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Equation of state of partially ionized hydrogen and deuterium plasma revisited
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We present improved first-principle fermionic path integral Monte Carlo (PIMC) simulation results for a
dense partially ionized hydrogen (deuterium) plasma, for temperatures in the range 15 000 K � T � 400 000 K
and densities 7 × 10−7 g/cm3 � ρH � 0.085 g/cm3 (1.4 × 10−6 g/cm3 � ρD � 0.17 g/cm3), corresponding to
100 � rs � 2, where rs = r̄/aB is the ratio of the mean interparticle distance to the Bohr radius. These simula-
tions are based on the fermionic propagator PIMC (FP-PIMC) approach in the grand canonical ensemble [Filinov
et al., Contrib. Plasma Phys. 61, e202100112 (2021)] and fully account for correlation and quantum degeneracy
and spin effects. For the application to hydrogen and deuterium, we develop a combination of the fourth-order
factorization and the pair product ansatz for the density matrix. Moreover, we avoid the fixed node approximation
that may lead to uncontrolled errors in restricted PIMC (RPIMC). Our results allow us to critically reevaluate the
accuracy of the RPIMC simulations for hydrogen by Hu et al. [Phys. Rev. B 84, 224109 (2011)] and of various
chemical models. The deviations are generally found to be small, but for the lowest temperature, T = 15 640 K
they reach several percent. We present detailed tables with our first principles results for the pressure and energy
isotherms. We expect our updated results will serve as a valuable benchmark for comparison with other methods.
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I. INTRODUCTION

Warm dense matter (WDM) is a rapidly growing research
field on the boarder of plasma physics and condensed mat-
ter physics, e.g., Refs. [1–4]. Examples include astrophysical
objects such as the plasma-like matter in brown and white
dwarf stars [5–7], giant planets, e.g., Refs. [8–13], and the
outer crust of neutron stars [14,15]. In the laboratory, WDM
is being routinely produced via laser compression [16] or
with Z pinches [17,18] and, in the near future, also via ion
beam compression [19,20]. A particularly exciting application
is inertial confinement fusion (ICF) [21,22] where recently
important breakthroughs have been achieved [23–25].

In warm dense matter research and ICF, in particular, an
accurate description of hydrogen (and deuterium) plays a
central role. Hydrogen—the most abundant and, at the same
time, the simplest element in the universe—has been in the
focus of research for many decades. Its properties have been
investigated, among others, in many compression experiments
with high intensity lasers, at x-ray free electron laser facili-
ties and at the National Ignition Facility (NIF) at Livermore
National Laboratory. Among questions of particular interest
are the predicted metal–insulator transition, the hypothetical
plasma phase transition and the recently predicted roton fea-
ture [26–28]. Aside from these questions, also basic properties
such as the equation of state (EOS), compressibility, optical
properties and conductivity are of prime importance for exper-
iments involving hydrogen. However, the accuracy of existing
experimental data is still not fully known. The situation is
expected to change with upcoming high accuracy experiments
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including the colliding planar shocks platform at the NIF [29]
and the FAIR facility at GSI Darmstadt [20].

All this poses particular challenges to theory which com-
prises a broad arsenal of models and simulation approaches.
Even after four decades of research there persist significant
deviations among the results of different models, and there
remains a surprisingly large scatter of data, even for relatively
simple quantities, such as the equation of state. The reason
is that the relevant thermodynamic and transport properties
of warm dense hydrogen are influenced, among others, by
electronic quantum effects, moderate to strong Coulomb cor-
relations, the formation of atoms and molecules, lowering of
the ionization and dissociation potentials, and the interaction
between charged and neutral species. Available data include
(semi-)analytical results within the chemical picture, such as
the Pade formulas of Ebeling et al. [30,31], the Saumon,
Chabrier van Horn model [6], the model of Schlanges et al.
[8], and the fluid-variational theory of Redmer et al. [32],
semi-classical molecular dynamics with quantum potentials
(SC-MD), e.g., Ref. [33], electronic force fields [34,35] and
various variants of quantum MD, e.g., Refs. [36–40]. A recent
breakthrough occurred with the application of Kohn-Sham
density functional theory (DFT) and Born-Oppenheimer MD
simulations because they, for the first time, enabled the self-
consistent simulation of realistic warm dense matter, that
includes both, plasma and condensed matter phases, e.g.,
Refs. [41–43]. Further developments include orbital-free DFT
methods (OF-DFT), e.g., Refs. [44,45] and time-dependent
DFT (TD-DFT), e.g., Ref. [46].

However, all these methods involve severe
approximations—that are related, e.g., to the concept of
the chemical picture, the semi-classical approximation in
MD or the choice of the exchange-correlation functional in
DFT—that give rise to systematic errors that are difficult to
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quantify and that strongly limit the predictive power of the
methods. Therefore, a special role is played by first principle
computer simulations that—at least in principle—are free of
systematic errors and, therefore, may serve as benchmarks
and reference for other models. For the thermodynamic
quantities of warm dense hydrogen such a role is being
played by path integral Monte Carlo (PIMC) simulations,
pioneered by Ceperley and Militzer [47,48], as well as
Filinov and coworkers, e.g., Refs. [49–52]. However,
PIMC simulations for warm dense hydrogen are severely
hampered by the necessity to accurately treat the Fermi
statistics of the electrons. This is known as the fermion
sign problem (FSP) that was shown to be N-P hard [53,54],
i.e., simulations suffer an exponential loss of accuracy
with increasing quantum degeneracy of the electrons. For
this reason, the computationally expensive direct fermionic
PIMC simulations of Filinov et al., that could use only a
limited number of high-temperature factors on the order
of 20 . . . 50, became increasingly inaccurate for values of
the electron degeneracy parameter χ � 1, cf. Eq. (1). An
alternative strategy was developed by Ceperley: eliminate
the FSP via the fixed node approximation [55,56]. This
leads to the restricted PIMC (RPIMC) method, and the
RPIMC results for hydrogen, including new data [57,58], still
today remain the most reliable reference. The importance
of the RPIMC data has grown even more because they
have been used by Militzer and coworkers as primary input
(in combination with DFT) for extended thermodynamic
data tables for hydrogen and a broad set of more complex
materials [59].

The magnitude of the systematic error in RPIMC that is
introduced by the fixed node approximation is commonly be-
lieved to be small. This is, in part, based on the good accuracy
of the associated zero-temperature approach (diffusion Monte
Carlo), as confirmed by available full CI ground-state data.
However, the situation is different at finite temperature. While
the fixed node approximation in RPIMC has been criticized
[60,61], and occasionally improvements beyond free-particle
nodes have been tested [62,63], so far, no alternative first-
principle results have been available that allow one to assess
the accuracy and applicability range of the method at finite
temperatures. This has changed only recently, when config-
uration PIMC (CPIMC) simulations have been introduced
by Bonitz and co-workers [64,65]. These are first principle
finite-temperature PIMC simulations in Fock space that have
no sign problem at strong degeneracy and are thus comple-
mentary to standard coordinate space PIMC. When applied
to the model system of the warm dense uniform electron gas
(UEG), the combination of CPIMC with permutation block-
ing PIMC—coordinate space PIMC that uses fourth-order
propagators and determinant sampling—and was introduced
by Dornheim (PB-PIMC [66]) made it possible to produce
benchmark thermodynamic data with a relative error below
1% [4,67,68]. These results were used, among others, to de-
velop finite-temperature exchange-correlation functionals for
DFT, such as the finite-temperature LDA functional GDSMB
[69]. Moreover, these UEG results provided, for the first time,
the opportunity to analyze the accuracy of RPIMC simulations
in the WDM range. In fact, comparison to RPIMC simulations
for the UEG of Brown et al. [70] revealed unexpectedly large

errors of the latter exceeding 10% around rs = 1 [71], for
more details, see Refs. [4,72,73].

It is, therefore, of high interest to extend the first-principle
direct PIMC simulations to warm dense hydrogen, apply-
ing the advanced methods that were successfully applied to
the UEG before. This will also allow one to benchmark the
aforementioned earlier hydrogen simulations and RPIMC, in
particular. This is the goal of the present paper. To this end we
apply the fermionic propagator PIMC (FP-PIMC) approach—
a grand canonical extension of the PB-PIMC method that was
recently successfully applied to the thermodynamic properties
of the UEG in Ref. [73] and to the static density response
function and the dynamic structure factor of the UEG [74]
and helium 3 [75].

Here we extend the FP-PIMC method to a two-component
electron-proton plasma. The approach is formulated in coor-
dinate space and, therefore, the fermion sign problem restricts
our simulations to moderate densities, rs � 2. We present
extensive new data for a broad density and temperature range,
rs ∈ [2; 100] and T ∈ [15 000; 400 000]. Our results include
the equation of state, various energy contributions, and pair
distributions. Further, we extract approximate data for the
degree of ionization and the fraction of molecules. The com-
parison with earlier results reveals significant inaccuracies
of the latter, in particular for low temperatures and/or low
densities.

This paper is organized as follows: in Sec. II we recall
the main parameters and give a brief overview on selected
theoretical data for warm dense hydrogen which will be used
for comparison to our results. In Sec. III our FP-PIMC ap-
proach is presented and its extension to hydrogen is explained.
Section IV presents our numerical results. Detailed data tables
for the equation of state and total energy are presented in the
Appendix.

II. WARM DENSE HYDROGEN AND DEUTERIUM

A. Relevant parameters

Let us recall the basic parameters of warm dense hydrogen
[76,77]:

(1) The first are the quantum degeneracy parameters, θ

and χ , which involve the Fermi energy EF and the thermal
de Broglie wavelength λ, respectively:

θ = kBT

EF
, χ = nλ3, (1)

λ = h√
2πmkBT

, (2)

EF = h̄2

2m
(3π2n)2/3, (3)

where n is the density, T the temperature, and m the par-
ticle mass. The proton degeneracy parameter χp is a factor
(me/mp)3/2 smaller than the one of the electrons and is negli-
gible in the parameter range studied in this paper.

(2) The second parameter is the classical coupling param-
eter of protons,

�p = e2

akBT
, a3 = 4

3πn
, (4)
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where a is the mean inter-particle distance.
(3) Finally, the quantum coupling parameter (Brueckner

parameter) of electrons in the low-temperature limit is

rs = a

aB
, aB = h̄2

mre2
, mr = memp

me + mp
, (5)

where aB ≈ 0.529 Å is the Bohr radius, and mr is the reduced
mass which, for hydrogen and deuterium, is mr ≈ me.

Note that the degeneracy parameters refer to an ideal
plasma and give only a rough picture of the physical situation
in WDM. At moderate to strong coupling, the spatial exten-
sion of electrons may be strongly modified and the physical
degeneracy parameter may differ substantially from θ and
χ . Similarly, the presence of bound states significantly alters
the physical degeneracy parameters. For a discussion of this
effect, see Ref. [78]. However, bound states also significantly
affect the coupling strength in the plasma because they lead to
a reduction of the number of free particles that interact via the
long range Coulomb potential.

B. Selected theoretical reference results for warm
dense hydrogen

Here we give a brief overview on existing theoretical and
simulation results for dense hydrogen and deuterium, see also
the discussion in Sec. I. Here we concentrate on those that
will be considered for comparison with our simulation results
in Sec. IV. For further details on the different methods, the
reader is referred to various text books, e.g., Refs. [1,2,79].

(1) by CP2019 we denote the hydrogen EOS by Chabrier
et al. [80] that combines simulations from three relevant phys-
ical domains, for temperatures below T � 100 000 K:

(i) ρ � 0.05 g/cm3 (rs � 3.8): the theory of Saumon,
Chabrier and van Horn [81] in the low-density, low-
temperature molecular/atomic phase,

(ii) ρ > 10 g/cm3 (rs < 0.65): the EOS of Chabrier
and Potekhin [82] in the fully ionized plasma (the high-
density and high-temperature phase),

(iii) 0.3 � ρ � 5 g/cm3 (0.8 � rs � 2) ab initio quan-
tum molecular dynamics calculations [83] at intermediate
density and temperature, dominated by pressure dissocia-
tion and ionization processes.

(iv) For the missing density interval (2 � rs � 3.8)
spline interpolation of the main thermodynamic quantities
is performed that ensures continuity of the quantities and
their first two derivatives.
(2) by FVT we denote fluid variational theory of Juranek

et al. [32]. There hydrogen is treated as fluid mixture of atoms
and molecules, including deviations from linear mixing, and
their concentrations are obtained by self-consistent solutions
of nonideal Saha equations. That reference states reasonable
accuracy for ρ � 0.6 g cm−3.

(3) by WREOS we denote the wide-range EOS of Wang
and Zhang [84]. They combine ab initio Kohn-Sham DFT-
MD, for θ < 1 with orbital-free DFT simulations, for θ > 1.

(4) by HXCF we denote the equation of state table of
deuterium of Mihaylov et al. [85]. It aims at a universal
DFT-based treatment for all temperatures and densities in-
cluding high-order exchange-correlation functionals and also
path integral MD (PIMD) data. The data points for rs = 17.53

(deuterium density ρD = 0.001 g cm−3) that are included in
the figures below have been obtained by Kohn-Sham MD
(based on PIMD).

(5) by RPIMC we denote results from restricted (fixed
nodes) PIMC simulations and RPIMC-DFT combinations, see
also Sec. I, for a discussion. In Ref. [63] a first-principles
equation of state database was provided which will be used
for comparison throughout this work. While these tables are
given for many materials and contain combinations of RPIMC
data with DFT-LDA simulations, for hydrogen only RPIMC
data are involved [63].

The above selection of the different hydrogen equations of
state is by no means representative. The goal is to compare
our new PIMC data with recent results that are frequently used
in astrophysics or warm dense matter research and for which
reference data for the same temperatures have been published
so interpolation can be avoided.

In our opinion, among the data above, the RPIMC-based
ones are the most reliable because they do not involve any
sources of systematic errors—except for the choice of the
nodes in the fixed node approximation. However, many other
equations of state involve RPIMC data, in one way or the
other. For these reasons, the comparison with RPIMC is in
the focus of the analysis of our new simulation data. Since
our FP-PIMC simulations do not involve any approximation,
such as fixed nodes, we expect them to be more reliable as
RPIMC and, in case of deviations between the two, the origin
should be in the nodes of RPIMC. The main source of error in
FP-PIMC is of statistical nature, for these reasons we devote
special attention to verify convergence of our results.

III. OVERVIEW ON THE PRESENT DIRECT FERMIONIC
PIMC SIMULATIONS

A. Fermionic propagator PIMC (FP-PIMC)

We use Feynman’s path integral picture of quantum
mechanics where particles are represented by coordinate
space-imaginary time “trajectories.” Fermions with different
spin projections are denoted by the coordinate vector Rs

p =
(rs

1,p, . . . , rs
Ns,p) with {s =↑,↓}, and the ions by the vector

RI
p. The ensemble of the particle trajectories in the imagi-

nary time is denoted by the variable Xs(I ) = (Rs(I )
1 , . . . , Rs(I )

P ),
where the lower index indicates the imaginary time argument,
τp = pε with ε = β/P and 0 � p � P. Here, P � 1 denotes
the number of high-temperature factors (“time slices”) in the
path integral formalism, see below.

