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The dynamics of strongly correlated fermions following an external excitation reveals extremely rich
collective quantum effects. Examples are fermionic atoms in optical lattices, electrons in correlated
materials, and dense quantum plasmas. Presently, the only quantum-dynamics approach that rigorously
describes these processes in two and three dimensions is the nonequilibrium Green functions (NEGF)
method. However, NEGF simulations are computationally expensive due to their T3 scaling with the
simulation duration T. Recently, T2 scaling was achieved with the generalized Kadanoff-Baym ansatz
(GKBA), for second-order Born (SOA) selfenergies, which has substantially extended the scope of NEGF
simulations. Here we demonstrate that GKBA-NEGF simulations can be performed with order T1 scaling,
both for SOA and GW selfenergies, and point out the remarkable capabilities of this approach.
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Strongly correlated fermion systems are attracting
increasing interest in many fields including dense plasmas
[1,2], warm dense matter [3,4], strongly correlated materi-
als [5,6], ultracold atoms [7,8], and atoms and molecules in
strong radiation fields [9,10]. Of particular relevance are the
relaxation phenomena that occur following an external
excitation such as a rapid change (“quench”) of the
confinement or the interaction strength, the impact of
charged particles [11,12], or the photoionization of atoms
by lasers or free-electron lasers [13,14]. Many theoretical
approaches to the dynamics of strongly correlated fermions
are limited either to one-dimensional systems (density-
matrix renormalization-group simulations, DMRG) or
short times (quantum Monte Carlo). The first quantum
simulations of the expansion of correlated fermions in two
and three dimensions were recently achieved using non-
equilibrium Green functions (NEGF) [8] and exhibited very
good agreement with experiments. The high accuracy of
NEGF simulations was also demonstrated by comparison
to DMRG [15]. However, these NEGF simulations are
hampered by an unfavorable scaling with the simulation
duration according to T3 resulting from the two-time
structure of the NEGF and the memory effects in the
collision integral (see below).
This behavior can be relieved by applying the generalized

Kadanoff-Baym ansatz (GKBA) [16,17], which reduces the
dynamics of theNEGFGðt; t0Þ to propagation along the time
diagonal t ¼ t0. It could be demonstrated that, indeed, the
expected improvement of the scaling, N3

t → N2
t (in the

followingwewill use the number of discretization time steps
Nt ¼ T=Δt), can be achieved in practice for the selfenergy in
the second-order Born approximation (SOA) [18,19] where
initial correlation effects can be treated evenmore efficiently
[20,21]. It could further be shown that this approximation, in

many cases, does not lead to a loss of accuracy [10,15,22].
For these reasons, NEGF simulations using the GKBAwith
Hartree-Fock propagators (HF-GKBA) [cf. Eqs. (6) and (7)
below] have become a powerful tool for studying the
quantum dynamics in many fields, including optically
excited semiconductors [23–25], excitonic insulators [26],
quantum transport and molecular junctions [27,28], laser-
excited plasmas [29,30] and atoms [10,13], strongly corre-
lated electrons [22], and fermionic atoms in optical lattices
[15,31]. In recent years, significant effort was devoted to
improve the GKBA, see, e.g., Refs. [17,20–22,27,32–34].
Nevertheless, the quadratic scaling with Nt still makes the
approach much less efficient than competing methods that
scale linearly with Nt, such as molecular dynamics, fluid
theory, time-dependent density-functional theory within the
adiabatic approximation, or Boltzmann-type (Markovian)
kinetic equations.
In this Letter we demonstrate that the same linear scaling

with Nt, which is the ultimate limit in time-dependent
simulations, can be achieved for NEGF simulations within
the HF-GKBA. This allows for unprecedented long sim-
ulations as well as for high-quality energy spectra that are
computed via Fourier transformation of time-dependent
quantities, see, e.g., Refs. [35–37]. We demonstrate this
efficiency gain, compared to the original HF-GKBA,
for finite Hubbard clusters and predict an even stronger
gain for a basis in which the Green function and selfenergy
are diagonal, such as for spatially homogeneous systems.
Moreover, our approach allows one to compute additional
quantities that are not directly accessible in standard NEGF
schemes, such as the time-dependent pair-distribution
function, the static and dynamic structure factor, and
various correlation functions. Finally, we prove that
linear scaling can be achieved also for more advanced
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selfenergies, such as GW, where all existing schemes scale
as N3

