Here we also derive the expressions for the dynamic structure
factor and the density response function, This is followed,
in Sec. III, by an introduction to our stochastic approach to
quantum fluctuations. Then, in Sec. IV we present our numer-
ical results for small- and moderate-sized Hubbard clusters. A
summary and outlook are given in Sec. V.

II. QUANTUM FLUCTUATIONS APPROACH

A. Notation and definitions

In the following, we use the formalism of second quantiza-
tion, which is characterized by the bosonic/fermionic creation
(ĉ†

i ) and annihilation (ĉi ) operators and the respective single-
particle basis of the underlying single-particle Hilbert space
H, which induces the so-called Fock space F . These operators
have the following properties:

[ĉi, ĉ†
j ]∓ = δi j, [ĉi, ĉ j]∓ = [ĉ†

i , ĉ†
j ]∓ = 0, (1)

where the upper/lower sign refers to bosons/fermions, respec-
tively. Here, we consider a quantum many-particle system,
which is described by a generic Hamiltonian of the form

Ĥ (t ) =
∑

i j

hi j (t )ĉ†
i ĉ j + 1

2

∑
i jkl

wi jkl (t )ĉ†
i ĉ†

j ĉl ĉk, (2)

where h denotes the single-particle contributions (from the
kinetic energy and an external potential) and a general pair
interaction w. Notice that both h and w are allowed to be
time-dependent in order to account for changes in the external
potential, e.g., due to lasers [33], particle impact [34–36],
or a change of the confinement potential [18], whereas the
time dependence of the interaction potential allows for the
computation of a correlated initial state from an uncorrelated
state via the adiabatic switching method. Additionally, the
interaction tensor w obeys the symmetries

wi jkl (t ) = w jilk (t ) = [wkli j (t )]∗. (3)

The central quantity of the NEGF theory is the one-body
Green function, which is defined on the Keldysh contour C
for contour-time arguments z and z′ as

Gi j (z, z′) := 1

ih̄
〈TC{ĉi(z)ĉ†

j (z
′)}〉, (4)

where TC denotes the time-ordering operator on the con-
tour. Averaging is performed with the correlated unperturbed
density operator of the system. In the following, it will be suf-
ficient to consider the correlation functions G≷ for real time

arguments. We define these functions and the corresponding
operators as

G≷
i j (t, t ′) := 〈

Ĝ≷
i j (t, t ′)

〉
, (5)

Ĝ<
i j (t, t ′) := ± 1

ih̄
ĉ†

j (t
′)ĉi(t ), (6)

Ĝ>
i j (t, t ′) := 1

ih̄
ĉi(t )ĉ†

j (t
′). (7)

Additionally, we will only consider G≷ on the time-diagonal
(t = t ′) and, therefore, denote G≷(t ) := G≷(t, t ). On the real-
time diagonal, the lesser component of the one-body Green
function is proportional to the single-particle density matrix,
ni j (t ) := 〈ĉ†

j (t )ĉi(t )〉 = ±ih̄G<
i j (t ). In this paper, we will not

consider bosons in a condensate and thus no anomalous cor-
relators will appear. However, an extension of our approach to
that case is straightforward.

The cornerstone of the quantum fluctuations approach, as
developed in Ref. [24], is the single-particle fluctuation oper-
ator,

δĜi j (t ) := Ĝ<
i j (t ) − G<

i j (t ) ≡ Ĝ>
i j (t ) − G>

i j (t ), (8)

where it was used that, on the time-diagonal, Ĝ>
i j (t ) −

Ĝ<
i j (t ) = 1

ih̄δi j for all t and, obviously, 〈δĜi j (t )〉 = 0. Next,
we define general two-particle fluctuations and the associated
correlation function as

L̂i jkl (t, t ′) := δĜik (t )δĜ jl (t
′), (9)

Li jkl (t, t ′) := 〈L̂i jkl (t, t ′)〉, (10)

Li jkl (t ) := Li jkl (t, t ). (11)

The two-particle correlation function, Eq. (10), can be
considered a special case of the exchange-correlation (XC)
function in standard NEGF theory [16],

Li jkl (z1, z2, z′
1, z′

2) := G(2)
i jkl (z1, z2, z′

1, z′
2)

− Gik (z1, z′
1)Gjl (z2, z′

2), (12)

where G(2) is the two-particle Green function defined on the
Keldysh contour,

G(2)
i jkl (z1, z2, z′

1, z′
2) := − 1

h̄2 〈TC{ĉi(z1)ĉ j (z2)ĉ†
l (z′

2)ĉ†
k (z′

1)}〉.
(13)

Depending on the index combinations, the function L,
Eq. (10), is related to various correlation functions. In particu-
lar, for i = k and j = l , it gives access to density fluctuations
and the dynamic structure factor [37], whereas other combi-
nations contain information about the current correlations.

B. Quantum dynamics in terms of fluctuations

The equation of motion (EOM) for G< on the time-
diagonal can be given in terms of two-particle fluctuations L
[38],

ih̄
d

dt
G<

i j (t ) = [hH, G<]i j (t ) + [I + I†]i j (t ), (14)
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where we introduced an effective single-particle Hartree
Hamiltonian,

hH
i j (t ) := hi j (t ) ± ih̄

∑
kl

wik jl (t )G<
lk (t ), (15)

and a collision term,

Ii j (t ) := ±ih̄
∑
kl p

wikl p(t )Lplk j (t ). (16)

We can equivalently write

[I + I†]i j (t ) = 〈[δÛ H, δĜ]i j (t )〉, (17)

with the operator of an effective single-particle Hartree poten-
tial induced by fluctuations,

δÛ H
i j (t ) := ±ih̄

∑
kl

wik jl (t )δĜlk (t ). (18)

Equation (16) can also be equivalently expressed in terms of
symmetric two-particle fluctuations, i.e.,

Ii j (t ) = Si j (t ) + IS
i j (t ), (19)

with the symmetrized collision term given by

IS
i j (t ) := ± ih̄

2

∑
kl p

wikl p(t ){Lplk j (t ) + Ll p jk (t )} (20)

and a symmetrization contribution of the form

Si j (t ) := 1

2

∑
kl

wkl jk (t )G<
il (t ). (21)

The EOM for any quantity that depends on products of δĜ,
such as L, can simply be derived from the EOM for the single-
particle fluctuation operator, which is given by

ih̄
d

dt
δĜi j (t ) = [hH, δĜ]i j (t ) + [δÛ H, G<]i j (t )

+ [δÛ H, δĜ]i j (t ) − 〈[δÛ H, δĜ]i j (t )〉. (22)

Note that Eq. (22) is nonlinear in δĜ, which leads, in the
EOMs for L, to terms that are cubic in δĜ and thus a coupling
to three-particle fluctuations. Therefore, we require approxi-
mations decoupling the fluctuations hierarchy.

C. Quantum polarization approximation

The approximation we want to consider here is the quan-
tum analog of the classical polarization approximation, which
is known to be equivalent to the Balescu-Lenard kinetic
equation, which describes scattering of charged particles
on a dynamically screened pair potential [27]. Additionally,
the polarization approximation is the classical limit of the
nonequilibrium GW approximation [39]. On the level of
single-particle fluctuations, the quantum polarization approx-
imation (PA) follows by assuming

δL̂i jkl (t ) ≈ δL̂(0)
i jkl (t ), (23)

where δL̂ denotes fluctuations of two-particle fluctuations
included in the last line of Eq. (22), and δL̂(0) can be in-
terpreted as fluctuations of ideal two-particle fluctuations,

L(0) := ±G>G<, defined as

δL̂(0)
i jkl (t ) := ±{G>

il (t )δĜ jk (t ) + δĜil (t )G<
jk (t )}. (24)

Applying the PA (23) to Eq. (22) leads to the EOM for δĜPA

of the form

ih̄
d

dt
δĜPA

i j (t ) =[hHF, δĜPA]i j (t ) + [δÛ HF, G<]i j (t ) , (25)

where we introduced the effective single-particle Hartree-
Fock Hamiltonian and the operator of an effective single-
particle Hartree-Fock potential induced by fluctuations,

hHF
i j (t ) := hi j (t ) ± ih̄

∑
kl

w±
ik jl (t )G<

lk (t ), (26)

δÛ HF
i j (t ) := ±ih̄

∑
kl

w±
ik jl (t )δĜlk (t ), (27)

with the (anti-)symmetrized interaction tensor, w±, defined as

w±
i jkl (t ) := wi jkl (t ) ± wi jlk (t ). (28)

However, when applying the PA, we find that exchange
symmetries of the exact two-particle exchange-correlation
function are broken, which are essential for energy conserva-
tion and the stability of numerical calculations. This problem
can be overcome by considering, instead, symmetric two-
particle fluctuations, i.e., by considering Eq. (19), instead of
Eq. (16), in Eq. (14).