To evaluate the fermionic partition function, the sum over
Ns! permutations is performed explicitly, which contains sign-
alternating terms, where the sign Sgn(σs) = ±1 depends
on the parity of the permutation in each of the two spin-
subspaces:

ZF = (N↑!N↓!)−1
∑
p∈℘

∫
d X↑d X↓d XI

P∏
p=1

Sgn(σ↑)Sgn(σ↓)

× |〈Rp−1|e−εĤ |π̂σ↑ π̂σ↓Rp〉|, (6)

where we introduced the notation Rp = (R↑
p , R↓

p , RI
p), and the

sum over p ∈ ℘ runs over different permutation classes. In
this representation, called the direct path-integral Monte Carlo
(DPIMC) method, physical expectation values are evaluated
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with the statistical error

〈A〉 =
〈
Â × ∏s Sgn(σs)

〉
〈s〉 ± δA, δA ∼ 1/〈s〉, (7)

which scales inversely proportional to the average sign

〈s〉 =
〈

s∏
Sgn(σ )

〉
= ZF

ZB
= e−βN ( f F − f B ). (8)

The sign decays exponentially with particle number N , inverse
temperature β and the free-energy difference of bosons and
fermions.

To recover the effect of the exchange-correction hole as
observed by the interaction of two spin-like fermions, one
important improvement to the DPIMC sampling (6) is nec-
essary. This physical effect can be reproduced in numerical
simulations by the use of antisymmetric propagators (determi-
nants) already on the level of stochastic importance sampling
of particle trajectories. This requires to introduce a modified
partition function where the summation over different permu-
tation classes is performed analytically in the kinetic energy
part of the density matrix (DM), and results in the Slater
determinant constructed from the free-particle propagators

ZF = 1

N↑!N↓!

∫
d X↑d X↓d XI

P∏
p=1

Sgnp e−SA
p , (9)

Sgnp = Sgn det M↑
p−1,p × Sgn det M↓

p−1,p, (10)

e−SA
p = e−εU (Rp−1,Rp)eWex(Rp−1,Rp), (11)

Wex = ln | det M↑
p−1,p| + ln | det M↓

p−1,p|, (12)

where the off-diagonal “action,” SA
p , depends on the interac-

tion term U between charged particles on two successive time
slices (p − 1, p), while Wex accounts for exchange effects due
to Fermi statistics via the Slater determinants.

The fermionic (antisymmetric) free-particle (FFP) propa-
gator between two adjacent time slices is given by

Ds
p−1,p =

∑
σs

〈
Rs

p−1

∣∣e−εK̂
∣∣π̂σs R

s
p

〉 = det Ms
p−1,p

λDNs

ε

, (13)

where the spin components are denoted by s =↑,↓, and Ms is
the Ns × Ns antisymmetric diffusion matrix

Ms = ||mkl (p − 1, p)||, k, l = 1, . . . Ns, (14)

mkl (p − 1, p) = exp

(
− π

λ2
ε

[
rs

l,p − rs
k,p−1

]2
)

. (15)

This representation has several advantages. First, the re-
sulting density matrix is antisymmetric with respect to any
pair exchange of same spin fermions. Second, the probability
of microstates is now proportional to the value of the Slater
determinants, and the degeneracy of the latter, at small par-
ticle separations, correctly recovers the Pauli-blocking effect.
Third, the FFP-propagators partially reduce the fermion sign-
problem (FSP).

The change of the sign of the Slater determinants, evalu-
ated along the imaginary time interval, 0 � τp � β, is taken
into account by the extra factors, Sgnp. Combined together

they define the average sign in fermionic PIMC,

〈S〉 =
〈

P∏
p=1

Sgn det M↑
p−1,p × Sgn det M↓

p−1,p

〉
, (16)

and characterize the efficiency of simulations in terms of the
statistical error δA in Eq. (7). The PIMC simulations become
hampered by the FSP [53,86] once the statistical uncertain-
ties are strongly enhanced due to an exponential decay of
the average sign 〈S(N, β )〉 with the particle number N , the
inverse temperature β = 1/kBT or the degeneracy parameter,
θ (or χ ). The usage of the fermionic propagators, Eq. (13),
permits to partially overcome the sign problem and make the
simulations feasible up to χ � 3.

The efficiency of the fermionic propagator approach has
been demonstrated by several authors, including Takahashi
and Imada [87], Filinov and coworkers [51,88,89] and
Lyubartsev [90]. Chin [91] used determinant propagators to
simulate relatively large ensembles of electrons in 3D quan-
tum dots. The PB-PIMC simulations by Dornheim et al. [4,66]
have addressed the thermodynamic proprieties of the UEG
from first principles.

B. Quantum pair potentials in plasma simulations

Before discussing our plasma simulations, we review the
concept of effective quantum potentials that are used to
overcome the divergence of the attractive Coulomb potential
which leads to divergencies in classical statistical thermo-
dynamics. Taking quantum effects into account gives rise to
modified pair potentials which do not exhibit these singular-
ities anymore. Such potentials have been derived by Kelbg
[92–94], Deutsch [95], and others. They capture the basic
quantum diffraction effects and are exact in the weak coupling
limit. Furthermore, an improved version of the Kelbg potential
(IKP) was derived [33,78] that extends the applicability range
beyond the weak coupling limit, as will be discussed below.
In Eq. (17) we reproduce the IKP, whereas the original Kelbg
potential follows from it by setting the parameter γi j equal to
one,

U (r, λi j ) = Zq

r

[
1 − e

− r2

λ2
i j +

√
πr

λi jγi j

(
1 − erf

[
γi j r

λi j

])]
,

Zq = qiq j, λ2
i j = h̄2β

2μi j
,

1

μi j
= 1

mi
+ 1

mj
, (17)

and was obtained via first-order perturbation theory. Quantum
effects related to the finite extension of particles on the length
scale of the de Broglie wavelength, λi j , which depends on
temperature and the reduced mass, enter explicitly.

This potential has the advantage of preserving the correct
first derivative of the the exact binary Slater sum Si j (r) at
zero interparticle distance. However, it does not include strong
coupling effects, in particular it does not include bound states,
which become important at low temperatures. This drawback
has been corrected with the introduction of the IKP by Filinov
et al. [33,78]. The correction parameter γi j in Eq. (17) is
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directly related to the exact Slater sum at zero distance,

γi j (β,μi j ) = −
√

π

λi j

Zqβ

ln[Si j (ri j = 0, β )]
. (18)

A detailed discussion of the accuracy of the IKP, Eq. (17),
for all types of binary Coulomb interactions, and practical
applications for a hydrogen plasma in both PIMC and MD
simulations was presented in Ref. [33].

In our recent work [96] we performed detailed accuracy
and convergence tests, being relevant for the present plasma
simulations. First, we performed FP-PIMC simulations with
the IKP and compared them to simulations where the ex-
act off-diagonal pair potential (see next Sec. III C) for the
electron-ion interaction [97] (defined by the exact Slater sum)
was employed. In summary, we found that while the IKP
allows us to accurately describe the electron-electron (ion-ion)
correlation effects, its accuracy given by the diagonal approx-
imation to the off-diagonal pair density matrix,

ρ(r, r′; τ ) ≈ 1
2 [ρ(r, r; τ ) + ρ(r′, r′; τ )], (19)

is not sufficient. The IKP exhibits very slow convergence with
respect to the number of high-temperature propagators P, as
was shown in Ref. [96]. Additional extensive tests of the P
convergence in the present FP-PIMC simulations, including
the dependence on the system size, will be summarized in
Sec. IV A.

C. Combination of the fourth-order factorization scheme with
the product density matrix ansatz

As shown in the previous discussion, while it is sufficient to
use the fitted IKP for the binary interactions i j = ee, ii, a more
accurate treatment of the attractive electron-ion interaction is
required to reduce the number of factors, P, to a moderate
value. This is crucial because the efficiency of FP-PIMC sen-
sitively depends on the imaginary time step ε = β/P. A larger
time step (smaller P value) in the high-temperature factoriza-
tion increases the average sign 〈S〉 in Eq. (16) and extends
the applicability range of fermionic simulations to higher de-
generacy. To achieve this goal—without loss of accuracy—as
was done in the UEG case [66,73], we take advantage of the
fourth-order factorization scheme proposed by Chin et al. [98]
and Sakkos et al. [99]:

e−βĤ =
P∏

p=1

e−ε(K̂+V̂ )

≈
P∏

p=1

e−εŴ1 e−t1εK̂ e−εŴ2 e−t1εK̂ e−εŴ1 e−t0εK̂ + O(ε4).

(20)

The potential and the kinetic energy contributions along the
imaginary time step ε are divided into three parts as, t1ε +
t1ε + t0ε = ε, with t0 being a free parameter which influences
the P convergence. As a result the higher order commutators
between K̂ and V̂ exactly cancel, up to the order O(ε4) [100].
Thereby the effective total number of factors in Eq. (9) be-
comes 3P, which has to be taken into account in the cited P
values in Sec. IV A.

The new potential energy operators introduced in Eq. (20)
take the form [98]

Ŵ1 = v1V̂ + u0a1ŴQ, (21)

Ŵ2 = v2V̂ + u0a2ŴQ, a2 = 1 − 2a1, (22)

ŴQ = ε2[[V̂ , K̂], V̂ ] = h̄2

m
ε2

N∑
i=1

∣∣F2
i

∣∣, (23)

where Fi is the full force acting on a particle i. The involved
coefficients are defined as

v1 = 1

6(1 − 2t0)2
, v2 = 1 − 2v1, 2t1 = 1 − t0, (24)

u0 = 1

12

[
1 − 1

1 − 2t0
+ 1

6(1 − 2t0)3

]
. (25)

The choice t0 = 1/6 (as used here), in particular, corresponds
to an equidistant time-step in Eq. (20), and a symmetric action
of the diffusion operator e−t1εK̂ .

Below we proceed with an explicit derivation of the com-
bination of this scheme with the pair product ansatz (PPA)
for the N-particle density matrix introduced by Pollock and
Ceperley [97] which was efficiently employed in the many
RPIMC simulations [48,58,62,63,70].

Let us explicitly write the contribution of binary inter-
actions in the N-body density operator of a two-component
system composed of electrons (e) and ions (I),

e−εĤ = e−ε(K̂e+K̂I +V̂ee+V̂II +V̂eI ), (26)

where each operator is the sum of one-particle or two-particle
operators. Later we will explicitly use the large mass asymme-
try of the species, mI/me � 1. Now we apply the fourth-order
factorization result (20) with redefined (noncommuting) oper-
ators

ˆ̄K = K̂e + K̂I + V̂eI , (27)

ˆ̄V = V̂ee + V̂II, (28)

and evaluate the additional quantum corrections, ŴQ, to the
bare operator ˆ̄V by Eqs. (21)–(23). After omitting all mutually
commuting operators we are left with the final result,

ˆ̄WQ = Ŵee,Q + ŴII,Q, (29)

Ŵee,Q = h̄2

me
ε2

Ne∑
i=1

∣∣F2
e,i

∣∣, (30)

ŴII,Q = h̄2

mI
ε2

NI∑
j=1

∣∣F2
I, j

∣∣, (31)

where Fe(I ),i is the full force acting on particle “i” only from
the same particle species (i.e., with the exclusion of the e-i
interaction). The corresponding matrix elements are diagonal
in the coordinate representation:

〈Rp−1|e−ε ˆ̄Wn |Rp〉 = e−εW (Rp) δ(Rp − Rp−1), (32)

W = − 1
2ε [W̄n(Rp−1; τp−1) + W̄n(Rp; τp)], (33)

W̄n = vn(Vee + VII ) + u0an(Wee,Q + WII,Q). (34)
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FIG. 1. Dependence of the pair distribution functions on the
number of factors P, for T = 15 640 K, rs = 7, and the particle
number N = 34. (a) PDF for same spin electrons; (b) ion PDF;
(c) PDF for electrons with antiparallel spins; (d) electron-ion PDF
multiplied by 4πr2, compared to the hydrogen atom ground-state ra-
dial probability (red dash-dotted line). The presence of neutral bound
complexes H, H2 and molecular ions H+

2 can be identified from the
broad peaks in gii(r) for ion-ion distances, 1.1aB � r � 2.2aB, and
g↑↓(r). The fraction of molecules, contributing to the peak height
in gii(r) (the vertical dotted line denotes the bond length lB = 1.4aB

in H2), however, is strongly overestimated for the cases with only
few propagators P = 24(36). Full convergence is achieved only at
P = 72(96). The atom fraction [related to the peak height in panel
(d)] has only a weak P dependence.

In particular, the ee-correlations are treated in the fourth-order
factorization scheme the same as in the UEG case [66,73].
As an alternative approach to Chin’s result, Eqs. (21)–(23),
we can include first quantum corrections via the effective
quantum potentials, e.g., the IKP (see Sec III B). Note that
a direct use of the IKP in Eqs. (21)–(23) is not justified as this
would lead to double counting of quantum diffraction effects.

Hence, for particles with the same charge and mass we
benefit from the fast P convergence of Chin’s scheme in
a one-component system [66,73,99]. However, this scheme
will fail for two electrons with different spins, once, at low
temperature/high density, they closely approach each other,
e.g., within a molecule or by scattering of two neutrals, cf.
Fig. 1(c). This behavior will be prohibited by a divergent
Coulomb force in Eq. (23), unless a tiny time-argument ε is
employed. Therefore, for plasma simulations we use a hybrid
scheme: V ↑↑

ee ,V ↓↓
ee , and VII are treated via Eqs. (21)–(23),

whereas V ↑↓
ee is treated via the IKP (17) with the fit parameter

γee(ε, μee) [78].
To complete our result, we proceed with the evaluation of

the second operator (diffusion operators plus the electron-ion
contribution). To shorten the notations we use ε ≡ tnε (n =
0, 1):

ρ(Rp−1, Rp, ε) = 〈Rp−1|e−ε ˆ̄K |Rp〉

≈
∫

d R′
p 〈Rp−1|e−ε(K̂e+V̂eI )|R′

p〉〈R′
p|e−εK̂I |Rp〉.

(35)

In the second line we employed a first approximation, and
neglected the commutator term, ε2[V̂eI , K̂I ], which is justified
by the nearly classical behavior of ions.

