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Quantum Monte Carlo belongs to the most accurate simulation techniques for quantum many-particle systems.
However, for fermions, these simulations are hampered by the sign problem that prohibits simulations in the
regime of strong degeneracy. The situation changed with the development of configuration path integral
Monte Carlo (CPIMC) by Schoof et al. [T. Schoof et al., Contrib. Plasma Phys. 51, 687 (2011)] that allowed
for the first ab initio simulations for dense quantum plasmas [T. Schoof et al., Phys. Rev. Lett. 115, 130402
(2015)]. CPIMC also has a sign problem that occurs when the density is lowered, i.e. in a parameter range
that is complementary to traditional QMC formulated in coordinate space. Thus, CPIMC simulations for the
warm dense electron gas are limited to small values of the Brueckner parameter – the ratio of the interparticle
distance to the Bohr radius – rs = r/aB . 1. In order to reach the regime of stronger coupling (lower density)
with CPIMC, here we investigate additional restrictions on the Monte Carlo procedure. In particular, we
introduce two different versions of “restricted CPIMC” – called RCPIMC and RCPIMC+ – where certain
sign changing Monte Carlo updates are being omitted. Interestingly, one of the methods (RCPIMC) has no
sign problem at all, but it introduces a systematic error and is less accurate than RCPIMC+ which neglects
only a smaller class of the Monte Carlo steps. Here we report extensive simulations for the ferromagnetic
uniform electron gas with which we investigate the properties and accuracy of RCPIMC and RCPIMC+.
Further, we establish the parameter range in the density-temperature plane where these simulations are both
feasible and accurate. The conclusion is that RCPIMC and RCPIMC+ work best at temperatures in the
range of Θ = kBT/EF ∼ 0.1 . . . 0.5, where EF is the Fermi energy, allowing to reach density parameters up
to rs ∼ 3 . . . 5, thereby partially filling a gap left open by existing ab initio QMC methods.

I. INTRODUCTION

Warm dense matter has recently become one of the
most active research fields in plasma physics, being situ-
ated on the border of plasma physics and condensed mat-
ter physics, e.g. Refs. 1–4. Examples include dense de-
generate matter in brown and white dwarf stars5–7, giant
planets, e.g.8–13 and the outer crust of neutron stars14,15.
In the laboratory, WDM is being routinely produced
via laser or ion beam compression or with Z-pinches,
see Ref. 16 for a recent review. The important exper-
imental facilities include the National Ignition facility
at Lawrence Livermore National Laboratory17,18, the Z-
machine at Sandia National Laboratory19,20, the Omega
laser at the University of Rochester21, the Linac Co-
herent Light Source (LCLS) at Stanford22,23, the Euro-
pean free electron laser facilities FLASH and X-FEL24,25,
and the upcoming FAIR facility at GSI Darmstadt26,27.
Among the important applications is inertial confinement
fusion17–19 where electronic quantum effects are impor-
tant during the initial phase. Aside from dense plasmas,
also many condensed matter systems exhibit WDM be-
havior – if they are subject to strong excitation, e.g. by
lasers or free electron lasers28,29.

Characteristic of all these diverse systems is the gov-
erning role of electronic quantum effects, moderate to
strong Coulomb correlations and finite temperature ef-
fects. Quantum effects of electrons are of relevance at
low temperature and/or if matter is very highly com-
pressed, such that the temperature is of the order of (or
lower than) the Fermi temperature, for a recent overview,
see Ref. 30.

Due to the simultaneous relevance of these effects,
a theoretical description of WDM is difficult. Among
the actively used approaches are quantum kinetic
theory31–38, quantum hydrodynamics39–41 and density
functional theory simulations because they, for the first
time, enabled the selfconsistent simulation of realistic
warm dense matter, that includes both, plasma and con-
densed matter phases, e.g. Refs. 42–44. The most accu-
rate results for warm dense matter, so far, were obtained
via first principle computer simulations such as quan-
tum Monte Carlo (QMC)4,45–53. The first QMC results
for dense quantum plasmas and WDM were obtained by
Ceperley and Militzer et al., e.g. Refs. 46 and 54 and Fili-
nov et al.47,55. However, the simulations of the electronic
part of WDM were strongly hampered by the fermion
sign problem (see Ref. 56 for a recent overview) that
made simulations at strong electronic degeneracy impos-
sible. One approach to relieve this problem is the fixed
node approximation54, which works well in the ground
state. However, the associated systematic error at fi-
nite temperatures is largely unclear. On the other hand,
in the direct fermionic QMC simulations of Filinov et
al. the sign problem was reduced by optimized Monte
Carlo updates57 but the simulations remained restricted
to moderate quantum degeneracy.

Recently, a number of breakthroughs in QMC simu-
lations occurred. The first was the idea to disentangle
the complex warm dense matter system in the simu-
lations and first develop improved simulations for the
most challenging component – the partially degenerate
electrons. Brown et al.58,59 presented the first restricted
QMC (RPIMC) simulations for the jellium model at fi-
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nite temperature, 0.0625 ≤ Θ ≤ 8, where Θ = kBT/EF
(EF denotes the Fermi energy), for which ground state
QMC approaches are not applicable. Even though these
simulations have no sign problem they could not be ex-
tended into the degenerate regime, rs . 1, where rs is the
ratio of the mean interparticle distance to the Bohr ra-
dius, rs = r̄/aB , and even for moderate rs, in the range
between 1 and 5, the potential energy showed an un-
expected non-monotonic behavior. This behavior was
clarified by novel configuration PIMC (CPIMC) simu-
lations – i.e. PIMC formulated in Fock space49 – and
has no sign problem at strong degeneracy (small rs). In
combination with an improved configuration space ap-
proach – permutation blocking PIMC (PB-PIMC)52,60,61

– and confirmed by independent density matrix QMC
(DM-QMC)62, it became clear that RPIMC in this pa-
rameter range exhibits large systematic errors. On the
other hand, the combination of CPIMC and PB-PIMC
made it possible to obtain exact thermodynamic results
for the warm dense uniform electron gas (UEG) over the
entire density range, for Θ & 0.5. These data were ex-
tended to the thermodynamic limit by Dornheim et al. in
Ref. 63 and connected to existing ground state results64

by Groth et al.65 which led to the first accurate analyt-
ical parametrization of the free energy of the UEG4, for
a discussion see Ref. 66. This parametrization has al-
ready been used in finite-temperature DFT and will also
be used to benchmark the new approximations in this pa-
per. Finally, we mention recent breakthroughs in the ab
initio computation of static and dynamic response func-
tions using path integral MC approaches by Dornheim et
al.67–71.

Aside from these achievements, the fermion sign prob-
lem still puts severe limitations on the range of WDM
parameters that are accessible by first principle QMC
methods. Let us summarize these limitations, for an il-
lustration, see Fig. 1.

1. Fermionic PIMC (“PIMC” in Fig. 1) in configura-
tion space cannot access strong degeneracy, i.e. low
rs and low Θ

2. PB-PIMC, as an optimized coordinate space
method is able to reach low rs values but only above
a minimum temperature, Θ ≥ 0.5.

3. Fock space approaches (CPIMC and DMQMC)
cannot access strong coupling, i.e. they are re-
stricted to rs . 1, except for high temperature,
Θ & 1.

4. The above estimates refer to finite simulation sizes
of the order of N = 33 for the polarized and N = 66
for the paramagnetic UEG. For smaller N the pa-
rameter range increases. These data are sufficient
for a reliable extrapolation to the thermodynamic
limit using the accurate finite size correction of
Ref. 63.