Figure 1 illustrates the connection between the nonequi-
librium GW approximation and the PA, which we now
briefly discuss. In the standard NEGF theory, the single-
particle Green function satisfies the Keldysh-Kadanoff-Baym
equations (KBEs), which include many-body correlations
via the self-energy; see, e.g., Refs. [15,17]. The GW ap-
proximation describes these correlations in terms of the
dynamically screened interaction W that itself obeys an
equation of motion—the Dyson equation, involving the polar-
ization function �. However, the KBEs have the drawback of
an unfavorable scaling of the numerical complexity with the
number of time steps, Nt, which is cubic [even for the simpler
second Born (SOA) self-energy].

This unfavorable scaling can be relieved by apply-
ing the generalized Kadanoff-Baym ansatz (GKBA) [40],
second line Fig. 1. The GKBA propagates the Green func-
tions G≷ only along the time diagonal, and reconstructs
the time-off-diagonal Green function approximately. Within
the Hartree-Fock GKBA (HF-GKBA), this is done using
Hartree-Fock propagators, GR,HF [17,41,42]. While this in-
deed improves the scaling for SOA self-energies to O(N2

t ),
nevertheless, for the GW self-energy, the scaling remains
O(N3

t ).
Major progress of the scaling is achieved with the G1–

G2 scheme (third line) [19–21], which constitutes an exact
reformulation of the HF-GKBA. This is achieved by elimi-
nating the self-energy in favor of the correlated part of the
two-particle Green function, G. This means that the collision
integral in the time-diagonal equation for G<, in which the
self-energy appears, is equivalently expressed in terms of
G(t ), giving rise to coupled time-local equations for G<(t )
and G(t )—the G1–G2 scheme—which possess linear scaling,
O(N1

t ), for all common self-energies.
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FIG. 1. Illustration of the steps to go from the Keldysh-
Kadanoff-Baym equations (KBEs) using the GW approximation
(with exchange contributions) to the time-local stochastic fluctua-
tions approach using the SGW approximation (SPA). For details, see
the text.

The remainder of Fig. 1 explains the quantum polarization
approximation: As was shown in Ref. [24], it is equivalently
possible to represent the collision term using two-particle
fluctuations on the time diagonal. Using Eq. (23), the EOM
for two-particle fluctuations then corresponds to the EOM for
G within the GW approximation including further exchange
contributions (w → w±) in the case of weak coupling. As-
suming instead

δL̂i jkl (t ) ≈ ±δĜil (t )G<
jk (t ) (29)

leads to an EOM for L that corresponds to the GW approxima-
tion within the G1–G2 scheme in the weak-coupling regime.
Further, the fluctuations approach offers the possibility for
a combination with semiclassical stochastic methods, lead-
ing to the stochastic polarization approximation (SPA) and
the stochastic GW approximation (SGW), respectively, which
will be discussed in more detail Sec. III.

D. Quantum polarization approximation
for two-time fluctuations

So far we considered the EOM (14) for G<, which de-
pends only on one-time two-particle fluctuations. Now we will
consider the more general case that includes EOMs for the
two-time two-particle fluctuations, as this allows for access
to two-time observables that can be calculated from L(t, t ′).

Using Eq. (25), we find for two-time two-particle fluctuations
within the framework of the PA the following equations (drop-
ping the superscript “PA”):

ih̄
∂

∂t
Li jkl (t, t ′) = [hHF, L](1)

i jkl (t, t ′) + π
(1)
i jkl (t, t ′), (30)

ih̄
∂

∂t ′ Li jkl (t, t ′) = [hHF, L](2)
i jkl (t, t ′) + π

(2)
i jkl (t, t ′), (31)

where we introduced Hartree-Fock terms of the form

[hHF, L](1)
i jkl (t, t ′) :=

∑
p

{
hHF

ip (t )Lpjkl (t, t ′)

− hHF
pk (t )Li j pl (t, t ′)

}
, (32)

[hHF, L](2)
i jkl (t, t ′) :=

∑
p

{
hHF

j p (t ′)Lipkl (t, t ′)

− hHF
pl (t ′)Li jkp(t, t ′)

}
, (33)

and the polarization terms

π
(1)
i jkl (t, t ′) := ±ih̄

∑
pqr

Lr j pl (t, t ′)
{
w±

ipqr (t )G<
qk (t )

−w±
qpkr (t )G<

iq(t )
}
, (34)

π
(2)
i jkl (t, t ′) := ±ih̄

∑
pqr

Liqkp(t, t ′)
{
w±

p jqr (t ′)G<
rl (t

′)

−w±
prql (t

′)G<
jr (t ′)

}
. (35)

As was discussed in Sec. II C, the PA is equivalent to
the time-local GW approximation of the G1-G2 scheme,
which includes additional exchange contributions. In fact,
this equivalence also holds for the two-time extension con-
sidered herein. For this, we have to consider the EOMs of
two-particle quantities. We will start from the Bethe-Salpeter
equation (BSE) for the XC function on the Keldysh contour
given by [37]

Li jkl (z1, z2, z′
1, z′

2) = ±Gil (z1, z′
2)Gjk (z2, z′

1)
∑
pqrs

∫
C

Gip(z1, z3)Grk (z5, z′
1)Kpqrs(z3, z4, z5, z6)

Ls jql (z6, z2, z4, z′
2) d (z3, . . . , z6), (36)

where K denotes the two-particle irreducible vertex defined as

Ki jkl (z1, z2, z′
1, z′

2) := δ�ik (z1, z′
1)

δGl j (z′
2, z2)

, (37)

i.e., as the functional derivative of the single-particle self-
energy � with respect to the single-particle Green function
G. Within the GW approximation, the vertex simplifies to

Ki jkl (z1, z2, z′
1, z′

2)

≈ ±ih̄wi jkl (z1)δC (z1, z2)δC (z1, z′
1)δC (z1, z′

2), (38)

where δC denotes the delta distribution on the Keldysh con-
tour. As illustrated in Fig. 2, upper box, this approximation for
K in the BSE is equivalent to solving the KBE for the single-
particle Green function with a properly chosen external field
Uex(t ) and the Hartree self-energy, � → �H when consider-
ing the linearization of the equation in Uex [14]. Moreover,
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FIG. 2. Connection between three concepts: the KBE with
Hartree self-energy and an external field, the BSE for the XC func-
tion [Eq. (36)] with two-particle irreducible vertex (38), and the
present two-time quantum fluctuations approach [Eqs. (30) and (31)].

exchange contributions, which are included in the PA, can be
considered by the replacement w → w±.

Now the question remains, how is the BSE related to the
present two-time quantum polarization approximation (cf. the
lower box in Fig. 2)? The result of a straightforward but
lengthy analysis [43] is summarized as follows: Using the
two-particle reducible vertex K red, which obeys the following
BSE [16]:

K red
i jkl (z1, z2, z′

1, z′
2) = ±Ki jkl (z1, z2, z′

1, z′
2)

∑
pqrs

∫
C

Kipkq(z1, z3, z′
1, z4)Gqr (z4, z5)Gsp(z6, z3)

K red
r jsl (z5, z2, z6, z′

2) d (z3, . . . , z6), (39)

it is possible to eliminate any dependence on the XC function
on the right-hand side of Eq. (36), i.e., we have

Li jkl (z1, z2, z′
1, z′

2) = ±Gil (z1, z′
2)Gjk (z2, z′

1)
∑
pqrs

∫
C

Gip(z1, z3)Gjq(z2, z4)K red
pqrs(z3, z4, z5, z6)

Grk (z5, z′
2)Gsl (z6, z′

2) d (z3, . . . , z6). (40)

Considering the real-time component of the XC function cor-
responding to two-time two-particle fluctuations and using
the approximation (38) with w → w± as well as applying
the HF-GKBA then leads to Eqs. (30) and (31). Note that
this agreement is restricted to the applicability range of both
approaches, i.e., to weak coupling, beyond which also differ-
ences in the level of self-consistency become significant [44].
More details are given in Ref. [43].