In the second step, we use the PPA, with the explicit result,
|R′ e

p 〉 = |Re
p〉, which follows from the fact that the diffusion

operator (in the second term) acts only on the ion variables.
This allows us to simplify the first term to

〈Rp−1|e−ε(K̂e+V̂eI )|R′
p〉 = 〈

RI
p−1

∣∣R′ I
p

〉 × ρe
0

(
Re

p−1, Re
p, ε

)
×

Ne∏
i=1

NI∏
j=1

exp
[−ε UeI

(
ri j

p−1, ri j
p

)]
,

(36)

ri j
p−1 = ∣∣ri,e

p−1 − r j,I
p−1

∣∣, ri j
p = ∣∣ri,e

p − r j,I
p−1

∣∣. (37)

After performing the integral over R′
p, we get our final result

for the DM in Eq. (35),

ρ(Rp−1, Rp, ε) = ρe
0

(
Re

p−1, Re
p, ε

) × ρI
0

(
RI

p−1, RI
p, ε

)
×

Ne∏
i=1

NI∏
j=1

exp
[−ε UeI

(
ri j

p−1, ri j
p

)]
, (38)

where ρe
0 and ρI

0 are the N-body free-particle DM for electrons
and ions, and UeI is the exact pair potential for the electron-ion
problem. An explicit numerical scheme to evaluate UeI was
proposed by Storer and Klemm [101,102], and a parametriza-
tion was introduced by Pollock [103] and Ceperley [97]. Its
diagonal approximation via (19), at high temperatures, con-
verges to the IKP [33], but is more accurate for T � 1Ry.

The above derivation by its physical assumptions resem-
bles the adiabatic approximation but applied at the “elevated”
(via the factorization) higher temperature T ∼ ε−1. The ther-
mal fluctuations in the ion trajectory propagating from |RI

p〉
to |R′ I

p 〉 are induced by the diffusion operator e−εK̂I , and are
of the order of the ion de Broglie wavelength λI (ε), Eq. (2).
This length scale should be much smaller than the Bohr
radius—the characteristic spatial range of the e-i interaction.
In this case the interaction energy in the DM can be approxi-
mated in different ways, cf. VeI (|re

p − r′ I
p |) ≈ VeI (|re

p − rI
p|) ≈

VeI (|re
p − rI

p−1|).
In the final step, the free-particle electron DM should be

antisymmetrized as in Eq. (9). This can be done by splitting
the e-i pair potential into a diagonal (D) and an off-diagonal
(OD) contribution

UeI (rp−1, rp; ε) = 1
2

[
uD

ε (rp−1) + uD
ε (rp)

] + uOD
ε (rp−1, rp).

(39)

By performing, as before, the summation over permutations
in Eq. (6), we obtain the same representation for the partition
function as in Eq. (9) with the following modifications:

First, the number of imaginary time slices in the particle
trajectories is changed P → 3P, due to the fourth-order rep-
resentation (20) (we perform two additional diffusion steps
weighted by the interactions Ŵ1(2));

Second, the antisymmetric diffusion matrix now includes
the off-diagonal part of the e-i pair potential directly in the
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matrix elements

Ms,int = ∣∣∣∣mint
kl (p − 1, p)

∣∣∣∣, k, l = 1, . . . Ns,

mint
kl (p − 1, p)

= exp

⎛
⎝− π

λ2
ε

[
rs

l,p − rs
k,p−1

]2 − ε

NI∑
j=1

uOD
ε

(
rk j

p−1, rl j
p

)⎞⎠,

(40)

where the sum runs over all ions, and the vectors {rk j
p−1, rl j

p }
specify the e-i distances on two successive time slices. Note
that in the Slater determinant all electron coordinates are per-
muted, and each electron does not need to be specified by a
distinguished trajectory, as in PIMC for Bose systems [97] or
in RPIMC [55];

Third, the potential energy part is now diagonal and in-
cludes several contributions [the arguments are defined as
x = (Rp−1, Rp−1; tnε) and x′ = (Rp, Rp; tnε)]:

(1) Due to fourth-order factorization,

U 4th(x, x′) = 1
2 [W (x) + W (x′)], (41)

W (x) = W ↑↑
ee (x) + W ↓↓

ee (x) + WII(x). (42)

(2) The IKP potential for the opposite spin electrons,

U ↑↓
ee (x, x′) = 1

2

[
U IKP

ee (x) + U IKP
ee (x′)

]
, (43)

or, alternatively, we use the diagonal part uD
ε of the exact pair

potential for two electrons, similar to Eq. (39).
(3) The e-i interaction is included via the diagonal part of

the e-i pair potential,

U D
eI (x, x′) = 1

2 [uD(x) + uD(x′)]. (44)

(4) The off-diagonal contributions to the e-i interaction are
explicitly included in the Slater determinants and account for
the indistinguishable nature of the same spin electrons.

Note, that only the fourth-order factorization includes the
bare Coulomb potential, whereas the other effective poten-
tials, U ↑↓ and UeI , are soft and permit formation of bound
states even with only a few high-temperature factors involved,
e.g., P ∼ 3.

With the above derivation, we have achieved our main goal:
exchange effects related to the electron spin are taken into
account via the antisymmetric short-time propagators (15) in
the form of Slater determinants modified by e-i correlations.

D. Thermodynamic functions

In this section we present the estimators for the main
thermodynamic functions of interest used in our FP-PIMC ap-
proach. We start from the definition of the partition function,

Z =
∫

d X
∫ P∏

p=1

e−εpU (Rp) det M[ρ0(Rp−1, Rp; τ )],

where Rp = (r1,p, r2,p, . . . , rN,p) contains the coordinates
of all particles. Compared to the exact representation, cf.
Eqs. (9), (34)–(15), and (21)–(23), we have simplified the
notations to highlight the general structure of the related ther-
modynamic estimators. For example, the single determinant

represents the contributions of two Slater determinants (for the
spin up/down electrons). The explicit expressions of the total,
kinetic and potential energy for the fourth-order factorization
is rederived with additional contributions from the quantum
correction, ŴQ (23), for details see Sakkos et al. [99]. Also the
summation over P should be extended to 3P due to additional
factorization factors in Eq. (20).

The total interaction energy U is the sum of the pair po-
tentials of particles of the same kind and between different
species,

U (Rp) =
∑

α

Nα∑
i< j

uαα

(
ri j

p

) +
∑

α

∑
β

Nα∑
i=1

Nβ∑
j=1

uαβ

(
ri j

p

)
.

(45)

1. Pressure

The pressure is related to the partition function via

βp = ∂ ln Z

∂V
, (46)

where the derivative is performed by introducing a scaling
factor, α = L/L0 = (V/V0)1/3, and by rescaling all particle
coordinates, r → αr,

∂ ln Z

∂V
=

[
∂ ln Z (αX)

∂α

α

3V

]
α=1

. (47)

This standard procedure, applied within the FP-PIMC repre-
sentation of the N-body DM, leads to several contributions
which originate from its kinetic and potential parts, as well as
additional terms, in the case of quantum potentials, such as the
(improved) Kelbg potential, Eq. (17).

The interaction-induced contribution to the pressure is ob-
tained as the α derivative of the potential energy term with the
substitution {xi = αri, i = 1, . . . N},
∂U (Xp)

∂α
=

∑
i< j

3∑
d=1

[
u
(
xi j

p
)

∂xi j,d
p

∂xi j,d
p

∂α

]
α=1

=
N∑

i< j

∇u
(
ri j

p

) · ri j
p ,

and leads to an analogous result as in classical Statistical
Physics, with an additional averaging along the particle tra-
jectories,

pV = − 1

3V

〈
1

P

P∑
p=1

N∑
i< j

∇u
(
ri j

p

) · ri j
p

〉
, (48)

with ri j
p = ri,p − r j,p, where the coordinate vectors ri,p =

ri(τp) depend on the imaginary time argument, 0 � τp � β,
with 1 � p � P.

The long-range interactions with the periodically repeated
main simulation cell are evaluated either via the Ewald sum-
mation or the angle-averaged Yakub potential (“Y”) [104]
which gives rise to additional contributions. We have tested
both potentials and found that, for the simulation parameters
used in this paper, the results for both are practically indistin-
guishable. For the case of the Yakub potential the long-range
interaction term

uY
t

(
ri j

p

) = 2π

3V
r2

p (49)
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gives rise to the tail correction to the pressure

pY
1 =

〈
1

P

P∑
p=1

N∑
i< j

∂uY
t

(
xi j

p
)

∂α

∣∣∣∣
α=1

〉
=

〈
−

[
3

α
uY

t

(
ri j

p

)]
α=1

〉

and an additional contribution to the virial part

pY
2 = 1

V

〈
1

P

P∑
p=1

N∑
i< j

∇uY
t

(
ri j

p

) · ri j
p

)〉
. (50)

Next, we take into account the contribution of the kinetic
energy part (constructed with the Slater determinants between
adjacent time slices {τp−1, τp})

pT = 1

3V
3NkBT × P

+
〈

1

3V P

P∑
p=1

∂ det M[ρ(αRp−1, αRp]/∂α

det M[ρ(Rp−1, Rp]

〉
. (51)

Alternatively, using the result for the α derivative of the matrix
elements in M[mkl ][

∂mkl (αrk,p−1, αrl,p)

∂α

]
α=1

= m0,α
kl,p,

m0,α
kl,p = − 2

λ2
τp

(rl,p − rk,p−1)2 e
− (rl,p−rk,p−1 )2

λ2
τp , (52)

the same contribution is directly related to the thermal part of
the total kinetic energy, ET

kin, as follows:

pT = 2

3V
ET

k . (53)

Once, the e-i interactions are included in the matrix elements
via Eq. (15), we get an additional contribution related to the
off-diagonal potential[

∂mint
kl (p − 1, p)

∂α

]
α=1

= mint,α
kl,p , (54)

mint,α
kl,p

/
mint

kl (p − 1, p) = − 2

λ2
τp

(rl,p − rk,p−1)2

− ε

NI∑
j=1

∂

∂α
uOD

ε

(
αrk j

p−1, αrl j
p

)∣∣
α=1.

(55)

Thus, the full pressure estimator is given by

p = pT + pV + pY
1 + pY

2 . (56)

2. Kinetic energy

The PIMC representation of the full kinetic energy is based
on the exact estimator

Ek =
∑

α

Nα∑
i=1

mα
i

β

∂Z

∂mα
i

. (57)

In our case the mass derivative of the matrix elements in the
free-particle Slater determinants can be sequentially reduced,
first, to the partial derivatives with respect to the two-particle
reduced de Broglie wavelength, λi j , see Eq. (17), and, in a

second step, to the α derivatives used in Sec. III D 1 for the
pressure estimator. This way we can directly prove Eq. (53)
and write the intermediate result

ET
k = 3

2
NkBT P

+
〈

1

2P

P∑
p=1

∂ det M[ρ(αRp−1, αRp]/∂α

det M[ρ(Rp−1, Rp]

〉
. (58)

Some additional care should be taken with the use of effective
quantum potentials. Both, the exact pair and the improved
Kelbg potentials, cf. U IKP

ee and U D
eI , Eqs. (43) and (44), con-

tain an additional dependence on the temperature and particle
masses via λi j . This leads to an additional contribution to the
kinetic energy and also to the total energy. Using Eq. (57) we
can estimate the corresponding correction

Eλ
k =

〈
1

2P

P∑
p=1

N∑
i, j

λi j
∂u

(
ri j

p
)

∂λi j

〉
, (59)

u(x) = U ↑↓
ee (x) + U D

eI (x). (60)

Finally, we express the full kinetic energy as

Ek = ET
k + Eλ

k . (61)

3. Total and potential energy

The total energy is given by

ET = − 1

Z

∂Z

∂β
. (62)

As the inverse temperature β = τP is directly contained in
λi j (τ ), the kinetic energy case, discussed above, can be di-
rectly used, with the result

E = ET
k + Eλ

k + Ep. (63)

The potential energy follows directly from Eq. (61),

Ep = E − Ek =
〈

1

P

P∑
p=1

N∑
i< j

u
(
ri j

p

) + uY
t

(
ri j

p

)〉 + �EOD
p ,

(64)

where �EOD
p denotes the correction due to the off-diagonal

quantum pair potential uOD
ε .

IV. SIMULATION RESULTS

We have carried out fermionic PIMC calculations in a
broad range of densities and temperatures relevant for warm
dense matter. The simulations have been performed for a
deuterium plasma (D), with mD/me = 3673, but our data are
applicable to the hydrogen (H) EOS as well by a simple
rescaling of the mass density via the relations

ρD[g/cm3] = (1.75313/rs)3, (65)

ρH[g/cm3] = (1.39181/rs)3, (66)

and ρD = 1.9985 ρH. In the discussion of the results in the
following sections we will mainly refer to hydrogen density
ρH .
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FIG. 2. Same as Fig. 1, but for T = 31 250 K and rs = 5. The
molecular fraction is strongly overestimated for P = 4, and con-
vergence is achieved at P = 12(16) [cf. panel (b)]. As for lower
temperatures, the peak height in 4πr2gei in panel (d) exhibits only
a weak P dependence.

The EOS was evaluated for a series of isotherms cov-
ering the range 15 600 K � T � 400 000 K. The analyzed
density interval (1 � rs � 100) for hydrogen (deuterium)
corresponds to 7 × 10−7 g/cm3 � ρH � 0.085 g/cm3 (1.4 ×
10−6 g/cm3 � ρD � 0.17 g/cm3) and to electron degeneracy
parameter values of θ � 0.5 and χ � 3.

For all simulation conditions the collected data for the
pressure and the internal energy isotherm are presented in
the combined EOS-table, see Table I in Appendix B. The
statistical errors strongly depend on the temperature-density
combination and the corresponding values of the degeneracy
parameters {θ, χ}, which influences the severity of the FSP in
our simulations.

In addition, we resolve the kinetic and the potential energy
contributions, and this way we are able to verify the virial the-
orem in our thermodynamic data. In particular, we employed
the thermodynamic (56) and the virial (valid for Coulomb
systems)

pvV = 2
3 Ek + 1

3 Ep, (67)

estimators for the pressure. Both are found to agree
within the statistical errors if the number P is sufficiently
high.

A. Convergence analysis

To validate the numerical accuracy of our simulations we
performed a convergence analysis of the main thermodynamic
quantities with respect to the number P of high-temperature
factors in the fermionic partition function ZF , Eq. (9),
which was done for three representative temperatures, T =
15 640 K, 31 250 K, and 125 000 K.

1. Convergence of the pair distribution functions (PDF)

First, we address the P convergence of the PDF at T =
15 640K, in Fig. 1, and T = 31 250K, in Fig. 2. The four
panels clearly demonstrate how sensitive the inter-particle

correlations are to the choice of P. In PIMC simulations
higher P values are, in general, required to accurately include
the effects of three-body and higher-order correlations. This
is obviously the case for the attractive Coulomb interaction
experienced by the electrons within an atom or a molecule
what explains the significantly slower convergence of both
g↑↓(r) and gii(r), compared to g↑↑(r) and gei(r).