From this summary it is clear that there remains a
“white area” in the lower half of the temperature

Figure 1. Qualitative overview on the status of ab initio QMC
simulations for the warm dense electron gas. Arrows indi-
cate where the different methods (PIMC: fermionic PIMC,
CPIMC: configuration PIMC, PB-PIMC: permutation block-
ing PIMC and DMQMC: density matrix QMC) are currently
applicable. The presented restricted CPIMC (RCPIMC) ap-
proaches, for the first time, fill part of the two lower quad-
rants. In contrast to the other methods RCPIMC has a sys-
tematic error, and the drawn line corresponds roughly to a 3%
error in the potential energy. Figure modified from Ref. 72.

temperature-density plane where no ab initio data
exist (even though the analytical parametrization of
Ref. 65 does not leave a gap), where our use of the term
referes to truely first-principle simulations that avoid
any approximations or systematic errors. This yields
the motivation for the present paper: The goal is to
investigate whether CPIMC can be extended towards
stronger coupling by omitting some or all of the sign
changing Monte Carlo updates. Even though with this
we give up the ab initio character of the method this
would be acceptable if the error introduced by these
approximations is sufficiently small and the trends are
predictable. After carefully analyzing all of the Monte
Carlo steps we identify two new “restricted” CPIMC
methods that will be called RCPIMC and RCIPMC+.
While RCPIMC omits all sign changing kinks (Monte
Carlo updates), RCPIMC+ neglects only a part of them
and is, therefore, more accurate than the former. At the
same time, RCPIMC has no sign problem at all, whereas
the sign problem of RCPIMC+ is considerably reduced,
compared to full CPIMC. With this the two methods
overcome, in part, the limitations of CPIMC allowing for
approximate, but still accurate simulations in a broader
parameter range than the latter. We analyze in detail
the accuracy and the applicability limits of the two new
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approximations by performing extensive simulations
for the uniform ferromagnetic electron gas. Our main
result is that, indeed RCPIMC and RCPIMC+ allow
one to enter parts of the parameter range that was
previously unaccessible to existing ab initio approaches
such as CPIMC, PB-PIMC, and Density Matrix QMC.
In particular, simulations are possible in the range of
0.05 . Θ . 0.5 and rs up to 3 . . . 5.

This paper is organized as follows: In Sec. II we
give an overview on CPIMC and the involved Monte
Carlo updates. There we also introduce RCPIMC and
RCPIMC+. After this, in Sec. III we present extensive
new thermodynamic results for the uniform electron gas
for particle numbers ranging from N = 4 to N = 33.
Furthermore, we investigate how well these methods can
reproduce the thermodynamic properties of the macro-
scopic UEG. The paper concludes with a discussion and
outlook in Sec. IV.

II. CONFIGURATION PIMC

Here we give a brief overview on the CPIMC method
and present the main formulas. Throughout this paper
we use atomic units where ~ = me = e = 1. We start
by considering a generic quantum many-body system at
finite temperature with the hamiltonian

Ĥ = T̂ + Ŵ , (1)

where T̂ denotes the single-particle energy and Ŵ the
interaction energy. We will keep the following discussion
of CPIMC as general as possible before concentrating on
the UEG hamiltonian, in Sec. II D. The thermodynamic
properties of the system (1), including the expectation

value of an arbitrary operator Â, are determined by the
density operator and its normalization – the partition
function,

ρ̂ = e−βĤ , (2)

Z(β) = Tr ρ̂ , (3)

〈Â〉(β) =
1

Z
Tr Âρ̂ , (4)

where β = 1/kBT . Below we will work in the canonical
ensemble, i.e. system volume and particle number N are
considered fixed.

The main problem for the computation of expressions
(3) and (4) is that the density operator is not known
because kinetic and potential energy operators do not
commute. This problem is solved in quantum Monte
Carlo by transforming the density operator to a form
where perturbation methods can be applied. Standard
PIMC in coordinate space uses a Trotter decomposi-
tion in high-temperature factors allowing for perturba-
tion theory around the strongly coupled semiclassical
limit, e.g. Ref. 47. Due to the fermion sign problem

(FSP) this approach is limited to the weakly and moder-
ately degenerate regime, for the UEG this corresponds to
rs & 150,58, the precise value depending on temperature,
cf. Fig. 1. The origin of the FSP, in this approach, is
the anti-symmetrization of the density operator, ρ̂→ ρ̂A

which gives rise to N ! sign alternating terms causing an
exponential loss of accuracy with the increase of β and
N .

Configuration PIMC (CPIMC) was introduced with
the goal to access the high-density regime of strong de-
generacy. There, the properly anti-symmetrized expecta-
tion value (4) is computed without anti-symmetrization
of the density operator. Instead, the trace is computed
using a complete set of anti-symmetrized N -particle
states49,73,74, as will be explained below. Subsequently
a perturbation expansion of the density operator with
respect to the interaction energy is performed. This ap-
proach is complementary to the one in standard PIMC
and, therefore, allows to access complementary parame-
ter regions, e.g., for the UEG, the region where rs . 1.

In the following we introduce the perturbation expan-
sion with respect to the interaction strength by using the
interaction representation of quantum mechanics.

A. Perturbation Expansion with respect to the interaction

The perturbation expansion of the partition function
[Sec. II B] is analogous to time-dependent perturbation
theory in standard quantum mechanics which we, there-
fore, consider first.

Recall the interaction (Dirac) picture of quantum me-
chanics for a system with the hamiltonian (1). The idea

is to rewrite the hamiltonian as Ĥ = D̂ + Ŷ , such that
the time evolution is split into an “easy” part, driven by
the operator D̂, and a “difficult” part, driven by the op-
erator Ŷ . Using the stationary eigenfunctions of D̂ as a
basis, the dynamics of D̂ are given by a simple exponen-

tial operator, e−iD̂t, which is diagonal in that basis. The
remaining part is non-diagonal with the dynamics given
by

Y (t) = eiD̂tŶ e−iD̂t . (5)

Consequently, the full time evolution operator has the
form

U(t, t′) = e−iD̂(t−t′)T̂ e−i
∫ t
t′ dt̄ Ŷ (t̄) , (6)

where T̂ is the time ordering operator. This equation
can be rewritten as a Taylor series. Alternatively, we can
start with the integral representation

U(t, t′) = 1̂− i

t∫
t′

dt̄ Ŷ (t̄)U(t̄, t′) , (7)
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that can be rewritten as an iteration series

Û(t, t′) = 1̂− i

t∫
t′

dt1 Ŷ (t1) (8)

+ (−i)
2

t∫
t′

dt1

t1∫
t′

dt2 Ŷ (t1)Ŷ (t2)

+ (−i)
3

t∫
t′

dt1

t1∫
t′

dt2

t2∫
t′

dt3 Ŷ (t1)Ŷ (t2)Ŷ (t3)

+ . . . .

So far, this is a completely general result, in particular,
concerning the subdivision of the hamiltonian into the
two operators D̂ and Ŷ . Below, in Sec. II D, we will in-

troduce the choice that is appropriate for CPIMC and
the uniform electron gas and show how the two oper-
ators are related to the kinetic and interaction energy
operators in Eq. (1). But first, we need to apply the
interaction picture to the computation of the canonical
density operator.

B. Perturbation theory for the partition function

It is well known that the density operator (2) can be
written as a time evolution operator of a stationary sys-
tem in imaginary “time” (Wick rotation)

ρ̂ = e−βĤ ≡ U(−iβ, 0) . (9)

With the replacements t′ → 0 and t → −iβ we can di-
rectly use the solution (6) or (8) and obtain for the sum
of the iteration series

e−βĤ = e−βD̂
∞∑
K=0

(−1)K
β∫

0

dt1

β∫
t1

dt2 . . .