t .
Theory.—We consider a general many-particle system

with the Hamiltonian

HðtÞ ¼
X

ij

hijðtÞĉ†i ĉj þ
1

2

X

ijkl

wijklĉ
†
i ĉ

†
j ĉlĉk; ð1Þ

containing a single-particle contribution ĥ and a pair
interaction ŵ. The matrix elements are computed with an
orthonormal system of single-particle orbitals jii. The
creation (ĉ†i ) and annihilation (ĉi) operators of particles
in state jii define the one-body nonequilibrium Green
functions (correlation functions; here and below “�” refers
to bosons and fermions) G<

ijðt; t0Þ ¼ �ði=ℏÞhĉ†jðt0ÞĉiðtÞi
and G>

ijðt; t0Þ ¼ ði=ℏÞhĉiðtÞĉ†jðt0Þi, where the averaging is
performed with the correlated unperturbed density operator
of the system. The response of the system (1) to an external
excitation is described by the Keldysh-Kadanoff-Baym
equations (KBE) on the time diagonal [16,19] where the
Green function reduces to the single-particle density
matrix, �iℏG<

ijðt; tÞ ¼ nijðtÞ,

∂nijðtÞ
∂t −

1

iℏ

X

k

½hHFik ðtÞ; nkjðtÞ� ¼ �½I þ I†�ijðtÞ; ð2Þ

with a mean-field Hamiltonian hHF. Here I is the collision
integral that takes into account interaction effects beyond
Hartree-Fock, including scattering and dissipation, which
we will treat in leading order, i.e., within the SOA [19,38]:

IijðtÞ ¼ ðiℏÞ2
X

mnp

wimnpðtÞ
X

kqrs

Z
t

t0

dt̄ w�
qrskðt̄Þ

× ½G>
nqðt; t̄ÞG>

prðt; t̄ÞG<
smðt̄; tÞG<

kjðt̄; tÞ − ð>↔<Þ�;
ð3Þ

where we defined w�
qrsj ≡ wqrsj � wqrjs ¼ �w�

qrjs. Clearly,
the computational effort to solve Eqs. (2) and (3) scales
with the number of time steps as N2

t .
We now demonstrate that, in the HF-GKBA approxi-

mation, Eqs. (2) and (3) can be reformulated such that the
effort is reduced to N1

t scaling. First, we introduce an
auxiliary four-index function G,

IijðtÞ ¼ �iℏ
X

mnp

wimnpðtÞGnpjmðtÞ; ð4Þ

GnpjmðtÞ¼ iℏ
X

kqrs

Z
t

t0

dt̄w�
qrskðt̄Þ

× ½G>
nqðt; t̄ÞG>

prðt; t̄ÞG<
sjðt̄;tÞG<

kmðt̄;tÞ−ð>↔<Þ�;
ð5Þ

where the replacement k ↔ s is used to match Eq. (3).
Comparing Eq. (4) with the first equation of the Martin-
Schwinger hierarchy for the many-particle Green functions
[39] reveals that GðtÞ is nothing but the time-diagonal
element of the two-particle Green function, and Eq. (5) is
its explicit form in the second-Born approximation [40].
Next, we introduce the GKBA [16,19] (summation over k is
implied)

G≷
ijðt; t0Þ ¼ �GR

ikðt; t0Þn≷kjðt0Þ ∓ n≷ikðtÞGA
kjðt; t0Þ; ð6Þ

GR=Aðt; t0Þ ¼ Θ½þ= − ðt − t0Þ�fG≷ðt; t0Þ −G≶ðt; t0Þg;
n<ijðtÞ ¼ nijðtÞ; n>ijðtÞ ¼ nijðtÞ − δij; ð7Þ

with Hartree-Fock propagators (HF-GKBA), GR=A →
GR=A;HF and apply it to each Green function in Eq. (5):

GGKBA
npjm ðtÞ ¼ iℏ

X

abcdkqrs

Z
t

t0

dt̄ w�
qrskðt̄Þ

× Uð2Þ
npabðt; t̄ÞΦabsk

qrcdðt̄ÞUð2Þ
cdjmðt̄; tÞ: ð8Þ

Here we introduced the abbreviations

Φabsk
qrcdðtÞ ¼ Φabsk>

qrcd ðtÞ −Φabsk<
qrcd ðtÞ;