The increase of g↑↓ > 1, below r = 1aB (panels b) in-
dicates the formation of molecules, which are also clearly
observed as attractive correlations between pairs of atoms,
with a broad peak in gii(r) at r ∼ 1.4aB (panels c). Note,
that the peak amplitude becomes strongly suppressed at P >

48(15kK ), and P > 12 (31kK). Convergence is reached only
for P � 72, for 15kK and P � 16, for 31kK (the correspond-
ing lines agree within the statistical errors). The same trend is
observed in g↑↓(r) as well. By using too low P values (e.g.,
P = 24, for 15kK, and P = 8, for 31kK) the attractive inter-
action within the bound complexes (H2, H+

2 ) is significantly
overestimated. First, this has a strong effect on the plasma
composition at low temperatures (see the cluster analysis in
Sec. IV D), and, second, influences all thermodynamic func-
tions including the EOS.

In contrast, significantly lower P values are sufficient to de-
scribe the correlations between the spinlike electrons (panels
a). These electrons do not participate in molecule forma-
tion and, their short-range Coulomb repulsion is enhanced
by Pauli blocking which is taken into account by the anti-
symmetrization of the many-body density matrix employing
Slater determinants (15). A similar effect was observed for
the UEG [68,73], where only few (fourth-order) propagators
[P ∼ 2 . . . 3] were found to be sufficient even for temperatures
below the Fermi temperature, 0.5 � θ .

Finally, we analyze the electron-ion PDF. In panels d) we
plot 4πr2 × gei(r) which is the radial electron density around
a proton. This quantity allows one to resolve the electron
probability in atoms and molecules. This quantity does show
some weak P dependence, but only in the range 0.5aB � r �
1.5aB. This behavior is physically reasonable: at short dis-
tances (r � 0.5aB) pairwise e-i correlations dominate over the
many-body effects, and the employed pair approximation for
the N-body density matrix [62,97] becomes nearly exact. The
influence of the plasma environment on the electron density
within an atom becomes significant only at distances r � aB

where the pair-product ansatz for the N-body density matrix
is not appropriate.

To verify the cusp condition for gei we plot, in addi-
tion, the radial density corresponding to the ground-state
wave function of an isolated atom (dash-dotted red curve).
For low temperatures, the agreement at small r is very
good.

The relative importance of many-body effects for the PDF
and the influence of the number P is further analyzed in
Fig. 3 for a higher temperature (T = 125 000 K) when only
few bound complexes are present. For the density param-
eter rs = 5 the lowest value P = 9 is completely sufficient
for accurate thermodynamic functions. Some minor effects
can be resolved only in the e-i PDF [Fig. 3(d)] at r ∼ aB,
as demonstrated in the inset. Physically, a particular choice
of P has an effect on the interaction between neutrals and
free electrons once they approach each other to distances
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FIG. 3. Same as Fig. 1, but at T = 125 000 K and rs = 5. In
contrast to low temperatures (T � 35 000 K), P = 3 is completely
sufficient to accurately capture the electron-electron and the electron-
ion correlations. In panel (d) the ground-state radial density is
multiplied with fraction of atoms xH obtained from the FP-PIMC
simulations, see text.

comparable to the effective atomic radius. This effect can
be observed as an onset of formation of a local maximum
in 4πr2gei at 0.8 � ra−1

B � 1.2, and this type of correlations
exhibits the slowest P convergence. In Fig. 3(d) we again in-
clude the ground-state radial density, but this time multiplied
by the factor “xH ∼ 0.21”—the fraction of atoms estimated
from the FP-PIMC cluster analysis, (cf. Sec. IV D). The good
agreement for distances r � aB shows that—despite the small
fraction of atoms—the main contribution is provided by the
density of bound electrons.

2. Convergence of thermodynamic functions

For an accurate reconstruction of the EOS the P conver-
gence of the main thermodynamic functions has to be verified,
in addition to the behavior of the PDF. We start with the sim-
plest case of high temperature, cf. Fig. 4, when convergence of
the PDF is achieved with a few factors, P = 3, see Fig. 3. Sim-
ilar conclusions can be drawn here. For P � 6, the FP-PIMC
estimators for the energy and the pressure converge within
the statistical error bars to the P → ∞ limit. To demonstrate
the finite-size effects we compare simulations for N = 34 and
N = 64. The relative deviations in percent are cited in each
panel.

A similar analysis is presented in Fig. 5, for T = 31 250K
and rs = 5. Both, the internal energy and the pressure con-
verge to the asymptotic value, now for much larger P values
(P � 24). A significant increase of the statistical error bars
at high P is due to the decay of the average sign (16) to
〈S〉 ∼ 0.035 (0.025), for P = 12 (P = 16). Note, that the ther-
modynamic estimator for the potential energy εp [Fig. 5(a)]
exhibits a much slower P convergence compared to the kinetic
energy εk [Fig. 5(b)]. This can be explained by a relatively
slow 1/P convergence of atomic and molecular fractions (see
Sec. IV A 3), and a change in plasma composition has a
stronger effect on εp. The estimated molecular fraction, see
Fig. 18(b), is not negligible and reaches 5% for rs = 5. The

(b)

(a)

FIG. 4. Convergence of (a) internal energy (per atom) and
(b) pressure vs P, for rs = 5 and T = 125 000 K. The extrapolation
to the P → ∞ limit is indicated by the dashed lines. The numbers
in percent indicate the relative deviation between two system sizes
N = 34 and N = 64. The RPIMC data [58] are shown by the solid
blue line (dotted lines are the error bars).

results saturate only for P = 24(32) propagators. The simula-
tions for a larger system size N = 64 (P � 8) agree within the
error bars.

After having established the convergence of the thermody-
namic functions with P, we now compare the results to the
RPIMC data [for details, see Sec. II B] which are shown in
Figs. 4 and 5 by the blue lines with error bars. First, for T =
125, 000K, we observe good agreement between FP-PIMC
and RPIMC, where the deviations are about 0.6%, for the
total energy and 0.5%, for the pressure (N = 64), with the
FP-PIMC data are being larger. The same behavior of internal
energy and pressure is observed for T = 31, 250K, see the
results of the P → ∞ limit in Fig. 5. From Fig. 5(b), it be-
comes clear that the main source of discrepancy is the kinetic

(b) (d)

(a) (c)

FIG. 5. 1/P dependence of (a) kinetic energy, (b) internal energy,
(c) kinetic energy, and (d) pressure for T = 31 250 K and rs = 5 and
a number of factors 3 � P � 32. The extrapolation to the P → ∞
limit is indicated by the dashed lines. Horizontal blue lines: RPIMC
data [58].

055212-10



EQUATION OF STATE OF PARTIALLY IONIZED … PHYSICAL REVIEW E 108, 055212 (2023)

(b) (d)

(a)
(c)

FIG. 6. P convergence of the FP-PIMC results, for rs = 6, T =
15 640 K and N = 34 (P � 96), N = 64 (P � 72, see different sym-
bols). (a) Fraction of free ions. (b) Upper (lower) curve: fraction of
atoms (molecules). (c) Internal energy and (d) pressure. Solid brown
(N = 34), dashed blue (N = 48) and dotted green (N = 64) lines in
panels (c) and (d) are the HSCM model results, Eqs. (69) and (68),
with the N- and P-dependent fractions {xH+ , xH , xH2 } derived from
the FP-PIMC data in panels (a) and (b). The extrapolation to the
P → ∞ limit is indicated by the horizontal gray line. Horizontal blue
lines in panels (c) and (d): RPIMC data [58].

energy which is underestimated in RPIMC by 0.1eV which
directly influences the pressure, due to the virial relation (67).
Some deviations to the RPIMC EOS become more noticeable
at lower temperatures, and a systematic comparison, in a wide
range of densities and temperatures, will be discussed in the
following sections.

3. Convergence of the plasma composition

Next, in Figs. 7 and 8 we concentrate on the low tempera-
ture case (T = 15 640 K), where the plasma is dominated by
atoms and molecules. This regime was found to be the most
difficult for the convergence analysis. A full P convergence
of all quantities cannot be achieved directly, even with a

(b) (d)

(a) (c)

FIG. 7. Same as in Fig. 6, but for rs = 4, T = 15, 640 K, and
N = 14, 20. Horizontal blue lines in panels (c) and (d): RPIMC data
[58].

(b) (d)

(a) (c)

FIG. 8. Same as in Fig. 6, but for rs = 14, T = 15 640 K and
N = 20, 34, 48, 64. The chemical model [solid brown (N = 34) and
dashed blue (N = 48) curves] predict different 1/P slopes in the FP-
PIMC data, therefore, we use the latter to extract the P → ∞ limit
(horizontal black line).

number of P = 96 fourth-order propagators, corresponding to
approximately 300 imaginary time slices in total. The main
reason is the relatively slow convergence of the ion-ion and
the opposite spin electron PDFs; see Fig. 1. The peak height
of both characterizes the change in the molecular (atomic)
fraction and exhibits a strong P dependence. As a result the
bound electrons and ions contribute very differently to the ki-
netic and potential energy, depending on whether they belong
to a molecule or to an atom. Also the dissociation equilibrium
between the neutral bound complexes has a significant effect
on the pressure.

Taking into account these preliminary considerations, we
develop a new scheme to perform an extrapolation to the
P → ∞ limit. It is based on a hard-sphere chemical model
(HSCM), introduced in Appendix A, based on the numeri-
cal solution of the coupled Saha equations for the hydrogen
ionization–dissociation equilibrium. The corresponding ther-
modynamic expressions for pressure and energy of the model
are defined by the equations

βp = na + nm + ni + β
(
pid

e + p(3)
ex + pC

ex

)
, (68)

E =
∑

s=a,m,i,e

Es
id + EHS

ex + EC
ex, (69)

where na and nm are the densities of atoms and molecules,
pid

e is the pressure of an ideal Fermi gas, Es
id are the ideal

energy contributions, and the definitions of the excess (ex)
contributions are provided in Appendix A.

As the input the above equations require the species
fractions {xH+ , xH , xH2} resolved either from the HSCM
or extracted from the FP-PIMC cluster analysis, xi =
fi(rs, T, P, N ), and contain an explicit dependence on the
simulation parameters. In our simulations we have accurately
determined the P dependence of {xH+ , xH , xH2} of free ions,
atoms and molecules, as a function of rs, T , and the system
size N . These fractions have been analyzed at three different
densities corresponding to rs = 6, 4, and 14 and are pre-
sented in Figs. 6–8 [panels (a) and (b)]. The deduced HSCM
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results for internal energy and pressure, Eqs. (69) and (68),
are compared in panels (c) and (d) with the FP-PIMC data
(symbols with error bars). In each case, we observe that all
fractions xs follow a 1/P-scaling law, where xH+ [xH , xH2 ]
changes approximately by 0.5% (1%), from P = 96 to P →
∞ [cf. panels (a) and (b)]. However, before using the ex-
trapolated values, we have to verify that finite-size effects
(dependence on the particle number N , FSE) are not signif-
icant for the results. We have performed this analysis which
revealed that FSE are negligible for N � 34 (as in Figs. 4
and 5). Therefore, the extrapolation results for the plasma
composition can be considered valid, also in the thermody-
namic limit. More details on the treatment of FSE are given in
Sec. IV A 4).

We now discuss the improved extrapolation procedure that
exploits the chemical model, starting from the intermediate
density (rs = 6, Fig. 6), where the best agreement between
our HSCM-model and the FP-PIMC is observed. Indeed, the
HSCM-curves reproduce the PIMC data (N = 34, 48, 64) for
pressure and energy [panels (c) and (d)] within the statis-
tical error bars for P � 30. Interestingly, a number P = 30
of fourth-order propagators corresponds to an effective tem-
perature 3 × P × 15 640 K ≈ 1.5 × 106 K which is close to
the value 2 × 106 K that was found sufficient to accurately
reproduce the properties of an isolated hydrogen molecule by
Militzer et al. [48].

Next, consider a higher density corresponding to rs = 4, cf.
Fig. 7. Here the degeneracy is significantly increased leading
to a rapid increase of the FSP with both P and N , and we
have to restrict our FP-PIMC simulations to N = 14(20). This
situation makes an accurate extrapolation to P → ∞ and to
the thermodynamic limit very complicated. Here we strongly
benefit from the strongly improved convergence of the species
fractions in the chemical model. In fact, the HSCM data
experience a 1/P dependence similar to the scaling of the
FP-PIMC data (see the black dashed line obtained by a linear
extrapolation). Even though the slopes are different, in both
cases the same P → ∞ limit (shown by the solid horizontal
black line) is approached.

Finally, for the lowest density case, rs = 14, cf. Figs. 8(a)
and 8(b), we observe some fluctuations in the fraction of
bound states with the particle number for 34 � N � 64. This
is related with the slow convergence of thermodynamic av-
erages at low densities: one has to sample a significantly
larger number of configurations, giving rise to an increase of
the simulation time. Therefore, we choose the N = 34 as a
reference, for rs = 6 and rs = 14. However, we observe that
the 1/P slope predicted by HSCM noticeably deviates from
the 1/P-scaling of the FP-PIMC data (dashed black line).
The observed discrepancy in the energy (pressure) is about
1% (3%), and indicates that this method is not applicable
in the present case, without substantial improvement of the
HSCM.

Finally, we compare our extrapolated results for pressure
and internal energy to the RPIMC data [58] which are shown
in Figs. 6–8 by the horizontal blue lines. While for rs = 6 both
simulations agree within the error-bars, cf. Fig. 6, for rs = 14
and rs = 4 systematic deviations are observed. A more sys-
tematic analysis will be performed below for the pressure and
energy isotherms.

(b) (d)

(a) (c)

FIG. 9. Convergence of the thermodynamic quantities with the
system size N = 14, 20, 34, 48, 64 for rs = 4 and T = 95 250 K
and P = 4. Dashed lines: linear extrapolation to the thermodynamic
limit. The shaded area is the confidence interval for the mean thermo-
dynamic value 〈Ô〉: O(∞) − �ON , for all simulations with N � 34.
In parentheses we provide the relative deviation of the finite-size
result 〈ON=34〉 from the asymptotic value, δON=34/O(∞) [%]. Hori-
zontal dotted blue lines: RPIMC data [58].

4. Finite-size effects

In this section we analyze the influence of the finite-size ef-
fects (FSE). The convergence of the FP-PIMC results strongly
depends on the complexity of the FSP and, therefore, in
some regions of the temperature-density plane with nλ3 � 3
we have to restrict the simulations to N � 34. Nevertheless,
by the inclusion of periodic boundary conditions via the
Ewald summation [105,106] or the Yakub procedure [104],
the N-dependence of the thermodynamic observables is sub-
stantially reduced. This is illustrated below for two relevant
cases: the first is that of a partially ionized plasma and the
second corresponds to a situation where atoms and molecules
dominate. To study the FSE we performed simulations with
N = 14, 20, 34, 48, 64 ions.