E. Density response function and dynamic structure factor

There are a variety of observables that depend on fluctua-
tions, which are generally not on the time diagonal, but depend
on multiple (in general) independent time arguments. Two
particularly important observables are the density response
function and the dynamic structure factor. Here, we consider
the (retarded) density response function, which, for an arbi-
trary basis, is defined as

χR
i j (t, t ′) := ih̄�(t − t ′)〈[δĜii(t ), δĜ j j (t

′)]〉 (41)

= ih̄�(t − t ′){Li ji j (t, t ′) − Lji ji(t
′, t )} (42)

= −2h̄�(t − t ′)Im[Li ji j (t, t ′)], (43)

where exchange symmetries of two-particle fluctuations were
used, i.e., Li jkl (t, t ′) = [Llk ji(t ′, t )]∗. Hence, the dynamics of
χR in the PA is directly given by Eqs. (30) and (31) for
two combinations of indices for which δĜ describes density
fluctuations.

Considering a representation of the system in position
space, i.e., Gi j (t ) → G(r, r′, t ), we additionally introduce the
center-of-mass and relative time and position, i.e.,

τ := t1 − t2, T := t1 + t2
2

, (44)

r := r1 − r2, R := r1 + r2

2
. (45)

With this, two-particle fluctuations with r1 = r′
1 and r2 = r′

2
can then be expressed, equivalently, as

L(r1, r2, t1, t2) → L(r, R, τ, T ). (46)

Next, the dynamic structure factor is defined as the Fourier
transform of the correlation function of fluctuations of the
charge density (intermediate scattering function), i.e., we con-
sider the Fourier transform of two-particle fluctuations with
respect to the relative time and position

S(q, ω, R, T ) :=
∫∫ ∞

−∞
L(r, R, τ, T )ei(ωτ−r·q)dτdr. (47)

For systems in equilibrium, the dynamic structure factor does
not depend on the center-of-mass time, T , where the same
applies for spatially homogeneous systems with respect to the
center-of-mass position, R. Analogously, this applies also to
the density response function in the general case.

In a similar manner, one can also define the response func-
tion and structure factor of spin density fluctuations, which,
however, will not be considered in this work.

III. STOCHASTIC APPROACH TO THE QUANTUM
FLUCTUATION DYNAMICS

A. General concept

The stochastic mean-field theory (SMF) was first intro-
duced by Ayik [28] and later extended by Lacroix and many
others; see, e.g., Refs. [29,30]. Here, quantum-mechanical
operators are replaced by stochastic quantities, i.e., δĜi j (t ) →
�Gλ

i j (t ), and the quantum-mechanical expectation value by

the standard stochastic expectation value, i.e., 〈·〉 → (·). In
practice, the stochastic expectation value is approximated by
the arithmetic mean, where the superscript “λ” denotes a
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random realization, each of which is generated for the initial
state according to a statistical ensemble and then propagated
in time. This allows operator equations, e.g., Eqs. (22) and
(25), to be solved approximately. Effectively, this is done at
the single-particle level and only involves simple mean-field
dynamics. The solution of the many-body problem there-
fore essentially reduces to the construction of a probability
distribution for the initial state, mean-field dynamics, and
semiclassical averaging [29].

Replacing products of noncommuting operators with ran-
dom variables, however, requires symmetrization of said
products. The probability distribution describing the initial
state at t = t0 is then constructed in such a way that all
symmetrized quantum-mechanical moments are equal to the
semiclassical moments. For the case of an ideal (uncorrelated)
state, the first two quantum-mechanical moments are given by

〈δĜi j (t0)〉 = 0, (48)

Li jkl (t0) = 〈δĜik (t0)δĜ jl (t0)〉 = − 1

h̄2 δilδ jkn j (1 ± ni ), (49)

with ni := ±ih̄G<
ii (t0). We underline that considering only an

ideal initial state is not a restriction because a correlated initial
state can be produced from an ideal state via the adiabatic
switching method, e.g., Refs. [45,46]. It has to be noted,
however, that no probability distribution exists that reproduces
all symmetrized quantum-mechanical moments [47].

B. Stochastic polarization approximation

We now apply the SMF approach to the PA, i.e., Eq. (25),
and we find the stochastic polarization approximation (SPA),
which is of the form (we drop the superscript “SPA” below
and imply that all further considerations within the framework
of the SMF theory are done using the SPA)

ih̄
d

dt
�Gλ

i j (t ) = [hHF,�Gλ]i j (t ) + [�U HF,λ, G<]i j (t ), (50)

where we introduced the SMF-analog of the effective single-
particle Hartree-Fock potential induced by fluctuations, cf.
Eq. (27),

�U HF,λ
i j (t ) := ±ih̄

∑
kl

w±
ik jl (t )�Gλ

lk (t ). (51)

Applying the PA to the SMF theory leads to a neglect of any
coupling to higher moments and thereby reduces the impact of
choosing an approximate probability distribution for the initial
state. In fact, extensive calculations within the framework of
the Hubbard model indicate that all distributions are equiva-
lent, provided they correctly describe the first two moments.
Analogously, we can derive a stochastic version of the GW
approximation (SGW) within the fluctuations framework for
weak coupling [24].

The numerical scaling (CPU time and memory) of this ap-
proximation is proportional to the number of samples Ns. The
CPU-time scaling of the SPA/SGW is given by O(NsN4

b Nt ),
where Nb is the number of basis states and Nt is the number
of time steps. Due to this dependence, the specific choice of
sampling allows for optimization and can make this approach
advantageous compared to the G1–G2-GW approximation,
which has a scaling of O(N6

b Nt ) [20].

C. Multiple ensembles approach

Although the SMF approach allows for a solution of cer-
tain operator equations and provides several other advantages
compared to other methods, there are significant shortcomings
of this theory that have to be addressed. The most striking
is the semiclassical nature of the approach, i.e., the attempt
to describe a quantum-mechanical system using a classical
probability distribution. Even if the SPA restricts the num-
ber of significant moments, this stochastic approximation
poses major limitations as quantum coherence effects cannot
be properly accounted for, thus restricting this approach to
weakly and moderately coupled systems. Additionally, this
approach is unable to compute any observables that depend
on the ordering of the underlying operators, e.g., the density
response function, cf. Eq. (41). Here, we introduce a partial
solution to this problem within the framework of the SPA (or
equivalently any approximation to the fluctuations hierarchy
that only takes into account the first two moments).

Basic ideas

The solution we propose is the multiple ensembles (ME)
approach. Instead of considering only one statistical ensemble
to describe realizations of the initial state, we consider two
equivalent ensembles, and we replace quantum fluctuations
according to

δĜi j → (
�G(1),λ

i j ,�G(2),λ
i j

)
, (52)

whereas products of operators are replaced based on their
ordering:

L̂i jkl = δĜikδĜ jl → L̃λ
i jkl := �G(1),λ

ik �G(2),λ
jl . (53)

Analogously, we define the expectation value of two-particle
fluctuations within the ME approach as

L̃i jkl (t, t ′) := L̃λ
i jkl (t, t ′), (54)

L̃i jkl (t ) := L̃i jkl (t, t ′). (55)

Here, we see why this approach is restricted to approxima-
tions that only consider the first two moments. For example,
the exact EOM for δĜ, cf. Eq. (22), includes terms that are
quadratic in δĜ. These terms would then be replaced by scalar
quantities, cf. Eq. (53), whereas all terms that are only linear
in δĜ would be replaced by two component quantities, cf.
Eq. (52). Additionally, we are unable to properly define third
and higher moments within this approach. This is, however,
not a problem within the framework of the SPA since higher
moments are neglected, and all considered observables only
depend on two-particle fluctuations, including the correlation
energy and the density response function.