β∫
tK−1

dtK Ŷ (tK)Ŷ (tK−1) · . . . · Ŷ (t1) . (10)

Statistical expectation values for a system of N
fermions can be calculated from the above (canonical)
statistical operator via the trace, Eq. (4), for which a
key quantity is the partition function, Eq. (3). For the
evaluation of the trace in Eqs. (4) and (3), we consider
a complete orthonormal set of anti-symmetric N -particle
states, i.e. Slater determinants, which we write in occu-
pation number representation for a fixed particle number

N ,

|{n}〉 = |n1, n2, n3, . . .〉 , ni ∈ { 0, 1 } . (11)

In this representation the hamiltonian of an ideal Fermi
gas will be diagonal, i.e., this representation is well
adopted to the limit of high degeneracy (such as the high
density electron gas, rs → 0), and the ideal Fermi gas
can be simulated exactly without any sign problem49.
For the general case of an interacting system, we obtain
from (10) for the partition function

Z(β) =

∞∑
K=0

(−1)K
∑
{n}

β∫
0

dt1

t1∫
0

dt2 . . .

tK−1∫
0

dtK 〈{n}|e−βD̂Ŷ (t1)Ŷ (t2) . . . Ŷ (tK)|{n}〉

=

∞∑
K=0

(−1)K
∑
{n}

. . .
∑

{n(K−1)}

β∫
0

dt1

β∫
t1

dt2 . . .

β∫
tK−1

dtK 〈{n}|e−D̂βŶ (t1)|{n(1)}〉 . . . 〈{n(K−1)}|Ŷ (tK)|{n}〉 ,

(12)

where the sum over {n} arises from the trace, and the
second line is obtained by inserting (K − 1) identities

1̂ =
∑
{n} |{n}〉 〈{n}| of the appropriate Fock space, and

the indexing and the integration boundaries are chosen as
such to have t1 ≤ t2 ≤ . . . ≤ tK . Now consider the matrix

elements, using the interaction picture representation (5),

〈{n(α)}|Ŷ (t)|{n(γ)}〉 = 〈{n(α)}|eD̂tŶ e−D̂t|{n(γ)}〉
= eDαt 〈{n(α)}|Ŷ |{n(γ)}〉︸ ︷︷ ︸

=:Yα,γ

e−Dγt .
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Thus, the matrix elements arising in the partition func-
tion can be straightforwardly calculated. The matrix el-
ements of the diagonal part of the hamiltonian are the
sums of the single-particle energies of the occupied or-
bitals

Dα =

∞∑
i=0

biin
(α)
i , (13)

whereas the matrix elements of the off-diagonal part can

be computed with the Slater-Condon rules49,73. Explicit
results for the uniform electron gas and the choice of
a plane wave basis will be given in Sec. II D. In or-
der to shorten the notation and taking explicitly into
account the periodicity of the trace we rename the time-
arguments and the indexes, according to t0 = 0, tK+1 =
β and {n(0)} = {n(K)} = {n} (respectively DK = D0 and
Y1,0 = Y1,K). As a result, the partition function (12)
becomes

Z(β) =

∞∑
K=0

∑
{n}

. . .
∑

{n(K−1)}

β∫
0

dt1

β∫
t1

dt2 . . .

β∫
tK−1

dtK (−1)K

(
K∏
i=0

e−Di(ti+1−ti)

)
×

(
K∏
i=1

Yi,i−1

)
(14)

C. Configurations and paths in CPIMC

The partition function (14) can be understood as a
sum over micro-configurations C,

Z =
∑∫
C

W (C) , (15)

which have the weight

W (C) = (−1)K

(
K∏
i=0

e−Di(ti+1−ti)

)(
K∏
i=1

Yi,i−1

)
, (16)

which allows one to rewrite thermodynamic expectation
values (4) as

〈A〉 =
∑∫
C

W (C)A(C) . (17)

What is left is to specify the configurations C that ap-
pear in the integrand in Eq. (14). Evidently, the sum
contains contributions (“paths”) in Slater determinant
space, |{n}〉 → |{n(1)}〉 → |{n(2)}〉 → . . . , running
through a total of K steps. Due to the trace all paths are
periodic, i.e. start and end with the same state |{n}〉.
This means a path is specified by the full information
about all states involved and their respective imaginary
times,

C := {K, {n}, {n(1)}, . . . , {n(K−1)}, t1, . . . , tK } . (18)

However, this information can be drastically reduced
by taking into account the properties of the matrix el-
ements of Ŷ . Indeed, two adjacent Slater determinants
are not independent of each other but are linked by the
properties of the matrix Yα,α−1. As we will see below,

in the case of the UEG, the off-diagonal operator Ŷ is
determined by the pair interaction operator Ŵ , the ma-
trix elements of which, in a basis of Slater determinants,

are known and given by the Slater-Condon rules49. The

0
1
2
3
4
5

0 t1 t2 t3 t4 t5 β0
imaginary time

o
rb

it
a
l
i

q1,0(s1) |{n(3)}〉

Figure 2. Illustration of a path C, Eq. (19), with five kinks.
The kink 1 at time t1 involves four orbitals, s1 = (1, 4; 3, 5),
whereas the kink at t2 involves two orbitals, s2 = (0; 1). The

third Slater determinant |n(3)〉 exists between the imaginary
“times” t2 and t3 and contains three occupied orbitals (1, 3,
5) and zeroes otherwise.

matrix elements Yα,γ are only nonzero in three cases: if
the basis states |{n(α)}〉 and |{n(γ)}〉 differ in zero, two
or four orbitals and, thus, no error is introduced if the
sum is restricted to only such paths Thus, it is clear that,
instead of considering each of the K states forming the
path, it is equally possible to consider just the first state
|{n}〉, together with the K changes that yield nonzero
matrix elements. These changes are called kinks and are
specified by the changed orbitals between the states form-
ing matrix element in Eq. (12). These can be either two
indices, s = (p; q), in case of a one-particle excitation,
or four indices, s = (p, q; r, s), in case of a two-particle
excitation. Accordingly, a configuration is now specified
via the initial state, |{n}〉, and K − 1 kinks, s1, . . . , sK ,
together with their respective times, t1, . . . , tK

C := {K, {n}, t1, . . . , tK , s1, . . . , sK } , (19)

and the partition function (12) may be written as
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Z(β) =

∞∑
K=0
K 6=1

∑
{n}

∑
s1

. . .
∑
sK

β∫
0

dt1

β∫
t1

dt2 . . .

β∫
tK−1

dtK (−1)K

(
K∏
i=0

e−Di(ti+1−ti)

)
×

(
K∏
i=1

qi,i−1(si)

)
, (20)

where paths with K = 1 violate the periodicity and have
to be excluded, and the kink matrix elements qi,i−1(si)
represent the off-diagonal matrix elements with respect
to the possible choices of 2- or 4-tuples si.

Figure 2 shows an example of a single path C of N = 3
particles that initially (t = 0) occupy the three orbitals
0, 1, 4, whereas all other orbitals are empty, correspond-
ing to the state |{n}〉 = |{n(0)}〉. Due to the periodicity
this initial state coincides with the final state at t = β,
and the path is interrupted by five kinks at times t1 . . . t5.

These include one-particle kinks (involving two orbitals),
at times t2, t4, t5 and two two-particle kinks (involving
four orbitals), at t1 and t3. The orbitals involved in each
of the kinks are visualized in the figure. The probability
of this particular path is given by Eq. (16) and sensitively
depends on the interaction matrix elements that involve
the orbitals associated with each of the kinks.

Using this kink-based path integral representation of
the partition function macroscopic observables follow
from standard thermodynamic relations. For example,
for the mean total energy we obtain49

〈Ĥ〉 = − ∂

∂β
lnZ =

∞∑
K=0
K 6=1

∑
{n}

∑
s1...sK−1

β∫
0

dt1

β∫
t1

dt2 . . .