For the first case we chose rs = 4 and T = 95 250 K, where
only few bound states are present. The four main thermody-
namic functions are plotted in Fig. 9 and exhibit an almost
linear 1/N-scaling. The relative deviation of the reference
system size (N = 34) from the thermodynamic limit (TDL)
in percent is indicated in each panel and provides a quanti-
tative estimate of possible finite-size errors. This also applies
to the values reported in Appendix B, including the special
cases when, due to the FSP, the simulations were restricted to
N � 20.

Several important conclusions can be drawn. The small-
est (largest) FSE are observed in the kinetic εk (potential
εp) energy contribution. In particular, for N = 20 the esti-
mated kinetic energy deviates from the TDL by δεk,N=20 ∼
0.2%, while the deviations in the potential energy reach up
to δεp,N=20 ∼ 1%. Since the internal energy (64) and the
pressure (67) contain both quantities (with different weights),
the related FSE can be reduced significantly, once they are
removed from the potential energy [73,107].

The conclusions about FSE are hampered by the compar-
atively large statistical errors of the kinetic energy estimator
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(b) (d)

(a) (c)

FIG. 10. Convergence of potential energy, kinetic energy, to-
tal energy and pressure with the system size, using N =
14, 20, 34, 48, 64, at T = 95 250 K (P = 4), in the density range
4 � rs � 14 (the rs-values are indicated in panel a). Shown are the
1/N scalings of the relative deviations of quantity O with respect to
the thermodynamic data for N = 34: δON=34 = 〈ÔN 〉/〈ÔN=34〉 − 1.

(61) which exceeds the errors of εp by a factor 3–4. Therefore,
we present additional data in Fig. 10 where we investigate
the relative deviations from a “reference” system with N = 34
particles (the data are reported in Table I). We clearly confirm
that in the density range, 4 � rs � 14, the fastest (slowest)
N convergence is observed in the kinetic (potential) energy.
However, both quantities demonstrate an opposite trend with
the density increase. While at rs = 14 we find a significant
FSE in εp (up to few percent) and almost negligible one in εk

(below 0.05%), the PIMC simulations of high density plasmas
(rs = 4) would require to use N � 34 to keep the FSE in εk on
the same level as in the dilute systems. From the right two
panels we conclude that the extrapolation to the TDL will
lead to a positive correction of up 0.5% (0.2%) in the total
energy εT (in the pressure) for N = 34, but the inclusion of
these corrections in the derived EOS is more important for
low densities (rs � 7).

(b) (d)

(a) (c)

FIG. 11. Same as in Fig. 9, but for rs = 6 and T = 31 250 K. The
finite-size effects, 14 � N � 64, are estimated using P = 12. The
convergent result is obtained via 1/P-extrapolation, as explained in
Fig. 5.

FIG. 12. Upper panels: Internal energy per particle versus the
density parameter, for T = 95 250 K and 181 823 K. The FP-PIMC
(N = 64) is compared to RPIMC EOS [58] and the Debye-
Hückel limit (DH) (71), EDH (dashed-dotted line). Lower panel:
Relative deviations of the FP-PIMC energy from EDH for four
temperatures.

The second case, corresponding to T = 31 250 K and rs =
6, cf. Fig. 11, exhibits very similar scaling relations. Note,
that the FSE are practically absent in the kinetic energy (panel
b) and pressure (panel d), even for the smallest system size
N = 20. For the lower temperature T = 15 640 K (not shown)
this occurs even for N = 14. In this regime the plasma compo-
sition is dominated by bound states (see below), and an almost
ideal neutral gas behavior is expected at rs � 6 with only a
weak dependence on the system size.

After having analyzed the convergence of our FP-PIMC
simulations with respect to P and N we now turn to a discus-
sion of the thermodynamic properties.

B. EOS at high temperatures and low densities: The
nondegenerate case

In this section we analyze the EOS at high tempera-
tures, T � 95 250 K, and low densities, rs � 5 (ρH � 2.15 ×
10−2 g/cm3), where the plasma is nondegenerate and strongly
or even completely ionized. Isotherms of total energy and
pressure are shown in Figs. 12 and 13 and display the expected
monotonic increase with rs. For kBT > 1Ry (right figures), in
the low-density limit, the pressure approaches the classical
ideal gas result, pcl = (ne + ni )kBT , and the energy, 2 3

2 kBT .
When the density increases, interaction effects grow, and the
leading correction to the ideal gas behavior is given by the
Debye-Hückel limit (DH [108]):

βpDH = βpid − κ3

24π
, (70)

EDH = Eid − kBT
κ3

8πn
, (71)

where the inverse Debye length, κ2 = 4πne2/kBT , is defined
by the full density, n = ni + ne, and we introduced βpid =
ni + βpid

e , Eid = 3
2 kBT + 2

3
pid

e
ne

, where pid
e is the pressure of an
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FIG. 13. Same as Fig. 12, but for the pressure isotherms plotted
in units of pcl = (ne + ni )kBT .

ideal Fermi gas. Extending the FP-PIMC simulations to low
densities, rs = 100, we can establish the validity range of the
DH limit: it is generally very accurate for rs � 20 and, when
the temperature increases, the density range grows towards
smaller rs, cf. lower panels of Figs. 12 and 13. In contrast,
when the density increases, rs � 20, the DH approximation
underestimates the (negative) correlations in the plasma, and
it entirely misses bound states.

Finally, we compare the FP-PIMC results to the RPIMC
EOS [58] shown by the blue symbols in the top parts of
Figs. 12 and 13. For the energy isotherms, we observe perfect
agreement in the entire density range where RPIMC data
are available (rs � 14). At the same time, RPIMC slightly
underestimates the pressure. This good agreement could be
expected, as in the density range of 5 � rs � 14 the electron
degeneracy factor varies between 4 � θ � 61, i.e., the elec-
trons are nondegenerate, and the fixed-node approximation
does not have a significant impact on the simulations.

C. EOS at moderate and high densities: The case
of degenerate electrons

We now turn to higher densities, 1.5 � rs � 8, corre-
sponding to a hydrogen mass density 5 × 10−3g/cm3 � ρH �
0.80 g/cm3, where electron degeneracy effects become im-
portant. The results are presented in Figs. 14–16.

We start by considering the case of high temperatures,
T � 125 000 K where the plasma is (almost) fully ionized.
Figure 14 shows four energy isotherms and compares our
FP-PIMC results to alternative models that were introduced
in Sec. II B. The overall behavior of the isotherms is well
known: from the low-density limit the energy monotonically
decreases, due to an increase of (negative) Coulomb corre-
lations. Upon further density increase growth of Coulomb
correlations competes with a more rapid increase of quan-
tum kinetic energy resulting in an energy minimum around
rs = 1 . . . 1.5, after which the energy increases steeply. Our
FP-PIMC simulations allow us to accurately determine the
total energy isotherms (cf. red symbols in Fig. 14) and to
come close to the energy minimum: we reach rs = 1.6, for

FIG. 14. Isotherms of internal energy for four temperatures T =
125 000–400 000 K. Red symbols: FP-PIMC data for N = 34(64).
Blue symbols: RPIMC, gray symbols with error bars: WREOS; dash-
dotted line: Debye-Hückel limit (DH); red lines: chemical model
(“HSCM”).

T = 125 000 K and rs = 1.2, for T � 250 000 K. For rs < 1.2
FP-PIMC simulations are not feasible due to the FSP: the
electron degeneracy parameter reaches θ = 0.53, whereas the
average sign, Eq. (16), drops below 2 × 10−3.

The analysis of the energy isotherms is extended to lower
temperatures in Figs. 15 and 16 where we, in addition, include
also the equation of state. For T = 95 250 K our simulations
are possible up to rs = 2. Interestingly, while we cannot ac-
cess the energy minimum (which is around rs = 1.5), we
completely resolve the pressure minimum which occurs at
significantly lower densities (around rs ≈ 2.5). The same is
observed for T = 62 500 K, cf. Fig. 16, where the error bars
are still reasonably small. For T = 31 250 K we reach rs = 4
which is very close to the minimum, but at least another data
point at higher density would be needed to give a conclusive

FIG. 15. Isotherms of pressure (left, in units of pcl = 2nkBT )
and internal energy (right), for T = 95 250 K. Small red symbols:
FP-PIMC data for N = 34 and N = 20 (at rs � 2); Blue symbols:
RPIMC; dash-dotted green line: CP2019; red triangle at rs = 17.53:
HXCF; red line: “HSCM”; cf. Appendix A.

055212-14



EQUATION OF STATE OF PARTIALLY IONIZED … PHYSICAL REVIEW E 108, 055212 (2023)

FIG. 16. Same as in Fig. 15, but for T = 31 250 K (left) and T = 62 500 K (right). Open red circles: FP-PIMC data; solid blue lines with
symbols: RPIMC; gray lines with error bars: WREOS; open squares: “FVT”: green dash-dotted lines: “CP2019”; red triangles at rs = 17.53:
“HXCF”; red lines: “HSCM”; gray lines in the left figure: “CM,” cf. Appendix A.

answer. Thus we can provide first-principle data for the loca-
tion and depth of the pressure minimum, for T � 62 500 K.
Since this minimum arises from a competition of a variety
of physical effects (see above) which are difficult to capture
simultaneously in simpler models, our data constitute highly
valuable benchmarks for other models.

Due to the limitations of the FP-PIMC simulations by
the FSP, it is interesting to explore how accurate the chem-
ical model (HSCM) is that was introduced and applied in
Sec. IV A 3, and whether it is suitable to provide an extension
of the isotherms to smaller rs. It turns out that the HSCM
model (solid orange lines) is particularly well adopted to
the energy isotherms and is accurate for all densities in the
very broad range rs � 3. Also, the HSCM model seems to
qualitatively capture the behavior of the total energy around
its minimum, up to rs ∼ 1, for T � 125 000 K and up to
rs ∼ 1.2, for T � 125 000 K. However, the present HSCM
model is much less accurate for the pressure, see left parts
of Figs. 15–17.

We now turn to the comparison with the results from
other models, cf. Sec. II B. Consider first the comparison
with the RPIMC results. For all FP-PIMC data shown in
Figs. 14–16 we observe agreement with RPIMC, within the
statistical errors.

Next, we compare to WREOS—the wide-range EOS by
Wang et al. [109]. The agreement of the energies for T �
125 000 K is very reasonable within the provided error-
bars but, apparently, the energy minimum is underestimated.
Similar trends are observed for the EOS and for lower temper-
atures and become even more pronounced for temperatures
30 000 K � T � 100 000 K, cf. Fig. 16. Due to the large
error bars, we did not include the data for T = 95 250 K into
Fig. 15. Note that the DFT data of Ref. [84] for the energy
contain an unknown constant. To plot the data in Fig. 16,
the single molecule ground-state energy (−15.502 eV) was
subtracted.

Consider now the comparison to the low-density result
(rs = 17.53) from the “HXCF” data by Mihaylov et al. [85],
cf. Sec. II B. We observe very good agreement for the energy
(cf. the red triangle in Fig. 16) and a minor discrepancy in the

pressure. Further, we observe the general trend that “HXCF”
starts to systematically deviate from the FP-PIMC data with
increasing temperature. While we find a nearly perfect agree-
ment at 31 250 K, significant deviations appear at 95 250 K;
see Fig. 15.

We now turn to the isotherms labeled “CP2019,” by
Chabrier et al. [80], cf. Sec. II B, which are included in
Figs. 15 and 16. These data extend to low densities allowing
for a comparison in the range from rs ≈ 3 to rs = 100. Over-
all, the agreement with the FP-PIMC curves is good, with the
pressure data being more accurate whereas the energies are
systematically too high.

The fluid variational theory (FVT) by Juranek et al. [32] is
included for the 31kK isotherms. We observe that, both, the
total energies and pressure are substantially too low, where a
comparison is possible, i.e., for rs ∈ [4, 15]. This is apparently
caused by the contributions of unbound electrons, so the im-

FIG. 17. Same as Fig. 16, but for T = 15 640 K. Open red cir-
cles: FP-PIMC with P = 72 . . . 96 and N = 34, for rs � 4.5 (N =
14, for rs � 3.7); blue symbols: RPIMC; black lines with error bars:
WREOS; open squares: “FVT”; dash-dotted green lines: “CP2019”;
red triangle at rs = 17.53: “HXCF”; red lines: “HSCM,” cf. Ap-
pendix A.
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proved FVT+ model of Holst et al. [110,111] is expected to
be more accurate.

D. EOS in the atomic and molecular regime

Now we turn to the lowest temperature in the considered
range, T = 15 640 K, where the thermodynamic functions are
dominated by the contributions of neutrals. The isotherms of
pressure and energy follow the trends discussed for the higher
temperatures, cf. Fig. 17. Again, our simulations are severely
hampered by the FSP—here we are limited to rs � 3.5. We
use N = 14 (N = 20) particles for rs ∈ [3.5, 5], and N = 34,
for larger rs. Nevertheless convergence with respect to P
and N has been achieved, but the error bars are increasing
towards lower rs. At the same time, we observe very good
agreement of our chemical model (HSCM) with the simula-
tions, cf. the energy isotherms in Fig. 17. This indicates that
the cluster analysis used to extract “fractions” of atoms and
molecules from the FP-PIMC simulations is consistent (see
below).

While we had observed very good agreement of RPIMC
with our simulations, for T � 31 250 K before, in the present
case the deviations are significantly larger, and it is inter-
esting to analyze them in more detail. Consider first, the
energy. Here we observe excellent agreement for rs ∈ [5, 10].
For rs = 4 the RPIMC energy is too high by about 1.5%
whereas for larger rs deviations exceed 3%. Let us now turn
to the pressure isotherms. Here both simulations agree for
rs = 6, but the FP-PIMC shows a much stronger slope in
this point. Consequently, the RPIMC pressure is too high,
for smaller rs (up to 8%) and too low for large rs (up
to 5%).

A more detailed comparison of the FP-PIMC and RPIMC
results is achieved by analyzing the microscopic config-
urations of the electron paths, in particular, their spatial
extension. Even though the PIMC approach does not dis-
tinguish between bound and free electrons, an (artificial)
distinction can be introduced via a cluster analysis, as demon-
strated by Militzer et al. in Ref. [48]. They introduced a
critical average proton–proton separation, dcr

H = 1.9aB, below
which the configuration was “counted as a molecule.” Even
though this threshold value has no direct physical meaning, it
allows us to better compare different PIMC simulations. This
value is a reasonable estimate for the spatial extension of a
molecule, if we consider the slope of the ion-ion PDF at this
temperature; see Fig. 1.