Since we do not require any additional symmetrization,
by applying the ME, compared to standard SMF theory,
the constraints for the initial state are given by replacing
the operators in Eqs. (48) and (49) according to Eqs. (52)
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and (53),

�G(1),λ
i j (t0) = �G(2),λ

i j (t0) = 0, (56)

�G(1),λ
ik (t0)�G(2),λ

jl (t0) = − 1

h̄2 δilδ jkn j (1 ± ni ). (57)

The single-particle fluctuation operator, δĜ, obeys the sym-
metry

δĜi j = −δĜ†
ji. (58)

Within the standard SMF approach, we construct the ran-
dom variables so that this symmetry is preserved, i.e.,
�Gλ

i j = (−�Gλ
ji )

∗. For the ME approach, however, we de-
mand, instead, that the fluctuations obey the symmetry

�G(1),λ
i j ≡ −(

�G(2),λ
ji

)∗
. (59)

Thus, the two newly defined ensembles reduce to a sin-
gle random variable, and we define �Gλ

i j := �G(1),λ
i j ≡

−(�G(2),λ
ji )∗. Imposing this relation, therefore, we find for

two-particle fluctuations within the ME approach,

L̃i jkl (t, t ′) = [L̃lk ji(t
′, t )]∗, (60)

thus reproducing one of the exchange properties of the exact
two-particle fluctuations. Furthermore, Eqs. (56) and (57) take
the following form:

�Gλ
i j (t0) = 0, (61)

�Gλ
ik (t0)

[
�Gλ

l j (t0)
]∗ = 1

h̄2 δilδ jkn j (1 ± ni ). (62)

Again, we only consider the ME approach from this point
onward, unless stated otherwise.

D. Semiclassical dynamics of the fluctuations

The dynamics of G< and �Gλ, within the ME approach,
directly follow from Eqs. (14) and (25) with the symmetric
collision term [cf. Eq. (19)],

ih̄
d

dt
G<

i j (t ) = [hH, G<]i j (t ) + [S + S†]i j (t )

+ [IME + IME†]i j (t ), (63)

ih̄
d

dt
�Gλ

i j (t ) = [hHF,�Gλ]i j (t ) + [�U HF, G<]i j (t ), (64)

where we defined the ME-collision term, IME, as

IME
i j (t ) := ± ih̄

2

∑
kl p

wikl p(t ){L̃plk j (t ) + L̃l p jk (t )}. (65)

Notice that we again have to resort to symmetrized expres-
sions (anticommutator) due to the symmetry breaking of the
underlying approximation.

E. Sampling

The sampling methods for the ME approach are analogous
to those of the standard SMF approach. Here, we focus on two
approaches to sampling the initial state: stochastic and deter-
ministic sampling that are briefly explained in the following.

1. Stochastic sampling

The standard approach for the construction of the initial
state, within the standard SMF theory, is stochastic sampling.
Here, known probability distributions, such as a Gaussian
distribution or a uniform distribution, are chosen to reproduce
the symmetric moments. For the ME approach, we consider
a set of independent complex random variables �Gλ

i j (t0) with
zero mean and variance given by

∣∣�Gλ
i j (t0)

∣∣2 = 1

h̄2 n j (1 ± ni ). (66)

As mentioned in Sec. III A, the expectation value is usually
approximated by the arithmetic mean, i.e., a sufficiently large
number of random realizations of the initial state is generated
according to said constraints, cf. Eq. (66).

2. Deterministic sampling

In Ref. [24], a new sampling method was proposed for the
special case of fermions at zero temperature [48]. The idea of
the so-called “deterministic sampling” is to consider a system
of nonlinear equations and construct a solution that exactly
satisfies the properties of the initial state. The algorithm of
Ref. [24] has to be adjusted only slightly for the ME approach.
It follows that the system of nonlinear equations is given by

M∑
λ=1

�nλ
i j = 0, (67)

M∑
λ=1

�nλ
ik

(
�nλ

l j

)∗ = Mδilδ jkδn j ,1δni,0, (68)

with �nλ
i j := −ih̄�Gλ

i j (t0) and M ∈ N. The parameter M has
to be chosen such that a solution of the system of equations ex-
ists.

Here, we consider a fermionic system with spin config-
urations ↑,↓ [49] and assume spin symmetry of the initial
state, i.e., n↑

i = n↓
i . Let Nb ∈ N denote the size of the basis

for one spin component and Np, Nh ∈ N denote the number of
occupied and unoccupied orbitals, respectively, for one spin
component, i.e., Np + Nh = Nb. Without loss of generality, we
assume n↑

i = n↓
i = 1 for i = 1, . . . , Np and n↑

i = n↓
i = 0 for

i = Np + 1, . . . , Nb. A solution to Eqs. (67) and (68) can be
found analogously to Ref. [24] by setting Ns = 4M = 4NpNh

and

�nαβ,σ =
(

0 Aαβ,σ

0 0

)
(69)

with Aαβ,σ ∈ CNh×Np . The matrix Aαβ,σ is of the form

Aαβ,↑
i j :=

{
(−1)β (M/2)1/2 for ϕ(i, j) = α, β ∈ {1, 2},
0 otherwise,

(70)

Aαβ,↓
i j :=

{
(−1)β (M/2)1/2 for ϕ(i, j) = α, β ∈ {3, 4},
0 otherwise

(71)

for (α, β ) ∈ {1, . . . , M} × {1, . . . , 4} and an arbitrary bijec-
tion ϕ : {1, . . . , Np} × {1, . . . , Nh} → {1, . . . , M}. Using this
approach for the construction of a solution, we only require a
total of 8NpNh samples, thus deterministic sampling for the
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ME approach has an advantageous numerical scaling com-
pared to the standard deterministic sampling, which requires
16NpNh samples.

F. Application to the density response function
and dynamic structure factor

We now apply the ME approach to the density response
function, Eq. (41), and find

χR,ME
i j (t, t ′) := −ih̄�(t − t ′)

{
�Gλ

ii(t )
[
�Gλ

j j (t
′)
]∗

− [
�Gλ

ii(t )
]∗

�Gλ
j j (t

′)
}

(72)

= 2h̄�(t − t ′)Im
[
�Gλ

ii(t )
[
�Gλ

j j (t
′)
]∗]

(73)

= −2h̄�(t − t ′)Im[L̃i ji j (t, t ′)], (74)

thus reproducing the result of Eq. (43).
Because we require the two ensembles to satisfy Eq. (59),

realizations of single-particle fluctuations are not necessarily
purely imaginary, thus implying that the imaginary part of
products of fluctuations can be nonzero in general. If we
required each ensemble to be anti-Hermitian, i.e., �G(n),λ

i j =
−(�G(n),λ

ji )∗, for n ∈ {1, 2}, the diagonal elements would be
purely imaginary for arbitrary times. This implies that these
products would be real, hence the retarded density response
function would be purely imaginary. The exact density re-
sponse function, however, is real [16].

Analogously to previous considerations, the dynamic
structure factor follows within the ME approach, cf. Eq. (47).
This multiple ensembles approach thus provides direct ac-
cess to spectral two-particle quantities. In equilibrium, the
result depends only on the time difference, τ . However, our
approach remains fully valid in nonequilibrium, where the
density response, in addition, depends on the center-of-mass
time, T .

G. Application to the Fermi-Hubbard model

1. Hubbard Hamiltonian

For the Fermi-Hubbard model, the general pair-interaction
of Eq. (2) transforms into

w
αβγ δ

i jkl = Uδi jδikδilδαγ δβδ (1 − δαβ ), (75)

with the on-site interaction U and the spin components being
denoted by Greek indices. Additionally, the kinetic energy is
replaced by a hopping Hamiltonian

hi j = −δ〈i, j〉J, (76)

which includes nearest-neighbor hopping, i.e., δ〈i, j〉 = 1, if the
sites i and j are adjacent, and δ〈i, j〉 = 0, if they are not. The
total Hamiltonian is then given by

Ĥ = −J
∑
〈i, j〉

∑
σ

ĉ†
iσ ĉ jσ + U

∑
i

n̂↑
i n̂↓

i + Ĥx(t ), (77)

where Ĥx describes a possible external excitation of the
system. Here, we only consider one-dimensional chains and
choose two types of excitations. The first is a potential “kick”

applied to the first site:

Ĥx
I (t ) = H0(t − t0)(n̂↑

1 + n̂↓
1 ), (78)

where H0(t − t0) describes a narrow pulse at time t = t0 with
amplitude H0. The second is a confinement “quench” applied
to the chain [18]:

Ĥx
II (t ) = V0(t − t0)

M∑
i=1

(n̂↑
i + n̂↓

i ), (79)

consisting of M connected sites where we will use M = N/2.
At time t = t0 the potential is switched off, which initiates a
diffusion-type process.