β∫
tK−1

dtK

( K∑
i=0

D{n(i)}
ti+1 − ti

β
− K

β

)
W (C) . (21)

It is interesting to note that, for a noninteracting sys-
tem where Ŷ = 0 (see below), the internal energy is

determined completely by the diagonal operator D̂. In
contrast, for an interacting many-body system, there ap-
pears an additional term: evidently, the interaction en-
ergy is directly related to the mean number of kinks 〈K〉.
Similarly, other thermodynamic observables can be com-
puted, for details see Refs.4,74.

The present path integral representation in Slater de-
terminant space, together with the kink formulation of
the paths, is well suited for efficient quantum Monte
Carlo simulations (CPIMC) and has been applied to a
variety of interacting fermion systems, including homoge-
neous and inhomogeneous systems, e.g. Refs. 51, 73–75.
Particularly extensive applications were developed for the
uniform electron gas at finite temperature which is the
subject of the remainder of this article. An important
advantage of homogenous systems is that, due to momen-
tum conservation, no single-particle excitations (kinks in-
volving only two orbitals) are allowed but only those that
involve four orbitals. The application of CPIMC to the
warm dense UEG is explained in the next section.

D. CPIMC approach to the warm dense uniform electron
gas. plane wave basis

In case of the UEG, second quantization is naturally
performed with respect to plane wave spin orbitals4,
|i〉 → |kiσi〉, with the momentum and spin eigenval-
ues ki and σi, respectively. In coordinate representa-

tion they are written as 〈rσ |kiσi〉 = 1
L3/2 e

iki·rδσ,σi with

ki = 2π
L mi, mi ∈ Z3 and σi ∈ {↑, ↓}, so that the UEG

Hamiltonian, Eq. (1), becomes

Ĥ =
1

2

∑
i

k2
i â
†
i âi +

∑
i<j,k<l
i 6=k,j 6=l

w−ijklâ
†
i â
†
j âlâk +N

ξM
2

, (22)

where ξM is the Madelung constant that is due to the
neutralizing background. In the hamiltonian (22), the

creation (annihilation) operator â†i (âi) creates (annihi-
lates) an electron in the i-th spin orbital, and for elec-
trons (fermions) the operators obey the standard anti-
commutation relations. Further, w−ijkl = wijkl − wijlk
denotes the anti-symmetrized two-electron (Coulomb) in-
tegral with

wijkl =
4πe2

L3(ki − kk)2
δki+kj ,kk+klδσi,σkδσj ,σl , (23)

that involves the Fourier transform of the Coulomb po-
tential.

Applying the Slater-Condon rules to the UEG Hamil-
tonian (22) we readily compute its matrix elements ac-
cording to

〈{n}|Ĥ|{n̄}〉 = (24)
D{n} =

1

2

∑
l

k2
l nl +

1

2

∑
l<k

w−lklknlnk, {n} = {n̄} ,

Y{n},{n̄} = w−pqrs(−1)α{n},pq+α{n̄},rs , {n} = {n̄}p<qr<s ,

where the first line contains the diagonal component,
with respect to the Slater determinants, and the sec-
ond the off-diagonal component. Note that the divergent
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7

components in w−l,k,l,k are compensated by the uniform
background whereas the exchange part is finite and con-
tributes to D{n}.

The Coulomb interaction matrix contains therefore a
diagonal part (Hartree term) contributing to D and a
two-particle excitation (second line) contributing to Y
where |{n̄}p<qr<s〉 refers to the Slater determinant that is
obtained by exciting two electrons from the orbitals r and
s to p and q in |{n̄}〉. Thus, in the path integral picture,
this matrix element is related to kinks involving four or-
bitals. Note that, due to spatial homogeneity, Y does
not contain contributions from single-particle excitations
(that would involve two orbitals) as was illustrated in
Fig. 2. With the matrix elements D{n} and Y{n},{n′},
the kink-based CPIMC algorithm of the previous section
can be directly applied to the warm dense UEG.

For completeness, we also provide the definition of the
phase factor in Y ,

α{n},pq =

max(p,q)−1∑
l=min(p,q)+1

nl , (25)

which causes sign changes in the matrix elements of Y
and, thus, is important for evaluating the average sign
in the CPIMC simulations. There are two other sources
of sign changes in the partition function (20): the first is
the factor (−1)K and the second is the sign of the matrix
elements w−. All three factors determine the fermion
sign problem in CPIMC and will be investigated below.

E. CPIMC algorithm for the warm dense uniform electron
gas. Monte Carlo updates

In the following we outline a Monte Carlo algorithm
for the computation of expectation values (4) via sam-
pling of paths of type (19). We use five different types of
Monte Carlo updates that will be labeled A . . . E below.
These updates were found to be ergodic (within numer-
ical accuracy) and were the basis of extensive numerical
results for the UEG, for an overview, see Ref.4.

1. Update A: Change of Orbital Occupations

In this step we change the occupation of two orbitals
one of which was occupied before the step over the en-
tire imaginary time interval, whereas the other one was
unoccupied. Note that, for an ideal Fermi gas, the hamil-
tonian is completely diagonal in the present basis which
means that only paths with no kinks are realized. In
that case, the update A would be sufficient to achieve
ergodicity and exact results. Therefore, CPIMC is able
to simulate the ideal Fermi gas without any sign prob-
lem including averages and fluctuations of observables.
An illustration of update A is shown in Fig. 3. There a
system containing four occupied orbitals is shown, and
the uppermost orbital is excited (de-excited).

←→

Figure 3. Illustration of Update A for four electrons: the elec-
tron occupying the highest orbital is excited to an unoccupied
orbital above, and vice versa.

2. Update B: Add or remove two type 4 kinks
(two-particle kinks involving four orbitals)

Here we add or remove a pair of two symmetric kinks
that involve four orbitals (two-particle excitation). As is
illustrated in Fig. 4 the same orbitals that where exited
by the first kink are de-excited by the second kink. Due
to the symmetry of the interaction operator this update
does not lead to a sign change in the weight function.

←→ ←→

Figure 4. Illustration of Update B for four electrons. Two
electrons are simultaneously excited to two previously unoc-
cupied (de-excited from two occupied) orbitals corresponding
to two type-4 kinks. Right: Arrows show the associated mo-
mentum changes of the two electrons in momentum space.
The first (second) kink corresponds to the two blue (yellow)
arrows. Momentum conservation is obvious from adding the
two arrows.

3. Updates C, D, E: Addition or removal of a kink

For the CPIMC procedure it is also required to be able
to change a path by adding or removing a single kink.
As we will see, there exist three different ways to achieve
this that will be called Updates C, D and E. They are
illustrated in Figs. 5–7, respectively.

By executing an update of one of these types we ei-
ther add or remove a single kink (shown in blue in the
figures). Since we are sampling only closed paths, this
update cannot alter all orbital occupations to the left
and to the right of the imaginary time interval. This is
only possible if, in addition to adding (removing) a kink,
we also properly change one neighboring kink (indicated
by the replacement of the red lines by the orange lines).

Note that, to reverse the change of the occupations
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of the added (removed blue) kink, by only changing one
other (orange) kink, the latter needs to have exactly two
orbitals in common with the former kink for the update
to be allowed. It turns out that there exist three topo-
logically distinct ways how the created/removed kink and
the changed kink are related. Correspondingly, we call
such an update to be either of type C, D or E.
Type C Update: the two orbitals common to both

kinks were both unoccupied, before the update. In the
imaginary time interval between the two kinks these com-
mon orbitals are occupied. This is illustrated in Fig. 5
where the common orbitals are the two uppermost or-
bitals.