We have used the same criterion for the molecules but
use a modified criterion for the atoms, as explained below.
The results for T = 15 625 K and T = 31 250 K are shown
in Fig. 18. For both temperatures, we observe reasonable
agreement for the molecule fractions. However, the fraction
of atoms (free protons), in the FP-PIMC simulations is sig-
nificantly higher (lower) than in the RPIMC data. However,
since this is the case for both temperatures, whereas the ther-
modynamic functions, for T = 31 250 K, are in very good
agreement, this cluster analysis does not fully explain the
discrepancies, see also Sec. V.

For completeness, we explain how we define the atom frac-
tion in our FP-PIMC cluster analysis. For each ion trajectory
({rp, j = r j (τp), 0 � τp � β}) we calculate the total charge

FIG. 18. Fractions of molecules, atoms and free protons, for two
isotherms, T = 15 640 K (left) and T = 31 250 K (right). FP-PIMC
results are plotted for dcr

H = 1.9aB (brown solid dots) (dcr
H = 2.25aB,

open gray circles), for details, see text. Blue lines: RPIMC data for
dcr

H = 1.9aB; open squares: atom and molecule fractions from the
FVT, red lines: “HSCM”, cf. Appendix A.

due to all electrons within a sphere of radius Ra = 3aB,

ρ
I, j
net = 1

P

Ne∑
i=1

gp,i θ (|rp,i − rp, j |), (72)

averaged along the imaginary time, and

θ (x) =
{

1, |x| � Ra,

0, else.

The weighting factor gp,i takes into account the possibility that
each electron defined by the vector rp,i = ri(τp), at a given
imaginary time, can be simultaneously within the radius Ra of
several (NI

p) atoms. In this case its contribution on the given
time slice τp is equally distributed between the nearby NI

p ions
with the weight gp,i = 1/NI

p. Following this recipe we treat
an ion as “neutral” (belonging to an atom) or free particle
depending on the accumulated net charge ρ

I, j
net , according to

the criterion

∣∣ρI, j
net/e

∣∣ =
{
� 0.2, neutral, Na → Na + 1,

� 0.8, free ion, Ni → Ni + 1,

where we indicated that for the cases we increase either the
number of atoms or the number free ions by one.

The final fractions of free and bound ions are obtained
by statistical averaging, as in the case of other observables.
Finally, if two “neutrals” are found at a distance dii � 1.9
(or 2.25) aB, then they are counted as a molecule, as dis-
cussed above, and we update the number of molecules, Nm →
Nm + 1. The corresponding particle fractions are determined
by the statistical averaging similar to other thermodynamic
quantities,

〈Ni(a,m)〉 =
〈
Ni(a,m) × ∏P

p=1 Sgnp

〉
〈∏P

p=1 Sgnp

〉 ,
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(b)(a)

FIG. 19. Isotherms of (a) kinetic energy and (b) potential energy
for three temperatures indicated in the figure. FP-PIMC and RPIMC
data are compared.

where Sgnp is the sign of configurations due to the Slater
determinants in the fermionic partition function (9). In Fig. 18
we plot the corresponding fractions of ions, atoms, and
molecules,

x[H+] = 〈Ni〉
N

, x[H] = 〈Na〉
N

, x[H2] = 2〈Nm〉
N

. (73)

Note that the fractions of atoms and molecules that are ob-
tained from the described cluster analysis may be given some
physical significance if the results is reasonably independent
of the chosen threshold values. To this end we varied these
values. As an illustration, we included results for a typical
second case for the molecules, dcr

H = 2.25aB, in Fig. 18. Ob-
viously, the influence of the threshold is rather small which
allows us to use these results in our chemical model, as well
as for comparison with other approaches, such as the FVT,
the results of which are also presented in Fig. 18. While the
agreement with FP-PIMC is very good, for T = 15 625 K,
the model fails for T = 31 250 K because, in the latter case,
already a significant fraction of free particles (20% . . . 30%)
is present.

Finally, for an additional comparison between RPIMC and
FP-PIMC, in Fig. 19 we plot the kinetic and the potential
energy isotherms, for three temperatures. For T = 31 250 K
and T = 62 500 K where the total energies of RPIMC and
FP-PIMC agreed within statistical errors, similar agreement
is observed for the potential energy. However, we observe
noticeable deviations of the kinetic energies. This shows that
the kinetic energy is an observable that is very sensitive
to details and, possibly errors, of the simulation procedure,
whereas in the total energy deviations are reduced due to
possible error compensations. This observation is confirmed
for T = 15 640 K. Here, for rs � 6, we observe significant
deviations of both potential and kinetic energy which have
opposite sign.

Finally, let us briefly summarize the comparison with the
other models that are also included in Fig. 17. While the
DFT-based “WREOS” data showed reasonable agreement
with FP-PIMC, for T � 31 250 K, here we observe stronger
deviations. For the pressure, the agreement is rather good,

except for rs = 4 and rs = 14. However, there are significant
deviations for the internal energy which rapidly increase with
rs. Similar large deviations are observed for the “HXCF”
data point for the energy at rs = 17.53. However, “HXCF”
also strongly disagrees for the pressure. The EOS “CP2019”
exhibits similar trends as for T � 31 250 K. Here the largest
deviations (of the order of several percent) for the pressure
are observed around the minimum (positive deviations) and in
the range 10 � rs � 50 (too low values). For the energy there
appears to be an almost constant positive shift compared to
FP-PIMC. Finally, the “FVT”-curve for the pressure (energy)
proceeds close to the “CP2019” isotherm, for rs values larger
than 6 (3) and, hence, exhibits similar deviations from FP-
PIMC.

V. CONCLUSIONS AND OUTLOOK

With the upcoming new experimental facilities, in particu-
lar the colliding planar shocks platform at the NIF [29] and the
FAIR facility at GSI Darmstadt [20], high precision thermo-
dynamic data for highly compressed matter will be available.
This poses new challenges to theory and simulations. While
presently a large variety of competing models and simulation
approaches are being used the predictions of which often
deviate significantly from one another, no hard experimental
benchmarks have been available or the experimental error bars
are too large for a discrimination. However, existing restricted
path integral Monte Carlo simulations, which are expected to
be the most accurate approach, are computationally expen-
sive, and no independent test of their accuracy or range of
applicability has been available.

In this article we have presented extensive independent
fermionic PIMC simulation results for dense partially ion-
ized hydrogen (for the present parameters these apply also
to deuterium). These simulations avoid the fixed node ap-
proximation and are thus free of systematic errors. Therefore,
our simulations are well capable to serve as benchmarks for
RPIMC and other approaches. At high densities, the present
FP-PIMC simulations are severely hampered by the fermion
sign problem which restricts simulations to moderate de-
generacy of the electrons—here we had to limit ourselves
to temperatures above 15 000 K and densities in the range
of rs ∈ [2, 100]. We have presented details of our fermionic
propagator PIMC approach and demonstrated in detail con-
vergence with respect to the simulation size N and the number
P of fourth-order propagators. The results for the equation of
the state, energy contributions and pair distributions should be
valuable for benchmarking and possibly improving alternative
methods. Even though PIMC simulations are performed in
the physical picture where no artificial distinction between
“free” and “bound” electrons is necessary, we performed a
cluster analysis of the spatial extension of the electrons and
approximately extracted the degree of ionization and disso-
ciation. These results are also valuable reference for other
methods. In contrast to chemical models, which are ham-
pered by an unavoidable inconsistency in the treatment of the
interaction between charged particles, neutral particles and
between charges and neutrals, PIMC treats all interactions and
exchange effects selfconsistently. The results only depend on
two parameters—the relevant average “spatial extension” of
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an atom and of a molecule, respectively, but the influence of
this choice is small and easy to quantify, as was shown in
Fig. 18.

Let us summarize our comparison with the available
RPIMC data by Militzer et al. for partially ionized hy-
drogen. Based on earlier comparisons against first-principle
CPIMC and PB-PIMC simulations for the uniform electron
gas (UEG) [4,68,71]—a much simpler system without bound
states—which revealed errors on the order of 10% for high
densities, similar deviations could be expected. Presently, no
CPIMC simulations for hydrogen are available, due to the
increase of the FSP for two-component simulations. Thus,
the accuracy of existing hydrogen data for high densities and
strong degeneracy on the order of θ � 0.5 has to be left
open.

However, the present FP-PIMC simulations provide the
first accurate fermionic PIMC simulations in the comple-
mentary range of θ � 0.5, translating into density parameters
rs � 4, for T � 15 640 K and smaller values, for higher tem-
peratures. As we have demonstrated, this is sufficient to reach
the minimum of the pressure isotherms, and come close to
the energy minimum. Summarizing, we conclude that the
comparison for partially ionized hydrogen reveals overall very
good agreement between RPIMC and FP-PIMC in the entire
density range where both data sets are available, for temper-
atures as low as T = 31 250 K. We interpret this as a strong
independent confirmation of the extended first-principle sim-
ulations reported from the RPIMC method.

A more detailed comparison can be conducted from the
EOS, Table I (see Appendix B). Depending on the density-
temperature range we resolve some systematic deviations,
both in the pressure and energy, which are well above the
statistical errors. In particular, for T > 62kK the deviations
stay below 1%. The FP-PIMC EOS contains results for two
system sizes, N = 34(64), and allows us to estimate the in-
fluence of FSE which are small. Therefore, the main reason
for the observed discrepancies, is due to the fixed-node ap-
proximation. Consider, in particular, the lowest temperature
isotherm T = 15 640 K, cf. Fig. 17, where in the range of the
minimum, deviations of up to 8% are predicted (the RPIMC
data are too high). As we showed in Fig. 18, the RPIMC
results significantly underestimate (overestimates) the fraction
of bound complexes (free particles), in comparison to the
FP-PIMC results. Also, the deviations of the RPIMC results
for pressure and energy increase for lower densities, rs � 12,
where the RPIMC data are too high by several percent. This is
unexpected since there is no FSP at these parameters. There-
fore, this discrepancy is, most likely, not related to the fixed
node approximation but could rather reflect a sampling prob-
lem. Here, improved RPIMC data that also extend to rs = 100
would be desirable.

Finally, let us briefly summarize the results of the com-
parison to other methods as introduced in Sec. II B in the
parameter range where FP-PIMC results have been reported.
First, the wide range equation of state of Chabrier et al.
(“CP2019”) exhibits overall a good accuracy capturing the
main trends. The largest deviations for pressure and energy
are on the order of several percent, in the range of the
minimum of the isotherms, but there are also systematic devi-
ations for low densities. However, the DFT-based wide-range

data sets of Wang et al. (“WREOS”) and Mihaylov et al.
(“HXCF”) show a different behavior. WREOS is rather accu-
rate for T � 250 000 K, but exhibits increasing discrepancies
when the temperature is lowered. For the lowest tempera-
ture, T = 15 640 K, the pressure isotherm is very accurate,
however, large deviations are observed for the energy. For
the comparison with HXCF we avoided parameters that are
designated in Ref. [85] as “interpolation”. This left us with the
comparison for the density rs = 17.53 where the simulation
method is clear. There we observed very good agreement
for T = 31 250 K and T = 62 500 K, but significant dis-
crepancies for T = 95 250 K and even larger deviations for
T = 15 640 K. Based on the comparison with a variety
of DFT-MD simulations (not shown) our data should be
able to discriminate between different exchange-correlation
functionals. LDA-type functionals are clearly not sufficient,
even though the finite-temperature version (GDSMFB [69])
provides some improvement. Very good agreement, at low
temperatures, was observed for DFT-MD simulations with
PBE functionals [84] confirming the crucial importance of
correlation effects [112].

The presented comparisons are by no means exhaustive
and do not pretend to be representative. The focus was on data
that are available for the isotherms that were investigated in
our paper (these values were selected due to existing RPIMC
data), so additional errors, caused by interpolation, could be
avoided. For these reasons we did not compare to other fre-
quently used data sets including the SESAME tables or the
Rostock equation of state which was reported to be close to
the RPIMC results [113]. For more detailed comparisons, also
with other methods, the reader is referred to our extensive data
tables provided in the Appendix.

Due to the relative simplicity of hydrogen, first principle
FP-PIMC simulations are possible that are free of system-
atic errors. We expect that the benchmark data presented in
our paper will allow one to constrain thermodynamic data
to within 1%, providing ample opportunities to improve al-
ternative simulation methods as well as chemical models for
the challenging conditions of warm dense matter. This will
be important not only for dense hydrogen but also for the
application of theoretical models and simulations to more
complex materials and for reliable comparisons with existing
and upcoming experiments.
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APPENDIX A: CHEMICAL MODELS (HSCM)

Here we briefly summarize the chemical models “CM” and
“HSCM” that have been used for comparison in some of the
figures of the main text. We start with the grand potential and
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the ideal part of the free-energy density

� = F HS
id + FC

id + F HS
ex + FC

ex −
∑

s

μsρs,

β fid =
∑

s

ρs
(

ln �3
i ρi − 1

)
.

The free energy is decomposed into an ideal gas part, F s
id , and

an excess part, F s
ex, related to nonideality effects. The contri-

bution of neutral particles (atoms/molecules, s = {a, m}), is
treated on the hard sphere level (superscript “HS”), whereas
the superscript “C” denotes the Coulomb contribution (s =
{e, i}). Charge-neutral contributions, e.g., Refs. [8,114] are
neglected.

Using the thermodynamic relations we can express the
pressure, the excess chemical potential and the excess
interaction energy as follows:

p =
∑

s

μsρs − (
f s
id + f s

ex

)
,

μa(m)
ex = ∂ f HS

ex

∂ρa(m)
, μe(i)

ex = ∂ f C
ex

∂ρe(i)
,

EHS(C)
ex

V
= f HS(C)

ex − T
∂ f HS(C)

ex

∂T
. (A1)

1. Hard-sphere fluid model

To obtain the chemical potential and the pressure for each
species “s” in a multi-component hard-sphere model, we fol-
low the method proposed by Hansen-Goos et al. [115]. They
introduced an expansion of the related equation of state in
terms of the powers of partial densities ρs and the size of all
components weighted by the density contributions [116]

n0 =
∑

s

ρs, n1 =
∑

s

ρsRs,

n2 =
∑

s

ρsAs, n3 =
∑

s

ρsVs, (A2)

where Rs, As = 4πR2
s , and Vs = 4/3πR3

s are the radius, the
surface area, and the volume of a sphere of species “s.”
Systematic improvements of the original Carnahan-Starling
equation of state (derived for a one-component system)

βp

ρ
= 1 + η + η2 − η3

(1 − η)3
,

up to the third-order expansion in the packing fraction, η =
n3, have been analyzed in detail [115]. The validity of the
resulting hard-sphere EOS has been justified by the accurate
agreement with the simulation data.

The third-order expansion has been employed in the
present analysis of dissociation equilibrium in hydrogen (deu-
terium), where atoms and molecules have been treated as
spheres of radii {Ra, Rm}, with the result for the pressure

βp(3) = n0

1 − n3
+ n1n2

(
1 + 1/3n2

3

)
(1 − n3)2

+ n3
2

(
1 − 2/3n3 + 1/3n2

3

)
12π (1 − n3)3

.