2. Implementation of SPA-ME

The EOMs for the single-particle Green function and fluc-
tuations in SPA-ME, Eqs. (63) and (64), take the following
form:

ih̄
d

dt
G<,σ

i j (t ) = [hσ , G<,σ ]i j (t ) + [I + I†]σi j (t ), (80)

ih̄
d

dt
�Gλ,σ

i j (t ) = [hσ ,�Gλ,σ ]i j (t )

+ [�U λ,σ , G<,σ ]i j (t ), (81)

where the Hartree-(Fock) Hamiltonian and fluctuation
Hartree-Fock potential in Eqs. (80) and (81) become, in the
Hubbard basis (without external excitation),

hσ
i j (t ) := hHF,σ

i j (t ) ≡ hH,σ
i j (t ) = −δ〈i, j〉J − ih̄δi jUGσ

ii (t ),
(82)

�U λ,σ
i j (t ) := �U HF,λ,σ

i j (t ) ≡ �U H,λ,σ
i j (t )

= −ih̄δi jU�Gλ,σ
ii (t ). (83)

Here, σ =↑ (↓) implies σ =↓ (↑). This shows that all ex-
change contributions vanish due to the specific choice of the
pair-interaction so that, in this case, the SPA is equivalent to
SGW. The collision term in Eq. (80) takes the form

Iσ
i j (t ) = − ih̄

2
U

{
L̃σσ

iii j (t ) + L̃σσ
ii ji(t )

}
, (84)

whereas the contributions due to symmetrization become

Sσ
i j (t ) = 1

2UGσ
i j (t ) = −S†,σ

i j (t ). (85)

Thus, symmetrization also does not lead to any additional
contributions in the Hubbard basis. Including the external
excitation, cf. Eq. (78), effectively leads to a modification of
the on-site interaction of the form U → U + H0(t − t0), i.e.,
the on-site interaction U increases for the first site at t = t0 by
the amplitude H0.

The initial state of the system in the natural orbital basis of
n(t0) is chosen such that

Gσ
i j (t0) = − 1

ih̄
δi jn

σ
i , (86)

�Gλ,σ
i j (t0) = 0, (87)

�Gλ,σ
i j (t0)

[
�Gλ,σ ′

lk (t0)
]∗ = 1

h̄2 δilδ jkδσσ ′δnσ
j ,1δnσ

i ,0. (88)
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Depending on the system’s configuration, it becomes neces-
sary to perform a transformation from the natural orbital basis
to the Hubbard basis. This can be achieved by diagonalization
of the Hamiltonian and the transformation of G and �Gλ

using its eigenvectors.
In general, it is necessary to compute a nontrivial interact-

ing ground state from which the externally driven dynamics
starts. Here, this is done using the so-called “adiabatic switch-
ing method” [18] by replacing the on-site interaction U with
a time-dependent interaction U (t ). Calculations then start at ts
with an uncorrelated ground state, with U (ts) = 0. The on-site
interaction is then increased monotonically and sufficiently
slowly such that, at t0, the system is in a fully correlated
ground state with U (t0) = U .

Our main focus will be on the investigation of the density
response function, χR [cf. Eq. (74)], which is, within the
framework of the ME approach, given by

χR,ME
i j (t, t ′) = −2h̄�(t − t ′)

∑
σσ ′

Im
[
L̃σσ ′

i ji j (t, t ′)
]
. (89)

By again considering the relative time τ and center-of-mass
time T , the Fourier transform of the density response function
with respect to τ is given by

χR,ME
i j (ω, T ) =

∫ ∞

−∞
χR,ME

i j (τ, T )eiωτ dτ. (90)

The spatial coordinate of a lattice site can be defined as
xi := a0i for a one-dimensional chain, with a0 denoting the
characteristic distance of two adjacent sites [50]. Additionally,
we now consider equilibrium and periodic boundary condi-
tions (PBCs) so that there is no center-of-mass dependence
for time and space. We then also consider a Fourier transform
with respect to the spatial relative coordinate, i.e.,

χR,ME(q, ω) =
∫

χR,ME
i j (ω)e−iqri j dri j, (91)

with ri j := xi − x j . Analogously, we calculate the dynamic
structure factor for said system within the ME approach as

SME(q, ω) =
∑
σσ ′

∫∫ ∞

−∞
L̃σσ ′

i ji j (τ )ei(ωτ−ri j q)dτdri j, (92)

= −4 Im[χR,ME(q, ω)]. (93)

A generalization to nonequilibrium and spatially inhomoge-
neous systems is straightforward but will not be considered
here.

For the density response of a system in the ground state
(or thermodynamic equilibrium) and the dynamic structure
factor, we set t ′ = t0 and propagate only �Gλ,σ

i j (t ). The final
step is the averaging over the realizations λ to calculate the
two-particle fluctuations and all further observables.

A different approach to the calculation of the Fourier trans-
form of the density response function as well as the dynamic
structure factor is provided by considering a kick excitation of
the system, e.g., to the first site, cf. Eq. (78), following the idea
of Ref. [14] as this produces a spectrally broad excitation that
excites all transitions that are quantum-mechanically allowed

[14,51]. In linear response, we then find

ni(t ) =
∫ t

t0

χR
i1(t − t̄ )H0(t̄ − t0)dt̄, (94)

χ11(ω) = ñ1(ω)

H̃0(ω)
, (95)

where ñi(ω) and H̃0(ω) denote the Fourier transforms of
the density on site i and the kick excitation, respectively.
The dynamic structure factor then also immediately follows,
cf. Eq. (93).

As we are primarily interested in the Fourier transform
of the density response function, we introduce a small expo-
nential damping in the results of the time propagation with a
factor of e−ηt to mitigate the influence of the finite propagation
length. Although this leads to a broadening of the spectral
quantities, this allows for better comparability of the results.
The damping constant is chosen such that e−ηtmax < 10−4,
where tmax denotes the maximum propagation time.

IV. NUMERICAL RESULTS

We now present numerical results within the stochastic
polarization approximation, systematically extending the re-
sults of Ref. [24] to response functions. First, we consider the
ground state and excitation properties of small Hubbard clus-
ters without PBC, including the Hubbard dimer and a six-site
system, where benchmarks against exact results are possible.
We then turn in Sec. IV B to larger clusters containing 50
sites with PBC and compare results for the density response
function and dynamic structure factor for SPA-ME and RPA.
Finally, in Sec. IV C we study the nonequilibrium dynamics
and density response of Hubbard clusters following a short
external excitation and a confinement quench.

A. Test of the ME approach for small Hubbard clusters
in the ground state

First, we consider a Hubbard dimer at half-filling without
PBC. The peak positions of the Fourier transform of the
retarded density response function correspond to energies of
particle-hole excitations of the ground state. For the Hubbard
dimer, there is only one dipole-allowed excitation from the
ground state with an excitation energy of the form

�E = U

2
+

√
U 2 + 16J2

2
. (96)

In Fig. 3 the Fourier transform of the ground-state result
for the retarded density response function at site 1, χ11(t ),
Eq. (89), is shown. Comparison with analytical results con-
firms that this quantity yields the excitation spectrum of the
system which contains a single excitation with the energy �E ,
Eq. (96), which is exactly reproduced in the noninteracting
case. Even for U = 1.0J the result is in good agreement with
the analytical benchmark with regard to the peak position.
However, for the relative peak height, significant deviations
are visible. As the squared modulus of χR(ω) is proportional
to the excitation amplitude, these results imply that SPA-ME
overestimates the dipole-allowed transition probability.

In Fig. 4 the peak position of the density response function
is analyzed in more detail over a broader range of coupling
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FIG. 3. Fourier transform of the density response function (arbi-
trary units) for the first site of a half-filled Hubbard dimer, without
PBC, using SPA-ME with (blue lines) and without (orange lines)
a kick excitation at U = 0.0J (a) and U = 1.0J (b). The results
are compared to the Fourier transform of the analytical result. The
damping constant was chosen to be η = 0.005J/h̄.

parameters. There are only minor deviations from the ex-
act result, for U � 0.5J . Not surprisingly, these deviations
increase monotonically with increasing U/J since SPA is
a weak-coupling approximation. Also, the functional form
of the U -dependence deviates from the analytical solution,
which increases faster than linear, whereas the slope of the
SPA-ME result is sublinear.

Next, we extend the analysis to a larger system where the
excitation spectrum contains more than one transition. We
consider a half-filled six-site chain for the case of a nonin-
teracting system (U = 0.0J) as well as for moderate coupling
(U = 1.0J). For the noninteracting case we again find excel-

FIG. 4. Coupling dependence of the excitation energy of a Hub-
bard dimer for the dipole-allowed transition from the ground state, cf.
Fig. 3. Comparison of the present SPA-ME simulations with (blue
line) and without (orange line) a kick excitation to the analytical
solution.