←→ ←→

Figure 5. Illustration of Update C for four electrons. The
original kink is shown by the vertical red line and the two
red arrows in the right part. Update C adds another kink
(blue lines) and, in addition, replaces the previous (red) kink
by the orange one. After Update C the two kinks share two
previously unoccupied orbitals (drawn bold). The momentum
change associated with the kink (excitation) after update C
(blue plus orange arrow) equals the momentum change before
the kink (red arrow). Note that the states at the left and right
boundary remain unchanged by Update C.

Type D Update: the two orbitals common to both
kinks were both occupied before the update. In the imag-
inary time interval between the two kinks, these orbitals
are un-occupied. This is illustrated in Fig. 6.

←→ ←→

Figure 6. Illustration of Update D for four electrons. The
original kink is shown by the vertical red line and the two
red arrows in the right part. Update D adds another kink
(blue) and, in addition, replaces the previous (red) kink by
the orange one. In Update D the new (blue) and the changed
(orange) kink share two previously occupied orbitals (bold).
The momentum change associated with the kink (excitation)
after update D (blue plus orange arrow) equals the momentum
change before the kink (red arrow). Note that the states at
the left and right boundary remain unchanged by Update D.

Type E Update: of the two orbitals common to both
kinks one was occupied and one was unoccupied, before
the update. This is illustrated in Fig. 7, where the lower

common (bold) orbital was occupied and the upper com-
mon orbital was previously un-occupied.

←→ ←→

Figure 7. Illustration of Update E for four electrons. The
original kink is shown by the vertical red line and the two
red arrows in the right part. Update E adds another kink
(blue lines) and, in addition, replaces the previous (red) kink
by the orange one. In Update E the new (blue) and changed
(orange) kink share a previously occupied and a previously
unoccupied orbital (bold). The momentum change associated
with the kink (excitation) after update E (blue plus orange
arrow) equals the momentum change before the kink (red ar-
row). Note that the states at the left and right boundary
remain unchanged by Update E.

4. Fermion sign Problem associated to
updates B, C, D, and E

As we noted previously, while removing the sign prob-
lem at high degeneracy, CPIMC suffers a sign problem
at low density, i.e. with increasing interaction energy
(coupling). As we have seen in formula (21) the in-
teraction energy is directly related to the mean num-
ber of kinks 〈K〉. Indeed, it was confirmed in previous
investigations76 that an increase of 〈K〉 causes a reduc-
tion of the average sign. This is also illustrated in Fig. 13
below. An interesting question is whether this effect ap-
plies to each of the four updates (B–E) where kinks are
introduced (or removed). The answer is “no”. The up-
date B involves kinks but does not involve sign changes.
This is due to the specific structure of the matrix ele-
ments of Ŷ . In fact, using exclusively updates of type
B will create only configurations where every kink is ac-
companied by a mirror-symmetric second kink. Since the
interaction operator Ŵ † = Ŵ , its matrix elements are
real in a momentum basis, and the phase factors α are
invariant under exchange of the start and end orbitals,
the contributions of the two kinks are identical. Any
possible sign change will, therefore, be compensated.

In contrast, the three updates, C – E, involve kinks and
sign changes and are, therefore, critical for the fermion
sign problem in CPIMC. It is, therefore, of high interest
to investigate the relative importance of the updates C,
D, and E. This analysis is carried out in the remainder
of this article.
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F. Restricted CPIMC

The properties of the different Monte Carlo updates
studied in Sec. II E, in particular, their effect on the
fermion sign problems of CPIMC suggests to consider
various modifications of the algorithm. In the follow-
ing we consider two approximations where we artificially
“turn off” some of the Monte Carlo updates, thereby
restricting the space of configurations and paths. The
hope is that this allows to eliminate some of the kinks
that strongly affect the sign problem and, we thereby
will be able to extend the simulations to parameters not
accessible to CPIMC, i.e., in particular, to stronger cou-
pling (rs & 1). Of course, such restrictions will introduce
a systematic error that is unknown beforehand and has
to be tested against exact CPIMC simulations. We will
consider two approximations that are explained in the
following.

RCPIMC: We introduce “Restricted CPIMC”
(RCPIMC) as an approximation to CPIMC
where only Updates A and B (and the opposite
updates) are performed. On the other hand,
Updates C–E are excluded from the algorithm.
As was explained in Sec. II E 4, Update B [cf.
Fig. 4] introduces only two symmetric kinks and,
therefore, does not lead to sign changes. The
same is true for Update A which does not involve
kinks at all, cf. Fig. 3. Therefore, RCPIMC is not
afflicted by a sign problem at all.

RCPIMC+: We will also consider a modified version of
“Restricted CPIMC” that will be called RCPIMC+
because, in addition to the updates of RCPIMC,
two other updates will be allowed: Updates C and
D. Thus, RCPIMC+ only neglects Update E.

With this it is clear that RCPIMC+ does involve
sign changes. At the same time, the complexity of
the occuring configurations is reduced significantly
and it is much easier to leave certain configurations
which improves the ergodicity. Also, the correla-
tions of subsequent configurations are substantially
reduced. As we will see, for some range of param-
eters of the warm dense uniform electron gas the
mean number of kinks is significantly reduced, com-
pared to full CPIMC, which reduces the fermion
sign problem.

In the next section we perform extensive tests of
RCPIMC and RCPIMC+ for the spin-polarized uniform
electron gas at finite temperature. We will consider,
both, finite systems as well as the thermodynamic limit,
over a broad range of temperatures, Θ and densities, rs.

III. NUMERICAL RESULTS FOR THE
FERROMAGNETIC UNIFORM ELECTRON GAS

A. Test for N = 4 particles

Let us start with a small system containing just 4 elec-
trons. This has the advantage that extensive benchmark
data are available to test RCPIMC and RCPIMC+, for
a broad range of temperatures and densities. For N = 4,
the hamiltonian can be diagonalized and the thermody-
namic properties can be computed exactly via thermo-
dynamic configuration interaction (CI) methods. On the
other hand, we can perform independent CPIMC simu-
lations that are also exact and agree with CI within their
range of availability. For CI, the limitations arise from
the dimension Nb of the single-particle basis that because
the computational effort scales exponentially with Nb.
On the other hand, CPIMC uses the same single-particle
basis but can handle much larger values of Nb e.g. Ref. 74,
but here the limit is set by the fermion sign problem
which restricts the simulations to parameters correspond-
ing to sufficiently small rs. For a reasonable comparison
we set the basis dimension to Nb = 19 – a value that
is handable in CI, and use the same Nb in CPIMC as
well as in the RCPIMC and RCPIMC+ simulations. In
addition we perform CPIMC, RCPIMC and RCPIMC+
simulations for a converged (much larger) basis.

The simulation results for a low temperature of Θ =
0.0625 are shown in Fig. 8. There we plot the total energy
(top) and the exchange-correlation energy. There is very
good agreement of all simulations for the total energy, up
to about rs = 10 because this quantity is dominated by
the kinetic energy that is common to all methods. Much
larger (relative) deviations are observed for the exchange-
correlation energy. There, CI and CPIMC are in perfect
agreement, but RCPIMC and RCPIMC+ exhibit system-
atic deviations with increasing rs. Consider first the re-
sults for the fixed basis, Nb = 19. There RCPIMC and
RCPIMC+ are accurate up to rs ≈ 10 where RCPIMC+
turns out to be more accurate. In this range, the errors
in Exc are below 0.5%. Even at rs = 20 the relative
deviations of RCPIMC+ (RCPIMC) are below 1% (2%).