The excess chemical potentials (A1) follow as

μs
ex = ∂ f (3)

ex

∂n3
Vs + ∂ f (3)

ex

∂n2
As + ∂ f (3)

ex

∂n1
Rs + ∂ f (3)

ex

∂n0
, (A3)

using the third-order n3-expansion, f (3)
ex [115], for the excess

free-energy density.
The chemical model that includes the hard sphere effects,

as described above, has been called “HSCM” in the main text,
whereas the model that neglects these terms has been denoted
“CM.” The deviation from the classical ideal pressure and
energy (excess contribution) can be quantified by

β�pHS = βp(3) − n0,

�EHS = 1

n

[
f (3)
ex − T

∂ f (3)
ex

∂T

]
.

The factor, 1/n (with n = N/V being the total number density
of ions (electrons), appears if we define �EHS as the excess
energy per ion, due to the “HS”-effect, in a system consisting
of both, neutrals and free particles. Note, that the contribution
of the second term in �EHS should be accurately evaluated, as
the fractions of atoms and molecules experience a noticeable
variation with temperature and density. This results in a simi-
lar temperature-density dependence of the expansion variables
(A2) constructed from corresponding partial densities of neu-
trals, ρa(rs, β ) and ρm(rs, β ). Their explicit evaluation can be
obtained via the solution of the nonideal Saha equations intro-
duced in Sec. A 2.

In the present model, we use fixed (temperature and den-
sity independent) effective radii {Ra, Rm} choosing the values
{0.66 Å, 1.32 Å}, obtained by the fluid variation theory of
Juranek et al. [117]. We also used other radii as provided by
Ref. [8], but did observe significant changes in the considered
parameter range, rs � 3.

2. Nonideal Saha equations
for the ionization-dissociation equilibrium

We impose electroneutrality and charge conservation
which leads to

Ni(e) = N�
i(e) + Na + 2Nm, Ne = Ni = N,

with N∗ denoting the number of unbound electrons (ions), and
n = ni(e) = Ni(e)/V , the full ion (electron) density. The condi-
tions for the dissociation-ionization equilibrium are given by

μm = μa + μa, μa = μe + μi, (A4)

where the chemical potential of the constituent particles are
spitted into an ideal and an exchange-correlation contribution,

μid
e = μcl

e + �μe,

μe + μi = μid
e + μid

i + μC
ex,

μC
ex = ∂ f C

ex

∂ne
+ ∂ f C

ex

∂ni
,

μa = μcl
a + μa

ex, μm = μcl
m + μm

ex.

μa
ex and μm

ex are defined in Eq. (A3) by the partial derivatives
of the free-energy functional of a reference two-component
hard-sphere system. The ideal part depends on the thermal
wavelength λs, the spin degeneracy factor gs, and the particle
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density ns. For electrons and ions we take into account the
“excluded volume” factor (1 − η),

βμid
s = ln

(
nsλ

3
s

gs(1 − η)

)
. (A5)

The term �μe in Eq. (A5) accounts for the deviation of the
ideal Fermi gas result from the classical expression (A5). For
the free-energy density f C

ex one can employ a suitable approxi-
mation derived in Refs. [118,119]. In particular, we have used
a quantum Debye-Hückel reduced-mass approximation where
the free energy, the interaction energy and the chemical poten-
tial (due to Coulomb correlations) are expressed via Ebeling’s
“ring functions,” e.g., Refs. [120–122]:

βEi j
ex/V = − κ3

8π
G(κλi j ),

μi j
ex = −1

2
e2κ G(κλi j ),

β f i j
ex = − κ3

12π
R(κλi j ),

βpi j
ex = − κ3

24π
[G(κλi j ) + κλi jG

′(κλi j )],

which have been approximated by Padé formulas
[30,119,123]

G(x) = 1 + 0.1875x2 + x3

1 + 0.4431x + 0.1963x2 + 1.1892x7/2
,

R(x) = 1 + 0.1875x2 + 3x3

1 + 0.4431x + 0.1963x2 + 3.667x7/2
.

The argument, x = κλi j , includes the inverse Debye length,
κ2 = 8π n̄�βe2 (where n̄� is the renormalized by the excluded
volume effect density of free ions/electrons, see below), and
λ2

i j = h̄2β/2μi j . In the reduced mass approximation we as-
sume that the differences between the atom and ion masses
are not relevant and, therefore, we set in Eqs. (A1) and (A5)

μi
ex = μe

ex = μei
ex,

μC
ex = μi

ex + μe
ex = 2μei

ex,

EC
ex = Eei

ex, pC
ex = pei

ex.

Next, we consider the ionization equilibrium, which leads
to the Saha equation with the nonideality effects included via
the excess chemical potential μI

ex of the ionization process

na

n�
i n�

e

= �3 σPLB(β ) exp
(
βμI

ex

)
,

μI
ex = μC

ex + �μe − μa
ex, (A6)

where

�2 = λ2
eλ

2
i

λ2
a

= 2π h̄2β

mr
,

σPLB(β ) =
∞∑

s=1

s2 [exp(−βEs) − 1 + βEs],

and σPLB(β ) is the regularized Planck-Brillouin-Larkin (PBL)
partition function, for a discussion, see Refs. [124,125]. Now,

the atom fraction can be determined from the Saha equa-
tion (A6) which, however, needs to be modified to take
into account the excluded volume effect: electrons and ions
“cannot penetrate” neutrals, i.e., V → V (1 − η). The packing
fraction, η = n3, see Eq. (A2), is estimated via the number
density of atoms and molecules and their radii, and renor-
malizes the free electron and ion density to n̄� = n�/(1 −
η). Introducing the ionization fraction, n�

i = αI (n�
i + na), the

mass-action law (A6) can be reduced to

1 − αI

α2
I

= n�
i + na

(1 − η)2
KI

(
n̄�, β, μI

ex

)
,

which can be solved with respect to αI as a function of the rate
constant KI and the excess chemical potential

KI
(
n̄�, β, μI

ex

) = �3 σPLB(β ) exp
(
βμI

ex

)
,

μI
ex = f (n̄�, β, αI , αD).

The second Saha equation for the dissociation equilibrium
can be written in the form

nm

nana
= KD

(
β,μD

ex

)
,

KD
(
β,μD

ex

) = gm

gaga

�3
a�

3
a

�3
m

Z rotZvib exp
[
β
(
D0 + μD

ex

)]
,

μD
ex = 2μa

ex − μm
ex, (A7)

where D0 = 4.763 eV is the dissociation energy of a H2-
molecule, and the contributions of vibrational and rotational
states [126] are included via the partition functions

Z rot ≈ T

Trot
,

Zvib ≈ [1 − exp(−βTvib)]−1,

where we use Tvib = 87.58 K and Trot = 6338.2 K. For tem-
peratures T > 1000 K, in both expression, contributions of
the order O(Trot(vib)/T ) in the free-energy density can be ne-
glected. Introducing the degree of dissociation, na = αD(na +
nm), the mass-action law (A7) becomes

1 − αD

α2
D

= KD
(
β,μD

ex

)
(na + nm). (A8)

Examples of solutions of the coupled Saha equations are
included in Fig. 18 where the species fractions are defined as

x[H+] = n�

n
, x[H] = na

n
, x[H2] = 2nm

n
.

The comparison to the results of the FP-PIMC cluster analysis
indicates remarkable agreement in a wide density range, 3 �
rs � 100, cf. Sec. IV D of the main text.

APPENDIX B: TABLES OF FP-PIMC
THERMODYNAMIC DATA

In this Appendix we present detailed tables of our FP-
PIMC simulations. In addition to the equation of state and the
total energy we also present the relative deviation between our
data and the RPIMC results of Militzer et al. [63]. The data are
converged with respect to the number P of high-temperature
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TABLE I. First principles FP-PIMC data for deuterium/hydrogen plasma, including pressure p and internal energy E/N with statistical
errors given in the parantheses. The column �p/p denotes the relative statistical error (first number) and the deviation from RPIMC [58], i.e.
(pRPIMC − pFP-PIMC)/pFP-PIMC), second number, and similar for �E/E . θ = T/TF is the electron degeneracy parameter. The default system size
is N = 34. For N = 64 (if available) an extra line is added.

T (K) rs p (Mbar) E/N (eV) �p/p (%) �E/E (%) θ

1.2 (N20) 58.30(43) 39.98(43) 0.74(−0.85) 1.08(−0.21) 0.62
1.4 (N20) 35.616(32) 40.69(5) 0.09(0.12) 0.13(0.75) 0.84
1.4 (N30) 35.75(13) 40.97(20) 0.35(−0.27) 0.49(0.06)
1.6 23.825(29) 42.62(7) 0.12(−0.40) 0.17(−0.28) 1.10
1.8 16.7343(87) 44.19(3) 0.052 0.067 1.39
1.8 (N64) 16.737(54) 44.27(18) 0.32 0.41
2.0 12.2728(40) 45.852(19) 0.033(−0.59) 0.041(−0.49) 1.72

12.314(14) 46.08(6) 0.11(−0.93) 0.14(−1.03)
2.4 7.2001(16) 48.699(13) 0.021(0.08) 0.026(0.29) 2.47

7.213(3) 48.86(3) 0.041(−0.096) 0.049(−0.041)
3.0 3.76445(62) 52.087(9) 0.017(−0.30) 0.019(−0.21) 3.87

3.76812(92) 52.202(15) 0.024(−0.40) 0.028(−0.43)
250 000

4.0 1.62844(23) 55.7648(87) 0.014(−0.21) 0.016(−0.1) 6.88
1.63076(31) 55.908(11) 0.019(−0.35) 0.020(−0.35)

5.0 0.84767(12) 58.032(8) 0.013(−0.19) 0.015(−0.038) 10.75
0.84859(15) 58.16(1) 0.018(−0.31) 0.019(−0.26)

6.0 0.49589(7) 59.498(8) 0.014(−0.26) 0.015(−0.17) 15.47
0.496403(95) 59.6239(12) 0.019(−0.36) 0.020(−0.37)

7.0 0.31456(4) 60.485(9) 0.014 0.014 21.06
0.31478(6) 60.592(12) 0.019 0.02

8.0 0.21186(3) 61.199(9) 0.014(−0.12) 0.015(−0.03) 21.06
0.212146(40) 61.343(12) 0.019(−0.26) 0.02(−0.26)

10.0 0.10923(2) 62.130(9) 0.014(−0.21) 0.014(−0.06) 42.99
0.109346(21) 62.255(12) 0.019(−0.32) 0.019(−0.26)

12.0 0.063494(9) 62.709(9) 0.014(−0.15) 0.014(−0.06) 61.90
0.063537(12) 62.807(12) 0.019(−0.216) 0.019(−0.217)

14.0 0.0401099(55) 63.106(9) 0.014(−0.17) 0.014(−0.10) 84.26
0.0401336(76) 63.196(12) 0.019(−0.23) 0.019(−0.25)

1.6 (N20) 16.59(2) 24.39(5) 0.12(0.42) 0.19(1.48) 0.80
1.6 16.82(16) 24.98(37) 0.93(−0.92) 1.49(−0.94)
1.8 11.679(23) 26.05(8) 0.20 0.31 1.01
2.0 8.4965(64) 27.225(30) 0.075(−0.60) 0.11(−0.53) 1.25
2.2 6.4233(28) 28.556(17) 0.043(−0.42) 0.061(−0.27) 1.513
2.2 (N64) 6.447(14) 28.747(84) 0.21(−0.79) 0.29(−0.93)
2.4 4.9830(15) 29.783(13) 0.031(−0.08) 0.042(0.20) 1.800

4.9906(48) 29.885(39) 0.097(−0.23) 0.13(−0.15)
2.8 3.1889(7) 32.002(9) 0.022 0.028 2.45

3.1936(14) 32.103(18) 0.043 0.055
3.0 2.6153(5) 33.011(8) 0.02(−0.35) 0.025(−0.31) 2.81

2.6179(9) 33.093(14) 0.034(−0.46) 0.043(−0.55)
3.5 1.6781(3) 35.1287(75) 0.018 0.021 3.83

1.67937(42) 35.196(10) 0.025 0.029
4.0 1.14179(18) 36.812(7) 0.016(−0.16) 0.018(−0.032) 5.00

1.14300(24) 36.898(9) 0.021(−0.26) 0.025(−0.265)
5.0 0.598717(85) 39.283(6) 0.014(−0.18) 0.016(−0.083) 7.82

0.59918(12) 39.3579(86) 0.020(−0.26) 0.022(−0.274)
6.0 0.352316(55) 40.955(7) 0.016(−0.17) 0.017(−0.086) 11.25

0.352616(73) 41.033(9) 0.021(−0.26) 0.023(−0.275)
181 823

7.0 0.224470(34) 42.115(7) 0.015 0.016 15.32
0.224677(43) 42.200(9) 0.019 0.021

8.0 0.151657(21) 42.954(6) 0.014(−0.10) 0.015(−0.033) 20.01
0.151794(29) 43.0387(87) 0.019(−0.19) 0.020(−0.23)

10.0 0.078559(11) 44.0803(67) 0.015(−0.19) 0.015(−0.09) 31.27
0.078629(15) 44.164(9) 0.019(−0.28) 0.020(−0.28)

12.0 0.0457687(63) 44.748(6) 0.014(−0.17) 0.014(−0.06) 45.02
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TABLE I. (Continued.)