FIG. 5. Fourier transform of the density response function (ar-
bitrary units) for the first site of a half-filled six-site system using
SPA-ME with (blue lines) and without (orange lines) kick excitation
at U = 0.0J (a) and U = 1.0J (b). The results are compared to
an exact diagonalization (CI) calculation where a kick excitation,
Eq. (78), was used. A damping constant of η = 0.03J/h̄ for the
exponential damping of the time propagation was used.

lent agreement between SPA-ME and the exact results, which
were obtained from CI calculations. Moreover, differences
are visible for moderate coupling. We see in Fig. 5 that the
peak positions of the present SPA-ME calculations are in very
good agreement with exact diagonalization results, however
the peak height of the third peak shows significant deviations,
which are less pronounced than for the dimer. The other
peaks only display minor deviations and show good qualita-
tive agreement. In general, we observe that the quality of our
density response results improves with increasing system size.

B. Ground-state density response results
for large Hubbard clusters

We now turn to larger Hubbard clusters. As an example,
we consider a chain with periodic boundary conditions (i.e., a
ring), which is half-filled with 50 sites for different coupling
strengths. A similar simulation as for six sites, cf. Fig. 5,
yields for the case of a 50-site ring a much more complex
spectrum, which is shown in Fig. 6. We start with the case of a
noninteracting system (U = 0.0J) at half-filling and observe
excellent agreement with the analytical result for the tight-
binding limit as the relative error is of the order of 10−6.

Next, we consider in Fig. 7 the Fourier transform with re-
spect to the spatial and time coordinate of the density response
function from SPA-ME calculations. On the left side, the
noninteracting system is displayed, while the right side shows
the results for a moderately coupled system at U = 1.0J .
Here, we see that the results for the noninteracting case for
a finite system with PBC closely resemble the known results
for the infinite chain [52]. The artificial damping of the time
propagation leads to a broadening of the peaks due to the
finite size of the system, thus causing them to merge into a
continuous spectrum. At U = 1.0J we see that the previously
visible peaks start to vanish, whereas the main peaks are
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FIG. 6. (a) Fourier transform of the density response function
(arbitrary units) for the first site of a half-filled 50-site ring at
U = 0.0J using SPA-ME. The results are compared to the analytical
result. (b) Relative error of the Fourier-transformed density response.
A damping constant of η = 0.02J/h̄ was used.

slightly shifted upwards. Additionally, Fig. 7 displays the lines
of the main peaks for the density response function obtained
from RPA calculations. Here, we see that there is excellent
agreement between the two approximations with regard to the
chosen representation. This comparison of SPA-ME and RPA
is further extended in the following.

We now consider the dynamic structure factor of the same
system but for varying interaction strengths and specific wave
numbers, and we closely compare results from SPA-ME to
RPA calculations. What should we expect from this compari-
son? The answer has been given in the context of Fig. 2: On
the one hand, the RPA of linear-response theory is equiva-
lent to the BSE with a GW kernel, Eq. (38). On the other

FIG. 7. Fourier transform of the density response function (ar-
bitrary units) of a half-filled 50-site ring at U = 0.0J (left) and
U = 1.0J (right) using SPA-ME. The dashed lines denote the corre-
sponding peak positions from RPA calculations. A damping constant
of η = 0.2Jh̄ was used.

FIG. 8. Dynamic structure factor of a half-filled 50-site ring at
q = π/a0 for different U using SPA-ME (solid lines) and RPA
(dashed lines).

hand, the two-time PA for L is equivalent to the same BSE
approximation. Thus, the only remaining questions are how
well the present SPA-ME approach combined with the semi-
classical averaging procedure reproduces the PA, and thus the
GW -BSE, and what effects do the different levels of self-
consistency have; cf. the discussion in Sec. II D. With the
present numerical results, we directly answer this question.
The time-dependent SPA-ME results are multiplied by a factor
of e−ηt with damping constant η = 0.2J/h̄, and the same
damping constant, η, is used for the RPA calculations; see
Eqs. (B2) and (B3). This is done to broaden the δ-like peaks
due to the finite system size and better comparability to the
infinite chain.

First, we consider the dynamic structure factor for a fixed
wave number q = π/a0 for different interactions strength.
Figure 8 shows that there is excellent agreement between
the SPA-ME and RPA results for weak coupling. With
increasing interaction strength, deviations become more
pronounced, however only for U = 2.0J are significant dif-
ferences between the two approximations visible. As both
approximations are only applicable within the weak-coupling
regime, this coupling strength is beyond their validity anyway.
Moreover, both approximations show a main peak located at
ω ∼ 3.9J/h̄ for U = 0.0J with S ∼ 1.0 a.u. With increas-
ing interaction strength, this peak is shifted towards higher
frequencies (ω ∼ 4.2J/h̄) and height with S ∼ 1.6 a.u. at
U = 2.0J , where the RPA peak is shifted to slightly higher
frequencies compared to the SPA-ME peak (S ∼ 1.7 a.u.

at ω ∼ 4.3J/h̄). These differences are explained by the use
of ideal Green functions in the analytical RPA result, cf.
Appendix B, whereas the SPA-ME involves correlated Green
functions. Additionally, we observe that, due to the finite
system size, there are a number of peaks visible next to the
main peak which do not exist in the infinite chain. These
peaks become less pronounced with increasing interaction
strength. Here, the RPA results deviate, for U = 2.0J , from
the SPA-ME results in that there is a slightly larger downward
shift visible for the peak height.
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FIG. 9. Dynamic structure factor of a half-filled 50-site ring at
q1 = 3π/(5a0) (solid lines) and q2 = π/(5a0) (dash-dotted lines) for
different U using SPA-ME.

Next, we consider in Fig. 9 the dynamic structure factor
for two different wave numbers, q1 = 3π/(5a0) and q2 =
π/(5a0), at different U , using only SPA-ME. For q2 we see
that only a single peak is visible for each U located at ω ∼
1.2J/h̄ with a height of S ∼ 0.77 a.u. while none of the other
peaks due to the finite system size are present. With increasing
interaction strength, a slight downward shift of the peak height
is observed, in contrast to the previous results. Again, how-
ever, the peak position is shifted towards higher frequencies.
Here, both shifts are not as pronounced as for the previous
case. This changes for q1, where the position of the main peak
is shifted from ω ∼ 3.1J/h̄ to ω ∼ 3.4J/h̄, thus displaying a
stronger shift compared to the case q = π/a0. Additionally,
here the buildup of the finite-size peaks is observed. However,
the peak height is shifted significantly downward, compared
to q1 and even q = π/a0. Moreover, the peaks become less
pronounced with increasing interaction strength so that they
are barely visible for U = 2.0J . Lastly, the height of the
main peak at U = 0.0J is located at S ∼ 1.1 a.u. and shifted
upwards to S ∼ 1.5 a.u. at U = 2.0J .

C. Nonequilibrium density response following an external
kick excitation of a single site

After computing the density response for a system in the
ground state, we now turn to the time-dependent density re-
sponse following a rapid weak external perturbation (“kick”).
Here, we again consider two approaches: first, computation of
the density response function from a ground-state calculation
with subsequent calculation of the density response in linear-
response theory according to Eq. (94). The second approach
is a direct nonequilibrium calculation following the external
kick perturbation of the first site, cf. Eq. (78).

Let us first return to Fig. 3, where the present kick results
have been included. Here, we see that, for the noninteracting
case, the results from the nonequilibrium SPA-ME calculation
agree with both the analytical and the equilibrium SPA-ME re-
sults. However, for the moderately coupled system we observe
significant deviations, as an additional peak at ω = 2.75J/h̄

FIG. 10. Dynamic structure factor for a half-filled 50-site ring at
U = 1.0J at q = π/a0 from SPA-ME with (blue line) and without
(orange line) a kick excitation and RPA. The time propagated results
were exponentially damped with damping constant η = 0.2J/h̄.

appears. This effect is known from NEGF calculations [51].
Moreover, we see that the peak position of the equilibrium
approach is well reproduced by one of the peaks from the
nonequilibrium calculation. This trend is also visible when
considering other interactions strengths, as shown in Fig. 4.
Here, we see only minor deviations between the two ap-
proaches. Nonetheless, the height of the main peak shown in
Fig. 3 is significantly reduced for the kick results.

Similar behavior is observed for the six-site chain shown
in Fig. 5. Here, we also see that the peak positions are
well reproduced by the nonequilibrium simulations. However,
significant deviations of the heights of most peaks are visi-
ble, suggesting that the nonequilibrium scenario modifies the
transition probabilities of almost all allowed transitions. We
observe that, in contrast, the equilibrium results are signifi-
cantly closer to the amplitudes of the exact solution.