In the two bottom panels we plot the key parameters
that characterize the efficiency of the kink-based CPIMC
simulations: the average kink number and the average
sign. Consider first again the case of a fixed basis size,
Nb = 19 (triangles). The average sign of the CPIMC
simulations (grey trianges) starts to drop exponentially
around rs = 4. Interestingly the sign for RCPIMC+ also
decreases exponentially but at significantly larger values
of rs, and it is about 0.004, at rs = 20. A value of
s = 10−3 is typically the limit for efficient simulations.
An unexpected observation is that, for larger coupling,
rs > 20, the average sign of CPIMC does not show a
further decrease (see the last point), and a similar be-
havior is observed for RCPIMC+ (not shown in the fig-
ure). Consequently the agreement of both RCPIMC+
and RCPIMC with the benchmark data improves again.

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
22

80
0



10

rs

15

10

5

0

E
r2 s

a

CI, Nb = 19
CPIMC
RCPIMC+ 
RCPIMC

CPIMC, Nb = 19
RCPIMC+ 
RCPIMC, Nb = 19

rs
0.74

0.73

0.72

0.71

0.70

0.69

E x
c

r s

b

rs

10 1

100

101

K

c

100 101

rs

10 2

10 1

100

s

d

Figure 8. Thermodynamic properties for N = 4 particles
and Θ = 0.0625. Comparison of CI, CPIMC, RCPIMC and
RCPIMC+ simulations. (a): total energy per particle times
r2s , (b) Exchange-correlation energy per particle times rs, (c)
average kink number and (d) average sign. Simulations using
a single-particle basis of a fixed size, Nb = 19 are compared
to simulations using a converged (much larger) basis.

The explanation of this behavior is a basis size effect.
With increasing rs, particles are pushed into higher or-
bitals, and these higher excitations are the main cause of
the increasing kink number. Cutting the basis at a con-
stant dimension, Nb = 19, artificially reduces the error
of the simulations. The same behavior is observed in the
CI simulations and for full CPIMC which are missing es-
sential correlation effects. This explanation is confirmed
by the second set of QMC simulations that use a con-
verged basis size that increases with rs. In that case, for
CPIMC, the average kink number (grey circles) is sig-
nificantly higher than for the smaller basis, and the sign
decreases already for a smaller value of rs ≈ 2. Sim-
ilar trends are observed for RCPIMC+ where the sign
drops around rs ≈ 3 and the kink number increases much
slower than for CPIMC. On the other hand, as expected,
the average sign of RCPIMC is always equal to one even

though the kink number (corresponding to Updates B)
is increasing monotonically with rs.

10 1 100 101

rs

0.80

0.78

0.76

0.74

0.72

0.70

0.68

W
r s

CPIMC
RCPIMC+ 
RCPIMC
Standard-PIMC

Figure 9. Interaction energy W = 〈Ŵ 〉 per particle times rs
for N = 4 and Θ = 0.5. RCPIMC and RCPIMC+ data are
compared to first principle CPIMC (available for rs ≤ 4) and
direct PIMC benchmarks.

Let us now turn to higher temperatures, 0.5 ≤ Θ ≤ 5.
Here, CI simulations are difficult due to the rapid in-
crease of the required basis size. Instead, for benchmark
purposes we have generated new CPIMC and PB-PIMC
data and always use a converged single particle basis. In
Figs. 9 and 10 we show two sets of isotherms for the in-
teraction energy at N = 4. The comparison with CPIMC
and PB-PIMC results reveals very good agreement. Even
for Θ = 5 the relative deviations remain below 2.5%
up to rs = 10, for RCPIMC. On the other hand, the
RCPIMC+ data are almost indistinguishable from the
benchmarks in the whole parameter range. While ab ini-
tio CPIMC simulations are feasible only up to rs ≈ 4,
in this temperature interval, the reduced sign problem of
RCPIMC+ allows us to extend the simulations to about
rs = 15 (rs = 20) for Θ = 0.5 (Θ = 5), corresponding
to a density reduction by approximately two orders of
magnitude.

B. Results for N = 33

We now turn to the second finite system containing
N = 33 electrons. This example of a “magic num-
ber” (closed shell) cluster was studied in the first sim-
ulations of the warm dense UEG that were performed
with restricted PIMC (RPIMC) by Brown et al.58, be-
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Figure 10. Same as Fig. 9, but for Θ = 5.

cause it is expected that its properties are close to the
UEG in the thermodynamic limit. This system was
subsequently analyzed by many groups using different
methods, including fermionic PIMC50, CPIMC51, PB-
PIMC77, density matrix QMC62, and Green functions78.
Even though RPIMC has no sign problem, the simula-
tions were only possible for rs ≥ 1. The first ab initio
results were obtained by CPIMC51 and later confirmed
by DM-QMC62 and revealed that the RPIMC data in
the range 1 ≤ rs ≤ 5 are surprisingly inaccurate, point-
ing to a significant nodal error. Improved simulation re-
sults for rs & 1 became available with the development
of PB-PIMC by Dornheim et al.52. The combination of
CPIMC and PB-PIMC, finally allowed to close the gap
in densities that can be simulated76,79, however, only for
temperatures exceeding Θ = 0.5. The missing simula-
tion data for temperatures below this value is one of the
main motivations for the development of RCPIMC and
RCPIMC+.

In Figs. 11 and 12 we present our new RCPIMC and
RCPIMC+ data for the exchange-correlation energy of
the polarized UEG with N = 33 particles, for temper-
atures in the range of Θ = 0.0625 . . . 0.5 and compare
to the available reference results. Let us start with the
lowest temperature, Θ = 0.0625, Fig. 11. Here, CPIMC
data are available from simulations with a kink potential
up to rs = 151. On the low density side, at these tem-
peratures, no ab initio data are available. There exist
RPIMC data that are, however, increasingly inaccurate
when rs is lowered, as discussed above. A reliable inter-
polation is possible by combining all CPIMC data with
the RPIMC points for rs ≥ 10, see the orange line in

100 101

rs

0.72

0.70

0.68

0.66

0.64

0.62

E x
c
×

r s

CPIMC-RPIMC-fit
RPIMC
CPIMC
RCPIMC+
RCPIMC

Figure 11. Exchange-correlation energy per particle times
rs for N = 33 and Θ = 0.0625. CPIMC results of Ref. 51
are compared to RPIMC data of Ref. 58 and the present re-
stricted CPIMC approximation. The fit is produced according
to Eq. (26).

Fig. 11. Here we have used a three-parameter fit that is
guided by the known form of the ground state exchange-
correlation energy,

f(x) := A+B log(x)x− Cx. (26)

Consider first the RCPIMC+ data (blue line). These
simulations are very close to the CPIMC results and can
be extended up to rs = 2 before the sign problem be-
comes too severe. This is a factor four improvement over
CPIMC without an additional kink potential, see Ref. 79.
At this point the RCPIMC+ results are still very accu-
rate, with an error on the order of 0.5%. The RCPIMC
results, on the other hand, are possible for all rs-values.
They are systematically too low with an error approxi-
mately twice the one of RCPIMC+, so up to rs = 2 the
error remains within 1%.

Next, consider the highest temperature, Θ = 0.5.
Here, the CPIMC data can be smoothly connected to
PB-PIMC simulations76. So for these and higher tem-
peratures ab initio data are available, for the present
finite system. At this temperature the behavior of the
RCPIMC+ algorithm improves improves further: sim-
ulations are possible up to rs = 4 where the deviation
from the benchmark is again negative and of the order
of 1%. The behavior of RCPIMC, on the other hand, is
similar to the Θ = 0.0625 isotherm: the deviations are
negative and about twice as large as for RCPIMC+. A
1% deviation is observed around rs = 2. For larger rs
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RCPIMC+
RCPIMC

Figure 12. Same as Fig. 11, but for Θ = 0.5. For rs > 1 the
red points are from PB-PIMC simulations, as CPIMC is not
feasible, the orange line is an interpolation76.

values the deviations of RCPIMC continue to increase
monotonically.