T (K) rs p (Mbar) E/N (eV) �p/p (%) �E/E (%) θ

0.0458167(86) 44.8399(87) 0.019(−0.28) 0.019(−0.27)
14.0 0.0289573(40) 45.2016(64) 0.014(−0.13) 0.014(−0.025) 61.28

0.0289812(55) 45.2807(9) 0.019(−0.21) 0.019(−0.20)
17.0 0.0162524(22) 45.656(6) 0.013 0.013 90.36
20.0 0.0100110(13) 45.9447(62) 0.013 0.0135 125
25.0 0.00514182(71) 46.2451(64) 0.014 0.014 195
30.0 0.00298112(42) 46.4242(66) 0.014 0.014 281
40.0 0.12607(18) ×10−3 46.6453(70) 0.0145 0.015 500
50.0 0.646379(90) ×10−3 46.7662(66) 0.014 0.014 782
60.0 0.374232(53) ×10−3 46.8239(66) 0.014 0.014 1125
80.0 0.158027(22) ×10−3 46.9102(66) 0.014 0.014 2001

100.0 0.80937(11) ×10−4 46.9505(67) 0.014 0.014 3127

1.6 (N20) 10.85(17) 9.87(40) 1.58(1.06) 4.11(5.78) 0.55
1.8 (N20) 7.52(2) 10.91(7) 0.27(−0.29) 0.64(1.81) 0.69
2.0 (N20) 5.4316(48) 11.82(2) 0.087(−0.34) 0.19(0.74) 0.86
2.2 (N20) 4.0810(19) 12.823(1) 0.046(0.17) 0.092(1.53) 1.04
2.5 (N20) 2.80676(81) 14.3374(74) 0.029(−0.505) 0.052(1.42) 1.30
2.2 4.0941(74) 12.937(46) 0.18(−0.15) 0.35(0.64) 1.04
2.5 2.8180(20) 14.476(18) 0.069(−0.90) 0.12(0.45) 1.30
3.0 1.6652(5) 16.7418(85) 0.032(−0.55) 0.051(−0.49) 1.93
3.5 1.07448(24) 18.747(6) 0.023 0.032 2.63
4.0 0.73490(14) 20.4006(54) 0.019(−0.56) 0.026(−0.54) 3.40
5.0 0.389230(62) 22.966(5) 0.016(−0.316) 0.020(−0.246) 5.38
6.0 0.230966(36) 24.8116(46) 0.016(−0.20) 0.018 (−0.087) 7.73

125 000
7.0 0.148395(23) 26.2034(46) 0.015 0.0176 10.53
8.0 0.100851(14) 27.2199(43) 0.014(−0.050) 0.016(0.00036) 13.75

10.0 0.052688(8) 28.6154(47) 0.015(−0.091) 0.0165(0.0160) 21.5
12.0 0.0308841(43) 29.489(4) 0.0138(−0.142) 0.0147(0.00237) 31.0
14.0 0.0196128(27) 30.067(4) 0.0136(−0.0652) 0.0144(0.0422) 42.1
17.0 0.0110505(15) 30.6457(42) 0.0134 0.0138 62.12
20.0 0.682187(91) ×10−2 31.0026(4) 0.0133 0.0136 86.0
25.0 0.351243(47) ×10−2 31.376(4) 0.0134 0.0136 134.0
30.0 0.204159(30) ×10−2 31.632(5) 0.0145 0.0147 193
40.0 0.86397(12) ×10−3 31.8596(44) 0.0138 0.014 343
50.0 0.443236(59) ×10−3 31.9919(43) 0.0133 0.0134 537
60.0 0.256795(34) ×10−3 32.0704(43) 0.0133 0.0134 773
80.0 0.108558(15) ×10−3 32.1847(44) 0.0137 0.0137 1375

100.0 0.556326(82) ×10−4 32.2407(48) 0.0148 0.0148 2149

2.2 2.905(33) 4.84(20) 1.135(1.69) 4.22(9.59) 0.79
2.5 2.0060(42) 6.243(38) 0.208 0.61 1.02
3.0 1.17896(67) 8.109(10) 0.057(−0.25) 0.13(0.38) 1.47
3.0 (N64) 1.1856(25) 8.230(40) 0.21(−0.81) 0.48(−1.09) 1.47
4.0 0.52179(12) 11.3647(47) 0.024(−0.34) 0.042(0.046) 2.62

0.52180(23) 11.3797(88) 0.045(−0.345) 0.078(−0.085) 2.62
5.0 0.278393(52) 13.851(4) 0.019(−0.14) 0.027(−0.22) 4.09

0.278450(84) 13.8713(62) 0.030(−0.16) 0.045(−0.37) 4.09
6.0 0.166672(27) 15.7828(34) 0.016(−0.34) 0.022(−0.27) 5.90

0.166827(36) 15.8144(46) 0.0216(−0.435) 0.029(−0.47) 5.90
7.0 0.107805(16) 17.2732(33) 0.015 0.019 8.02

0.107891(22) 17.3055(45) 0.020 0.026 8.02
8.0 0.073792(11) 18.4462(33) 0.015(−0.11) 0.018(0.02) 10.48

0.073826(15) 18.4723(44) 0.0197(−0.16) 0.0238(−0.12) 10.48
10.0 0.0389322(58) 20.0895(35) 0.015(−0.16) 0.017(−0.048) 16.4

95 250
0.0389756(80) 20.1351(47) 0.020(−0.27) 0.0236(−0.274) 16.4

12.0 0.0229801(33) 21.1608(34) 0.014(−0.044) 0.016(0.091) 23.6
0.0230113(53) 21.2114(64) 0.023(−0.18) 0.0256(−0.148) 23.6

14.0 0.0146659(21) 21.8805(34) 0.014(−0.176) 0.016(−0.048) 32.1
0.0146822(30) 21.9259(48) 0.020(−0.287) 0.022(−0.255) 32.1
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TABLE I. (Continued.)

T (K) rs p (Mbar) E/N (eV) �p/p (%) �E/E (%) θ

17.0 0.83024(12) ×10−2 22.5957(33) 0.014 0.015 47.3
0.83092(16) ×10−2 22.6365(46) 0.019 0.020 47.3

20.0 0.514349(71) ×10−2 23.0538(33) 0.0137 0.014 65.5
25.0 0.265675(37) ×10−2 23.5141(34) 0.014 0.0143 102.4
30.0 0.155475(32) ×10−2 24.0883(50) 0.0205 0.021 147.4
40.0 0.655798(95) ×10−3 24.0844(35) 0.014 0.0146 262.0
50.0 0.336680(50) ×10−3 24.2311(36) 0.0148 0.0149 409.0
60.0 0.195317(27) ×10−3 24.3396(34) 0.014 0.014 589.6
80.0 0.825642(12) ×10−4 24.443(3) 0.014 0.014 1048

0.826306(94) ×10−4 24.4754(28) 0.0114 0.0115 1048

100.0 0.423114(60) ×10−4 24.4946(34) 0.014 0.014 1638

3.0 0.8659(48) 2.49(8) 0.55 3.1 1.16
4.0 0.38091(30) 5.098(11) 0.08 0.22 2.06
5.0 0.204275(94) 7.3549(70) 0.046 0.094 3.22
6.0 0.122951(45) 9.1967(58) 0.037 0.063 4.64

75 000 7.0 0.080013(32) 10.7006(64) 0.040 0.055 6.32
8.0 0.055101(18) 11.9415(56) 0.034 0.047 8.25

10.0 0.0294190(88) 13.816(6) 0.030 0.038 12.9
12.0 0.017534(54) 15.1083(56) 0.031 0.037 18.6
14.0 0.0112658(37) 16.0037(62) 0.033 0.039 25.28

2.6 (N20) 1.044(12) −2.10(12) 1.17(0.37) 5.9(−9.5) 0.726
3.0 0.6901(71) −0.95(11) 1.03(−2.48) 11.7(17.1) 0.967
3.5 0.4343(15) 0.069(37) 0.34 54. 1.32
3.5 (N64) 0.393(22) −0.93(55) 5.62(−11.) 59.2(−179.) 1.32
4.0 0.29689(41) 1.1610(16) 0.14(−0.64) 1.32(0.73) 1.70

0.2966(13) 1.1579(50) 0.44(−0.55) 4.25(1.04) 1.70
4.5 0.21366(18) 2.194(9) 0.082 0.43 2.17

0.21529(62) 2.290(33) 0.29 1.44 2.17
5.0 0.1592(1) 3.137(7) 0.063(−0.77) 0.23(−1.60) 2.70

0.15961(18) 3.167(13) 0.11(−1.0) 0.41(−2.53) 2.70
6.0 0.096076(43) 4.815(5) 0.04(−0.60) 0.11(−0.88) 3.86

0.096196(53) 4.8309(68) 0.055(−0.72) 0.14(−1.20) 3.86
7.0 0.062783(24) 6.2589(48) 0.037 0.076 5.27

0.062850(36) 6.2774(72) 0.057 0.12 5.27
8.0 0.043290(15) 7.4536(46) 0.035(−0.09) 0.062(0.31) 6.87

62 500
0.043430(22) 7.5013(66) 0.05(−0.415) 0.088(−0.32) 6.87

10.0 0.0233774(71) 9.450(4) 0.03(−0.54) 0.045(−0.52) 10.75
0.02337(1) 9.4544(61) 0.044(−0.525) 0.064(−0.56) 10.75

12.0 0.0140376(41) 10.8839(43) 0.029(−0.41) 0.040(−0.22) 15.5
0.0140452(60) 10.8992(62) 0.043(−0.46) 0.057(−0.36) 15.5

14.0 0.90889(27) ×10−2 11.9542(45) 0.029(−0.47) 0.038(−0.20) 21.0
0.90993(40) ×10−2 11.9828(67) 0.044(−0.58) 0.056(−0.44) 21.0

17.0 0.52209(15) ×10−2 13.0526(46) 0.029 0.035 31.0
20.0 0.3267(1) ×10−2 13.7865(48) 0.030 0.035 43.0
25.0 0.170665(61) ×10−2 14.5465(56) 0.036 0.039 67.0

0.17071(8) ×10−2 14.5601)(73) 0.047 0.050 67.0
30.0 0.99795(41) ×10−3 14.9682(65) 0.041 0.043 96.5
40.0 0.42666(15) ×10−3 15.4458(56) 0.035 0.036 171

0.42736)(19) ×10−3 15.4848(79) 0.044 0.045 171
50.0 0.220030(68) ×10−3 15.6877(50) 0.031 0.031 268.7

0.2202(1) ×10−3 15.7203(72) 0.045 0.046 268.7
60.0 0.127664(38) ×10−3 15.8019(48) 0.030 0.030 386

0.127874(57) ×10−3 15.842(7) 0.044 0.045 386
80.0 0.54130(16) ×10−4 15.9597(48) 0.030 0.030 687

100.0 0.277896(80) ×10−4 16.0419(47) 0.029 0.029 1074

3.0 0.5005(41) −4.556(64) 0.82 1.41 0.77
4.0 0.21794(81) −2.749(30) 0.37 1.10 1.38
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TABLE I. (Continued.)

T (K) rs p (Mbar) E/N (eV) �p/p (%) �E/E (%) θ

5.0 0.11642(13) −1.1855(95) 0.11 0.80 2.15
6.0 0.070107(42) 0.1824(54) 0.060 2.95 3.09
7.0 0.045865(22) 1.4186(44) 0.046 0.31 4.21
8.0 0.031773(13) 2.5272(41) 0.042 0.16 5.50

10.0 0.0172604(60) 4.4277(37) 0.035 0.083 8.60
12.0 0.0104598(49) 5.9609(54) 0.047 0.091 12.40

50 000 14.0 0.68375(24) ×10−2 7.1964(43) 0.035 0.06 16.85
17.0 0.39738(12) ×10−2 8.5612(37) 0.030 0.044 24.85
20.0 0.251274(71) ×10−2 9.5452(36) 0.028 0.038 34.40
25.0 0.132898(42) ×10−2 10.6277(40) 0.031 0.038 53.74
30.0 0.78366(31) ×10−3 11.2675(50) 0.039 0.044 77.4
40.0 0.33759(14) ×10−3 11.9635(53) 0.042 0.044 137.5
50.0 0.174537(78) ×10−3 12.2841(57) 0.045 0.046 215
60.0 0.101562(55) ×10−3 12.4629(70) 0.054 0.056 309

100.0 0.22157(12) ×10−4 12.7506(69) 0.053 0.054 860

4.0 (N28) 0.1158(31) −8.25(11) 2.70(−0.68) 1.40(−1.42) 0.86
5.0 0.0610(4) −7.451(30) 0.65(−1.9) 0.40(−1.11) 1.34
6.0 0.03624(23) −6.928(29) 0.63(−1.87) 0.41(0.28) 1.93
7.0 0.023019(79) −6.454(16) 0.34 0.247 2.63
8.0 0.015877(42) −5.892(13) 0.26(−0.48) 0.21(−0.55) 3.44

10.0 0.85724(71) ×10−2 −4.8223(42) 0.083(−1.43) 0.088(0.39) 5.37
12.0 0.51871(36) ×10−2 −3.8193(37) 0.069(−1.58) 0.098(0.019) 7.74
14.0 0.33920(22) ×10−2 −2.8807(37) 0.065(−0.82) 0.13(−0.47) 10.53
17.0 0.19977(11) ×10−2 −1.5625(34) 0.055 0.22 15.5

31 250
20.0 0.128679(67) ×10−2 −0.3531(35) 0.052 0.99 21.5
25.0 0.70367(34) ×10−3 1.3719(36) 0.048 0.26 33.6
30.0 0.42727(19)×10−3 2.7425(35) 0.045 0.13 48.4
40.0 0.1934(1) ×10−3 4.7058(41) 0.051 0.086 86.
50.0 0.103092(56) ×10−3 5.86616 0.054 0.073 134.4
60.0 0.610953(35) ×10−4 6.5628(46) 0.058 0.067 344.

100.0 0.136866(93) ×10−4 7.6035(54) 0.068 0.072 536.

4.0a 0.0452(13) −12.319(47) 2.84(6.0) 0.38(−0.89) 0.43
4.0(N14) 0.0430(13) −12.47(5) 3.(11.) 0.4(−2.0) 0.43
5.0 0.02409(52) −12.057(38) 2.17(5.3) 0.32(−0.72) 0.67
6.0 0.01484(14) −11.846(18) 0.97(0.46) 0.15(−0.22) 0.967
7.0 0.974(14) ×10−2 −11.669(28) 1.44 0.24 1.32
8.0 0.6743(50) ×10−2 −11.535(15) 0.74(−2.27) 0.13(0.126) 1.72

10.0 0.3572(27) ×10−2 −11.370(51) 0.75(−2.29) 0.44(−0.79) 2.69
12.0 0.21171(98) ×10−2 −11.2975(98) 0.465(−3.26) 0.087(−2.90) 3.87
14.0 0.13437(54) ×10−2 −11.2028(86) 0.40(−4.0) 0.077(−3.33) 5.27

15 625
17.0 0.7617(18) ×10−3 −11.0754(5) 0.25 0.048 7.76
20.0 0.4685(11) ×10−3 −10.9734(5) 0.23 0.045 10.75
25.0 0.24568(53) ×10−3 −10.724(5) 0.22 0.045 16.8
30.0 0.14335(27) ×10−3 −10.526(4) 0.19 0.042 24.2
40.0 0.6195(12) ×10−4 −10.062(5) 0.20 0.048 43.0
50.0 0.32544(58) ×10−4 −9.527(4) 0.18 0.046 67.2
60.0 0.19336(35) ×10−4 −8.9906(45) 0.18 0.05 96.7
80.0 0.8611(11) ×10−5 −7.8957(36) 0.13 0.045 172.

100.0 0.46378(58) ×10−5 −6.7590(36) 0.125 0.053 268.

aextrapolation using HSCM, cf. Fig. 7

factors and the particle number N . In some cases, results for
several particle numbers are given to illustrate the magnitude

of finite-size effects. In particular, underlined numbers indi-
cate deviations to RPIMC when we used N = 64 particles.
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