In Fig. 10 we again consider the dynamic structure fac-
tor of a 50-site ring. At U = 0.5J for a wave number
q = π/a0, we see the aforementioned excellent agreement
of the equilibrium SPA-ME and RPA results. The nonequi-
librium SPA-ME calculations display minor deviations com-
pared to the other approaches. Here, the former are shifted
slightly downward, for frequencies ω � 3.0J/h̄. Addition-
ally, we see that the position of the main peak is shifted
towards a smaller frequency with reduced peak height. For
larger frequencies (ω � 4.7J/h̄) we observe an increase of
the nonequilibrium results compared to the other approaches,
which is more pronounced compared to the aforementioned
shift for smaller frequencies. A possible explanation of these
deviations is that nonequilibrium simulations are known to
capture correlation effects [14], but whether this applies to
the present excitation requires further investigation; see also
Sec. V.

Next, we again consider a half-filled six-site chain for
different interaction strengths (U/J = 0.0, 0.5, 1.0) and com-
pare the time-dependent density perturbation at the first
site for SPA-ME, from linear-response theory and the kick
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FIG. 11. Time-dependent density perturbation at the first site for
a half-filled six-site chain for three coupling strengths [U = 0.0J (a),
U = 0.5J (b), and U = 1.0J (c)] following a kick excitation using
SPA (blue lines) and CI. The data are compared to linear-response
results from a ground-state SPA-ME calculation (orange lines);
cf. Eq. (94).

excitation, to CI results. Figure 11(a) shows that in the
noninteracting case, both SPA-ME results from linear re-
sponse and nonequilibrium agree perfectly with the CI data.
In (b) we still see good qualitative agreement of both calcu-
lations with the CI data, with deviations starting to increase
for t � 20h̄/J . The linear-response results overestimate the
amplitude of the oscillations compared to the nonequilib-
rium calculation. For the moderately coupled system with
U = 1.0J we immediately see in (c) that deviations between
the results arise. The nonequilibrium SPA-ME results display
better agreement with the exact result for longer times (t ∼
7h̄/J) compared to the linear-response results (t ∼ 1h̄/J).
Both, however, fail to accurately reproduce the oscillating
behavior of the exact result for times larger than ∼20h̄/J as
there appears to be a time-dependent phase shift.

D. Nonequilibrium density response following
a confinement quench

As a final nonequilibrium setup, we consider a confinement
quench [18,53] of a half-filled system; cf. Eq. (79). This
means the initial state is such that the left half of the sites
is fully occupied while the right half is empty. Subsequently,
at time T = 0, the confinement potential is removed suddenly,
resulting in a rapid expansion of particles in the chain similar
to a classical diffusion setup. Thus, immediately after the
quench, the system is in strong nonequilibrium, providing
an interesting test-bed for our ME approach. In particular,
we are interested at this point in the density response during
the relaxation process. Again, we start with a small system
containing six sites with periodic boundary conditions and
compare results of SPA-ME with those of exact diagonal-
ization. In Fig. 12, we present the two-time nonequilibrium
density response function for the half-filled ring at an interac-
tion strength of U = 0.1J obtained from the present SPA-ME
model. Recall that the Heaviside function in the definition of

FIG. 12. Density response function for a half-filled ring with six
sites at U = 0.1J following a confinement quench at t = 0. Upper
left (lower right) triangle corresponds to SPA-ME (CI) results.

the retarded component leads to χR
i j (t, t ′) ≡ 0 for t ′ > t , cf.

Eq. (43). This allows us to plot in the half-plane below the di-
agonal (black line) the corresponding CI result for the density
response function χR

i j (t
′, t ) for the transposed arguments. Ob-

viously, there is very good agreement between the two results.
We now move on to stronger coupling, U = 0.4J . The results
are presented in Fig. 13, where significant differences between
the two results are visible. It is noticeable here that the same
trends are present for both results with respect to the phase
of the oscillations. However, deviations in their amplitudes
are visible. Moreover, we observe that the oscillations for the
exact result are damped with increasing relative time, while
the SPA-ME results illustrate the opposite trend. Comparing
the results for the two interaction strengths, we notice that they
differ mainly in the amplitude of the oscillations.

For a better comparison of the CI and SPA-ME data,
we now present the results in 2D plots. There we show
the density response function versus relative time, τ , for

FIG. 13. Same as Fig. 12, but at U = 0.4J .

205109-13



SCHROEDTER, WURST, JOOST, AND BONITZ PHYSICAL REVIEW B 108, 205109 (2023)

FIG. 14. Density response function for different times T following a confinement quench, for a half-filled ring with six sites at U = 0.1J .
Comparison of the present SPA-ME approach to CI calculations.

fixed values of the center-of-mass time, T . In Fig. 14 we
consider the density response function for four values of
T for the case of weak coupling, U = 0.1J . Here, we see
only minor deviations of the SPA-ME result from CI. The
differences become more pronounced for T = 12.5h̄/J for
oscillations with large amplitude, i.e., for τ ∼ 20h̄/J . Fur-
ther, we observe in the course of the relaxation process
that there is a change in the frequencies of the oscilla-
tions. Additionally, as the propagation time increases, there
is an increase in the amplitudes of the oscillations, with
this trend continuing until T = 12.5h̄/J and then being
reversed.

For U = 0.4J (see Fig. 15) we observe the previously
mentioned deviations of the SPA-ME result from the CI data.
Only for T = 5h̄/J is good agreement visible. Already for
T = 10h̄/J this holds only up to a relative time of τ = 5h̄/J .
Afterwards, we observe that there is a shift of the phase of

the oscillations, where significant deviations in the amplitude
increase. In particular, while the exact result shows a damping
of the oscillatory behavior, the SPA-ME shows the opposite
trend. This behavior is also observed in a stronger form for
later center-of-mass times. It is noticeable that the minima of
the density response function are shifted downward for the
SPA-ME with increasing center-of-mass time, while there is
no significant increase in the maxima. The observed damped
behavior of the exact dynamics of the density response func-
tion at U = 0.4J is also found for the density evolution shown
in Fig. 16(b). Here, we again observe that SPA-ME over-
estimates the oscillations while still reproducing the exact
phase. In (a) we see excellent agreement of the SPA-ME and
exact results similar to the observed agreement for the density
response function.

Finally, we turn again to larger systems for which, how-
ever, no CI data are available for comparison. Specifically,

FIG. 15. Same as Fig. 14, but at U = 0.4J .
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(a)

(b)

FIG. 16. Density evolution at site 1 of a half-filled ring with six
sites following a confinement quench.

we consider a half-filled ring with 30 sites at U = 0.1J
and 0.4J , respectively, following an analogous confinement
quench. Figure 17 displays the density response function
versus relative time for fixed center-of-mass times. Here, we
see for T = 5h̄/J that the oscillations of the density response
function are damped with increasing relative time. Moreover,
we find that the phases of the oscillations are the same for both
on-site interaction strengths, which is also observable for all
later center-of-mass times with only minor deviations between
the two. Again, we find that stronger coupling leads to an
increase of the amplitude. However, there is no damping of
the oscillations for either coupling strength for larger center-
of-mass times.

Lastly, we consider nonequilibrium density response spec-
tra of the same system at U = 0.1J and 0.4J , for large
center-of-mass times, T � 75, which are shown in Fig. 18.
These nonequilibrium spectra are obtained via Fourier trans-

(a)

(c) (d)

(b)

FIG. 18. Fourier transform of the density response function with
respect to the relative time for a half-filled ring with 30 sites at fixed
center-of-mass times, T , at U = 0.1J and 0.4J using SPA-ME. The
U = 0.1J results in (a), (b), and (c) have been multiplied with a factor
of 5. A damping constant of η = 0.04J/h̄ was used.

form of the density response function with respect to the
relative time τ for fixed center-of-mass times T . Here, we see
a relatively similar structure of the spectra for both on-site
interactions for T = 100h̄/J . However, the transition prob-
abilities are significantly larger for U = 0.4J than for U =
0.1J for all center-of-mass times. Additionally, we find that
the transition probabilities for excitations are largest for T =
150h̄/J at U = 0.1J compared to the other center-of-mass
times, whereas this is the case for T = 100h̄/J at U = 0.4J .