Finally, we analyze the simulations for the high tem-
perature case in more detail. In Fig. 13 we present results
for the kinetic energy, the potential energy, the average
number of kinks and the average sign (top to bottom
panels), for N = 33 and Θ = 0.5. First, we observe that
both, kinetic and potential energy of CPIMC, are accu-
rately reproduced by RCPIMC+ as well as by RCPIMC,
as far as CPIMC data are available. It is interesting to
note that the deviations of kinetic energy from the bench-
mark are of similar magnitude but opposite sign than the
interaction energy. This means that the total energy pro-
duced by RCPIMC and RCPIMC+ is significantly more
accurate than the individual contributions.

The two bottom panels show that CPIMC experi-
ences a drastic increase of the mean kink number around
rs = 0.4 and, correspondingly, a sudden decrease of the
average sign (here we do not include data with a kink po-
tential that allow to extend CPIMC to rs = 1, cf. Ref.51).
Let us now consider the behavior of the RCPIMC+ sim-
ulations. Here there is no drastic increase of the average
kink number but rather a continuous increase of 〈K〉 with
rs. As a consequence, the average sign remains man-
agable up to rs ∼ 2.

rs

2.9

3.0

3.1

3.2

3.3

T
r2 s

a
CPIMC
RCPIMC+ 
RCPIMC

rs
0.80

0.75

0.70

0.65

0.60

0.55

W
r s

b

rs

10 1

100

101

K

c

10 1 100

rs

10 2

10 1

100

s

d

Figure 13. Thermodynamic properties of N = 33 spin-
polarized particles and Θ = 0.5. Comparison of CPIMC,
RCPIMC and RCPIMC+ simulations. (a): kinetic energy

per particle times r2s , (b) potential energy W = 〈Ŵ 〉 per par-
ticle times rs, (c) average kink number and (d) average sign.

C. Predictions of RCPIMC and RCPIMC+ for the
macroscopic UEG

Our tests against available benchmark data for finite
systems with N = 4 and N = 33 particles indicate that
RCPIMC+ but also RCPIMC allow to reliably extend
simulations to larger couplings (rs) than was possible so
far with existing simulations. Unfortunately, no data for
larger finite systems or lower temperatures are available
that would allow to better quantify the predictions.

On the other hand, there exist accurate thermody-
namic data for the thermodynamic limit4,65 that were
obtained from a combination of CPIMC and PB-PIMC
together with an accurate finite size correction63. There-
fore, in the following, we explore the quality of the predic-
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Figure 14. Top: Potential energy W = 〈Ŵ 〉 of the macro-
scopic UEG for Θ = 0.2. On top of RCPIMC+ data
for various particle numbers the finite size correction of
Ref.63 is added and the result is compared to the analytical
parametrization of Ref.65. Bottom: relative deviation of the
finite size corrected RCPIMC+ data from the parametriza-
tion.

tions of RCPIMC and RCPIMC+ for the thermodynamic
limit.

1. Applying the finite size corrections to the RCPIMC+
data

In Ref.63 a novel finite-size correction (FSC) for the
potential energy was derived that accounts for the domi-
nant discretization error in finite N QMC simulations of
the warm dense UEG. This FSC was found to have an
error not exceeding 0.3% over the relevant rs −Θ range.
It is, therefore, interesting to add this finite size correc-
tion to our novel RCPIMC+ data for different values of
N .

This procedure is illustrated in Fig. 14 for the
RCPIMC+ data at an intermediate temperature (Θ =
0.2) and several choices for the particle number, 4 ≤
N ≤ 33. As one can see this produces isotherms that
all show a similar trend with rs. With increasing parti-
cle number the resulting prediction of the potential en-
ergy of the macroscopic system is systematically low-
ered. This ambiguity can be overcome by comparing
to reference data for the potential energy, i.e. the ana-
lytical parametrization (GDSMFB-parametrization) that
was derived in Ref.65. This result is shown in Fig. 14 as

the pink line without symbols. It is interesting to note
that the parametrization result falls right into the middle
of the finite size corrected curves. The results for N = 4
and 7 lie above the parametrization whereas the curve
for N = 33 is significantly below the reference. On the
other hand, the result for N = 19 is very close to the
parametrization. This behavior is seen more clearly in
the bottom panel where relative deviation of the differ-
ent finite N results from the parametrization are plotted.
Again, we confirm that the N = 19 curve exhibits the
smallest deviations which are almost independent of rs.

The deviations of the RPIMC and RPIMC+ results
from the parametrization is the systematic error in the
data for finite particle numbers, in the cases N = 19 and
33. There is also a small residual error left by the finite
size correction that could be removed in Ref.63 but this
error is small and of minor importance here. In contrast,
for N = 4 and N = 7, the simulation results are very ac-
curate, and the deviations are mainly caused by the finite
size correction. After this comparison of different particle
numbers for a single temperature, we now analyze more
extensive data, separately for N = 4 and N = 33, in
Secs. III C 3, III C 2, and III C 4.

2. Accuracy of the RCPIMC+ results for the
macroscopic UEG

Even though the optimal starting point for RCPIMC+
results for the macroscopic UEG appear to be simulation
results for N = 19, it is interesting to investigate also
larger particle numbers to map out their expected errors
for different combinations of density and temperature.
To this end, we first apply the finite size correction to
RCPIMC+ simulations for N = 33 particles. The results
for the relevant parameter range are presented in Fig. 15.
Note that we only consider rs values exceeding unity and
temperatures below Θ = 0.5 because here no ab initio
results are available. First, we note that the system-
atic error increases with temperature. This means, for
the range of low temperatures that we are interested the
most, RCPIMC+ is particularly well suited. The statisti-
cal error though increases with decreasing temperature.
The open end of the lines show, up to which rs values
data can be obtained with a statistical error below 0.2%.
At Θ = 0.05 we can obtain data up to rs = 2.2. Further,
the error increases with density. Each line of a constant
error level eventually terminates at some maximum den-
sity which is determined by the fermion sign problem.
Based on this figure, we conclude that RCPIMC+ allows
for an impressive extension of accurate simulations of the
warm dense UEG to lower temperature and stronger cou-
pling. This conclusion will be confirmed by our analysis
of the N = 19 case, in Sec. III C 4.
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Figure 15. Relative deviation of RCPIMC+ data for the po-
tential energy of a ferromagnetic UEG from the analytical
parametrization of Ref.65. The RCPIMC+ simulations were
performed for N = 33 particles and extended to the thermo-
dynamic limit using the the finite size correction of Ref.63.
The left border of this plot corresponds to the lowest density
(rs = 1) which is accessible with ab initio CPIMC employing
a kink potential51. The top end of this plot shows the lowest
temperature (Θ = 0.5) for which reliable PB-PIMC results
are feasible. Only data points with a statistical error below
0.2% were used, the right end of the lines correspond to the
points where this condition cannot be satisfied any more.

3. Accuracy of the RCPIMC results for the macroscopic
UEG

Let us now do the same analysis for RCPIMC simu-
lations of the macroscopic UEG. Again we use a finite
simulation size of N = 33 as the starting point. The re-
sults are collected in Fig. 16. The general trends are the
same as observed in Fig. 15: the accuracy increases when
the temperature is lowered, and lines of constant relative
error have a similar shape. The main difference is that
magnitude of the relative error is a factor 2 . . . 3 larger
in case of RCPIMC. On the other hand, since RCPIMC
has no sign problem, simulations are possible, in princi-
ple, for all parameter combinations (note that the x-axis
extends more than twice as far, compared to Fig. 15) and
are only limited by a threshold for the allowed error.

1 2 3 4 5
rs

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50 -0.14-0.13-0.12-0.11-0.1-0.09-0.08-0.07-0.06-0.05-0.04-0.03-0.02

Figure 16. Relative deviation of RCPIMC data for the po-
tential energy of a ferromagnetic UEG from the analytical
parametrization of Ref.65. The RPIMC simulations were per-
formed for N = 33 particles and extended to the thermody-
namic limit using the finite size correction of Ref.63. The left
border of this plot corresponds to the lowest density (rs = 1)
which is accessible with ab initio CPIMC employing a kink
potential51. The top end of this plot shows the lowest tem-
perature (Θ = 0.5) for which reliable PB-PIMC results are
feasible.

4. Thermodynamic RCPIMC and RCPIMC+ results
based on data for N = 19

As we saw in Fig. 14 the optimum particle number
to obtain observables in thermodynamic limit is around
N = 19. For larger particle numbers the errors of the
approximations will increase, while for smaller particle
numbers the present finite size correction is most likely
not adequate. The reason for the surprisingly good per-
formance of the system with N = 19 is that it constitutes
a closed shell cluster for which finite size effects are known
to be reduced compared to adjacent particle numbers.

While Fig. 14 compared the different particle numbers
only for the temperature Θ = 0.2 we can now extend
the comparison to the entire interval 0.05 ≤ Θ ≤ 0.5.
Comparing Figs. 16 and 17, we see that the finite size
corrected RCPIMC result for N = 19 are indeed approxi-
mately a factor two more accurate than those for N = 33.
Also, considering the surprisingly low magnitude of the
relative errors, we conclude that approximately one half
of the parameter square can be reasonably accurate pre-
dicted by RCPIMC simulations, taking e.g. 3% accuracy
as the threshold.

Let us now make the same comparison for RCPIMC+.
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Figure 17. Same as Fig. 16, but using RCPIMC simulations
with N = 19 particles as the starting point.

The corresponding results for N = 19 are presented in
Fig. 18. Again we observe a dramatic improvement com-
pared to the case of N = 33 in Fig. 15. Not only is the
accuracy significantly higher, also the range of accessible
rs-values is much larger. The reason is that the num-
ber of kinks increases with the particle number, and the
sign problem gets more severe for the same density and
temperature.

IV. CONCLUSIONS AND OUTLOOK

In this article we have presented two novel approxi-
mations to configuration path integral Monte Carlo that
were put forward in Ref. 80 – two variants of restricted
CPIMC (RCPIMC). The motivation was to extend the
range where QMC simulations in Fock space are possible
because CPIMC is afflicted by a heavy sign problem for
coupling parameters rs & 1. The first of the new ap-
proximations – RCPIMC – neglects three of five classes
of Monte Carlo updates and is free of the fermion sign
problem. The second approximation takes into account
four of five Monte Carlo updates, neglecting only Update
E. It has a sign problem which is reduced as compared
to full CPIMC. At the same time, RCPIMC+ is system-
atically more accurate than RCPIMC.

In order to test the accuracy of the two approximations
we performed extensive simulations for the ferromagnetic
warm dense UEG using various particle numbers, from
N = 4 to N = 33. In addition we also tested the pre-
dictions of RCPIMC and RCPIMC+ for the thermody-
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Figure 18. Same as Fig. 17 but using RCPIMC+ data for N =
19 as the starting point. Only Simulations with a statistical
error below 0.02% where used for this Plot. The open end
of the lines correspond to the points, where this criteria is
no longer met. At Θ = 0.05 simulations are possible up to
rs = 3.

namic limit by applying the accurate finite size correction
of Dornheim et al.63. Based on this analysis we con-
clude that the new approximations are indeed capable to
present reliable data for the UEG in a parameter range
that, until now was not accessible to ab initio simula-
tions: temperatures below Θ = 0.5 and densities corre-
sponding to rs & 1, as was indicated in Fig. 1. We found
that the optimal choice for the computation of macro-
scopic results is to start with simulations for the closed
shell system N = 19 and then apply the finite size correc-
tion. The results indicate that both approximations are
particularly valuable at low temperatures, in the range
of 0.05 ≤ Θ ≤ 0.5, with the accuracy increasing towards
lower temperatures. For the case N = 33 we observe
that the accuracy decreases again below Θ = 0.1. Thus,
for low temperatures, both approximations provide use-
ful data, up to rs ≈ 5, with RCPIMC+ achieving a higher
accuracy than RCPIMC with approximately 2 . . . 3 times
lower errors in the potential energy, additional results are
presented in Ref. 81.

We found that RCPIMC+ alleviates the sign problem
and, whenever simulations are possible, the results are re-
liable, deviating not more than 1 . . . 2% from the exact re-
sult for the potential energy. It can be expected that this
applies also to interaction contributions of other thermo-
dynamic functions. Since the kinetic contributions to
thermodynamic function are calculated accurately, the
total quantities such as total internal energy and to-
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tal pressure are delivered highly accurate by RCPIMC+
within its range of feasibility. We expect that this range
can be further extended by applying a kink potential, as
was done successfully for CPIMC before51,76.

RCPIMC, on the other hand, has significantly higher
errors where the deviations of the potential energy,
compared to RCPIMC+, are always negative. Since
RCPIMC has no sign problem it can, in principle, be
applied for arbitrary parameter combinations. The only
limiting factor is the size Nb of the single-particle basis
which increases both with temperature and density (and
the particle number). However, this increase is much
slower than for CI82. The loss of accuracy towards larger
coupling or/and temperature is exactly complementary
to the behavior of configuration space PIMC and also
restricted PIMC. Therefore, a promising strategy is to
combine the two methods to close (at least parts of the)
existing gaps at low temperature and intermediate cou-
pling, 1 . rs . 5. Straightforward extensions of the
present analysis with RCPIMC and RCPIMC+ include
the properties of the paramagnetic UEG and the case of
arbitrary spin polarization. Here comparison with ex-
isting ab initio data and with parametrizations4 can be
made and new data points be produced. This can serve
as valuable benchmark for other methods, e.g. for finite
systems.

Another benefit from RCPIMC is that it gives direct
access to other thermodynamic quantities that are re-
lated to derivatives of the potential or free energy where
the existing parametrizations are not accurate enough
to yield smooth results. This includes the heat capac-
ity, the compressibility and equation of state that can
be computed directly within RCPIMC. Similarly, it will
be interesting to compute pair distributions, the static
structure factor, or the momentum distribution of the
UEG in the particularly interesting region of moderate
correlations83. The same applies to dynamic quantities
such as the dynamic structure factor, and the dynamic
local field correction for which recently ab initio PIMC
results were reported by Dornheim et al.30,67. So far,
these results were obtained with standard PIMC and,
therefore, restricted to Θ & 1. The present approxima-
tions will allow one to extend the calculations to lower
temperatures.

Finally, it will be interesting to extend RCPIMC and
RCPIMC+ beyond the uniform electron gas. A par-
ticularly promising application would be many-electron
atoms where the coupling parameter is right in the range
where both approximations were found to perform very
well. The crucial question to explore is how both ap-
proximations perform when spatial homogeneity is bro-
ken and one-particle excitations (kinks involving 2 or-
bitals) have to be included into the set of Monte Carlo
updates. This has previously been explored for CPIMC
with an external oscillator potential49,74 as well as for
a harmonic perturbation75. Solving this problem would
allow for an accurate study of finite temperature effects,
including ionization potential depression and partial ion-

ization.
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