Finally, we inquire whether the nonequilibrium spectra, for
later times T , begin to approach the ground-state spectra. To
this end, we have computed ground-state results for the same
system that are displayed in Fig. 19. A first observation is that
the nonequilibrium transition probabilities are significantly

(a) (b) (c) (d)

FIG. 17. Density response function for different center-of-mass times T following a confinement quench, for a half-filled ring with 30 sites
at U = 0.1J and 0.4J using SPA-ME.
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FIG. 19. Same as Fig. 18, but for the ground state at U = 0.1J
and 0.4J .

smaller than their ground-state counterparts. Moreover, we
find that the overall structure of the nonequilibrium spectra
for T = 150h̄/J starts to resemble the ground-state spectra, at
least for U = 0.4J . Similarly to the ground-state results, the
nonequilibrium spectra also vanish for frequencies larger than
4J/h̄. Clearly, for a better quantitative comparison, longer
nonequilibrium simulations would be desirable, as well as a
comparison to equilibrium spectra at a finite temperature that
takes into account the quench energy. This analysis is a subject
of ongoing work.

V. DISCUSSION AND OUTLOOK

In this paper, we have extended our recent work on a novel
quantum fluctuations approach presented in Ref. [24]. This
approach starts from single-time single-particle density ma-
trix operators and investigates their fluctuations around their
expectation value—the single-particle density matrix (or time-
diagonal Green function). The approach is conceptionally
similar to the classical fluctuations approach of Klimontovich
[25,27] as well as the stochastic mean field approximation of
Ayik, Lacroix, and others [28–30]. All these methods have
the attractive feature that correlation effects are mapped onto
the dynamics of an ensemble of fluctuating single-particle
quantities, and quantum expectation values are replaced by
semiclassical mean values.

The advantage of the present approach is that it starts
directly from the equations of motion for the nonequilibrium
Green functions (NEGFs), which allows us to use well-known
many-body approximations for the self-energy; for reference,
e.g., see [16,17,46]; see also Fig. 1. This also allows us to use
results from recent dramatic accelerations of NEGF simula-
tions that were achieved by using the Hartree-Fock GKBA
and its transformation to time-local equations—the G1–G2
scheme [19–21,54]. There the gain in computation speed
comes at the price of storing the nonequilibrium two-particle
Green function G2, the size of which rapidly increases with
the system size. One way to reduce the basis dimension is
an embedding approach [23]. On the other hand, the present

quantum fluctuations approach is even more powerful as it
avoids the computation of G2 in favor of single-particle fluc-
tuations δĜi j (t ) and their classical counterparts �Gλ

i j (t ). This
method was shown to accurately reproduce G1–G2 simula-
tions for single-time quantities within the nonequilibrium GW
approximation [24].

In this paper, we presented a major extension of the quan-
tum fluctuations approach to two-time observables that are
composed of single-particle fluctuations: the general two-time
exchange-correlation function Li jkl (t, t ′), the density corre-
lation function χR

i j (t, t ′), and the dynamic structure factor
S(q, ω). To achieve this goal, we first developed the multiple
ensembles idea, which allows one to compute commutators
within the present semiclassical approach. This has led to
the multiple ensembles stochastic polarization approximation
(SPA-ME), which was extensively tested for Fermi-Hubbard
chains in the numerics part of the paper. The first tests were
devoted to the density response in the ground state. As we
have shown in Fig. 2, the polarization approximation is, in
the weak-coupling limit, equivalent to (a) the GW approx-
imation of Bethe-Salpeter theory and (b) the random phase
approximation of linear-response theory. Indeed, we demon-
strated excellent numerical agreement of our SPA-ME results
with the RPA, within the validity range of the approximation,
i.e., for U/J � 1. From this we conclude that the SPA-ME
very accurately reproduces the polarization approximation
and that the observed differences for the SPA-ME and RPA
for stronger coupling are most likely attributed to the use
of ideal Green functions in the analytical RPA result, cf.
Appendix B, whereas the SPA-ME involves correlated Green
functions.

The main advantage of the present approach is its general
applicability to correlated quantum systems in nonequi-
librium. We demonstrated this for two types of external
excitation: The first was a rapid potential kick applied to one
site of the system. The second was a confinement quench
in a system that was initially doubly occupied in its central
region and then expands towards half-filling. In both cases,
the SPA-ME approach allowed us to study the buildup of the
nonequilibrium density response χR(τ, T ) as a function of
physical time T that has passed after the excitation. Perform-
ing benchmarks against CI simulations, for small systems,
we concluded that for weak coupling the method is very
accurate. With increasing coupling, only the main features of
the nonequilibrium spectra are captured, as expected from a
weak-coupling approximation. We then turned to larger sys-
tems for which our method is expected to be more accurate
[24].

Based on these first proof-of-principle results, we conclude
that the present SPA-ME approach can be successfully applied
to large systems for which the nonequilibrium density re-
sponse and the impact of correlation effects can be studied for
long propagation times. Work on a more systematic analysis
of the nonequilibrium dynamics, both linear and nonlinear,
and its dependence on the coupling strength and excitation
scenario is presently in progress. A particularly interesting
excitation scenario is to use a short spatially monochromatic
pulse. As was shown in Ref. [14], nonequilibrium GW -KBE
simulations of a uniform system following such an excitation
are expected to yield high-quality dynamic structure factors
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that are sum rule preserving and include vertex corrections,
thereby going well beyond the RPA, cf. Fig. 2. Therefore,
it can be expected that a similar scenario applied within
the polarization approximation for L(t, t ′) or, equivalently,
within our SPA-ME scheme will also produce highly accurate
correlated response properties for large systems that are out of
reach for exact simulations.
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APPENDIX A: ANALYTICAL RESULT FOR THE DENSITY
RESPONSE FUNCTION OF NONINTERACTING

HUBBARD CLUSTERS

The Hamiltonian of a 1D tight-binding chain with periodic
boundary conditions is given by

Ĥ0 = −J
∑
〈n,m〉

∑
σ

ĉ†
nσ ĉmσ , (A1)

where only chains with N ∈ 4N − 2 sites will be considered.
By transforming into the momentum basis

ĉ†
mσ = 1√

N

∑
q

eiqmĉ†
qσ , (A2)

q

π/N
= − N,−N + 2, . . . , N − 2, (A3)

Eq. (A1) takes the form

Ĥ0 = −2J
∑
q,σ

cos(q) ĉ†
qσ ĉqσ , (A4)

where the time-dependent version of the field operators is
given by

ĉqσ (t ) := e− 2iJ
h̄ cos(q)t ĉqσ . (A5)

From this we obtain the diagonal elements of the density
operator for site m,

n̂mσ (t ) = ĉ†
mσ (t )ĉmσ (t ) = 1

N

∑
q,q′

ei(q−q′ )mĉ†
qσ (t )ĉq′σ (t ), (A6)

and the commutator

[n̂mσ (t ), n̂nσ ′ ] = i

N2
δσ,σ ′

∑
q,k,k′

sin

{
(q − k)m

+ (k − k′)n − 2J

h̄
[cos(k) − cos(q)]t

}

× (ĉ†
qσ ĉk′σ + H.c.). (A7)

Thus for zero temperature and half-filling, we obtain for the
density response function

χR
mn(t ) = �(t )

4

h̄N2

∑
q,k

sin

{
(q − k)(m − n)

− 2J

h̄
[cos(k) − cos(q)]t

}
�[cos(q)]. (A8)

APPENDIX B: RANDOM PHASE APPROXIMATION
FOR THE HUBBARD-MODEL

For the Hubbard-Hamiltonian in one dimension with N
lattice sites and

K̂ = Ĥ − μN̂

=
∑
kσ

εk ĉ†
kσ

ĉkσ + 1

2N

∑
σ

∑
k,k′,q,q′

Uqq′kk′ ĉ†
qσ ĉ†

q′σ ĉk′σ ĉkσ ,

(B1)

where εk = −2J cos(k) − μ, Uqq′kk′ = Uδq+q′,k+k′ and
σ = −σ , the density response function within the RPA
takes the form

χR
RPA(q, ω) = 2�(q, ω)

1 − U�(q, ω)
, (B2)

where

�(q, ω) = 1

N

∑
k

n(εk ) − n(εk+q)

ω + εk − εk+q + iη
, (B3)

and n(εq) = �[cos(q)] for zero temperature and half-filling.
The missing factor of 2 in Eq. (B3) and the extra factor of 2
in Eq. (B2) in comparison to the conventional form of these
functions (compare [55]) are due to the unusual spin-indices
in the Hamiltonian.
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