Φabsk≷
qrcd ðtÞ ¼ n≷qaðtÞn≷rbðtÞn≶csðtÞn≶dkðtÞ; ð9Þ

and the two-particle time-evolution operator Uð2Þ is given in
the Supplemental Material [41].
Finally, we remove the time integral in Eq. (8) by

differentiating with respect to time which yields

iℏ
d
dt

GGKBA
npjm ðtÞ − ½hð2ÞHF;GGKBA�npjmðtÞ

¼ 1

ðiℏÞ2
X

kqrs

w�
qrskðtÞΦnpsk

qrjmðtÞ; ð10Þ

where hð2ÞHFijkl ðtÞ ¼ δjlhHFik ðtÞ þ δikhHFjl ðtÞ. With this we have
shown that NEGF theory within the HF-GKBA can be
brought to a memory-less form (10) which, indeed, changes
the scaling from quadratic to linear with Nt. This was
achieved by introducing the two-particle Green function on
the time diagonal G and by solving coupled time-local
equations for Gðt; tÞ and GðtÞ. We, therefore, will refer to
this as the “G1–G2” scheme. In fact, the one-to-one
correspondence of NEGF theory within the HF-GKBA
to time-local equations has been observed before [18,42].
In Ref. [42] it was also shown how to include arbitrary
initial correlations, by supplementing Eq. (10) with an
initial value, GGKBAðt0Þ ¼ G0. In Eq. (8) this gives rise to an
additional homogeneous solution that leads to an additional
collision integral in the time-diagonal KBE (2), in agree-
ment with recent results [20,21].
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In the following we analyze the G1–G2 scheme more in
detail. One readily confirms that the CPU time required to
solve Eq. (10), for a general basis of dimension Nb, scales
as OðN5

bN
1
t Þ [43]. In contrast, the original HF-GKBA

scales as OðN5
bN

2
t Þ and, thus a dramatic speedup is

expected, for any Nb [45]. At the same time, for many
practical applications optimized basis sets are being used
for which the scaling of both schemes has to be established
separately. We, therefore, consider below two representa-
tive examples—theHubbard basis and the uniform electron
gas. The scaling for all three cases is summarized in Table I.
Hubbard basis.—The (Fermi-)Hubbard model is a key

system in the theory of strongly correlated electrons in
solids, see, e.g., Refs. [46,47], and it is being directly
realized with fermionic atoms in optical lattices, see, e.g.,
Refs. [7,48,49]. It is defined by the Hubbard Hamiltonian

ĤðtÞ ¼ −J
X

hi;ji

X

α

ĉ†iαĉjα þ UðtÞ
X

i

n̂↑i n̂
↓
i ; ð11Þ

which includes hopping processes between nearest-neigh-
bor sites hi; ji with amplitude J and an on-site interaction
U, and α labels the spin projection. The integral (4) reads,

I↑ð↓Þij ðtÞ ¼ −iℏUðtÞG↑ð↓Þ
iiji ðtÞ, and the equation of motion

(10) for G simplifies to [50]

iℏ
d
dt
G↑ð↓Þ
npjmðtÞ− ½hð2ÞHF↑ð↓Þ ;G

↑ð↓Þ�
npjm

ðtÞ¼ðiℏÞ2
X

k

UðtÞ

× ½G↑ð↓Þ>
nk ðt;tÞG↓ð↑Þ>

pk ðt;tÞG↑ð↓Þ<
kj ðt;tÞG↓ð↑Þ<

km ðt;tÞ−>↔<�:

The numerical effort to solve this equation scales as
OðN5

bN
1
t Þ, whereas the original HF-GKBA solution scales

as OðN3
bN

2
t Þ, cf. Table I. It turns out that, for the Hubbard

model, the new scheme exhibits the most unfavorable
scaling with Nb, as compared to the standard scheme
and will become advantageous only for sufficiently large
Nt. For this reason we choose this case for numerical tests.
In Fig. 1 we study the dynamics of a small Hubbard cluster
and find excellent agreement between both schemes for all
observables, which is demonstrated for the density on site
one in Figs. 1(a) and 1(b). An even more sensitive accuracy

test is the conservation of total energy. Here, the G1–G2
scheme turns out to be even more accurate than the standard
HF-GKBA scheme if both use the same time step Δt,
cf. Fig. 1(c). We now compare in Fig. 2 the CPU time
required by both schemes for Hubbard systems with Nb¼2
and Nb ¼ 10. Our results clearly confirm the quadratic
(linear) scaling with Nt of the original HF-GKBA (G1–G2)
scheme as well as the predicted scaling with Nb: when
going from Nb ¼ 2 to Nb ¼ 10, “break even” is achieved
for Nt approximately ð10=2Þ2 ¼ 25 times larger, for SOA
selfenergies.
The uniform electron gas [(UEG), jellium] is a key

model for many-body physics, plasma, and condensed-
matter physics allowing one to describe important features

(a)

(c)(b)

FIG. 1. Comparisonof thenumerical accuracyof theordinaryHF-
GKBA and the G1–G2 scheme with SOA selfenergies, for a four-
site Hubbard chain with U=J ¼ 1.5, excited by a rapid potential
change of amplitude w0 ¼ 0.1J at site one. (a) Density evolution
at the first lattice site, n1ðtÞ. (b) Density difference between
both methods, Δn1ðtÞ ¼ nG1–G21 ðtÞ − nordinary1 ðtÞ. (c) Deviation
from total-energy conservation for two time steps. Both NEGF
implementations are based on a fourth-order integration scheme
with the same time step with the initial state being prepared via
adiabatic switching [22,31].

TABLE I. Scaling of the CPU time with the number of time
steps Nt and basis dimension Nb of the traditional non-Marko-
vian HF-GKBA and the present time-local scheme (G1–G2), for
three relevant basis sets, for SOA and GW selfenergies.

Basis and pair
potential

SOA GW

Old G1–G2 Old G1–G2
General: wijkl OðN5

bN
2
t Þ OðN5

bN
1
t Þ OðN6

bN
3
t Þ OðN6

bN
1
t Þ

Hubbard: U OðN3
bN

2
t Þ OðN5

bN
1
t Þ OðN3

bN
3
t Þ OðN5

bN
1
t Þ

Jellium: vjqj OðN3
bN

2
t Þ OðN3

bN
1
t Þ OðN3

bN
3
t Þ OðN3

bN
1
t Þ

FIG. 2. Log-log comparison of the computational effort of the
ordinary HF-GKBA (dashes) and the G1–G2 scheme (full lines)
for Hubbard clusters as a function of propagation time Nt. Colors
denote system size and the selfenergy approximation.
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of the laser-driven nonequilibrium dynamics of electrons
in metals [51], warm dense matter [4], and quantum
plasmas [2,29], as well as of electron-hole plasmas
in semiconductors; see, e.g., Refs. [25,52–54]. Because
of homogeneity, a momentum (plain-wave) basis is
advantageous where the Green function becomes diagonal:
Gpqðt;t0Þ≔δpqGpðt;t0Þ, for momenta p, q. The Hamiltonian
of the UEG in second quantization reads [3]

ĤðtÞ ¼
X

pα

p2

2m
ĉ†pαĉpα þ

X

pp0qαβ

vjqjĉ
†
pþqαĉ

†
p0−qβĉp0βĉpα;

with the Coulomb matrix element vjqj ¼ ð4πe2=jqj2Þ. The
integral (4) becomes Ip;σðtÞ ¼ �iℏ

P
p̄;q;α vjqjðtÞGσα

pp̄qðtÞ,
whereas the two-particle Green’s function G obeys

iℏ
d
dt
Gσα
pp̄qðtÞ−Gσα

pp̄qðtÞðhHFp−q;σ þhHFp̄þq;α−hHFp;σ −hHFp̄;αÞ
¼ ðiℏÞ2fvjqjðtÞ� δσ;αvjp−q−p̄jðtÞg
× ½G>

p−q;σðt; tÞG>
p̄þq;αðt; tÞG<

p;σðt; tÞG<
p̄;αðt; tÞ− ð>↔<Þ�:

ð12Þ

Interestingly, Eq. (12) scales as OðN3
bN

1
t Þ vs OðN3

bN
2
t Þ,

for the standard HF-GKBA, cf. Table I, and the G1–G2
scheme brings about a dramatic acceleration, independent
of basis size.
Spectra and two-particle observables.—In addition to

accelerating the time evolution, the G1–G2 scheme gives
also access to more accurate spectral information. While
within the HF-GKBA spectral functions are treated on the
Hartree-Fock level, correlation effects in energy spectra can
be recovered by investigating the temporal response of the
system to a short weak external excitation (linear response),
see, e.g., Refs. [35–37]. This is demonstrated in Fig. 3
where the energy spectrum is retrieved via Fourier trans-
form of the density evolution in a Hubbard system. Here the
long propagation time enabled by the G1–G2 scheme
allows us to resolve correlation effects in the spectra, in
particular broadening and shift of peaks as well as the
emergence of new states at high energies.
Furthermore, the G1–G2 scheme allows one to compute

several quantities that are difficult or even impossible
to access within standard NEGF schemes. This includes
the nonequilibrium pair-distribution function (PDF)
gðr1; σ1; r2; σ2; tÞ and its Fourier transform—the static
structure factor. Moreover, dynamic quantities, such as
the density- and spin-correlation functions or velocity-
autocorrelation functions and the related transport
coefficients—the dynamic structure factor, diffusion and
absorption coefficients, and the dynamical conductivity
within and beyond linear response—are becoming directly
accessible. In Fig. 4, we show, as an example, the time
evolution of the pair-correlation function (PCF, i.e., the

correlated part or the PDF) relative to site 1, δgi↑;1↓ ¼
gi↑;1↓ − ni↑n1↓, for a 20-site Hubbard system after an
interaction quench, U=J ¼ 0 → 2. Initially the system is
ideal, corresponding to δg≡ 0, and correlations emerge
rapidly and spread with constant speed throughout the
system. Changing U does not affect this speed, but the
amplitude of the distance-dependent oscillations is propor-
tional to U.
Extension to advanced selfenergies.—Finally, we test the

G1–G2 scheme for the HF-GKBA with GW selfenergies
which are known to be significantly more accurate than
SOA, in particular, at stronger coupling [38,44]. At the
same time existing GW simulations out of equilibrium
scale as N3

t . Remarkably, we observe that the present G1–
G2 scheme achieves order N1

t scaling, as is summarized for

FIG. 3. Excitation spectrum of a 12-site Hubbard chain for
three coupling strengths U due to a rapid potential change of
amplitude w0 ¼ 0.01J at site one. The spectrum is obtained via
Fourier transform of the density n1ðtÞ computed with the G1–G2
scheme up to T ¼ 600ℏ=J. The initial state is prepared using
adiabatic switching.

FIG. 4. Time evolution of the PCF relative to site 1, δgi↑;1↓ðtÞ,
for a spatially homogeneous spin-symmetric 20-site Hubbard
chain following an interaction quench U=J ¼ 0 → 2 at t ¼ 0.
Sign-alternating correlations emerge rapidly and approach the
correlated ground state (GS). Inset shows δgGSi↑;j↓, for U=J ¼ 2,
computed via adiabatic switching. The dashed line corresponds to
data in the main figure.
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different basis sets in Table I (details are given in Ref. [41],
and similar results are observed for T-matrix selfenergies).
The huge computational advantage brought about by G1–
G2-GW simulations becomes evident also in Fig. 2; even
for Hubbard systems the G1–G2 scheme is advantageous,
except for very short simulations. This indicates that a large
class of problems is now becoming accessible for accurate
NEGF simulations that had remained out of reach so far.
Summary and discussion.—We have implemented an

alternative approach to NEGF simulations within the HF-
GKBA that is memory-free and achieves the ultimate limit
of linear scaling with the propagation duration T, as
opposed to the common HF-GKBA approach with SOA
(GW) selfenergies that is of order T2 (T3). This is achieved
by solving coupled time-local equations for Gðt; tÞ and the
time-diagonal two-particle Green function GðtÞ. With this
G1–G2 scheme we also established a direct link to the
independent reduced-density-matrix (RDM) approach that
has become popular in recent years in many fields, see, e.g.,
Refs. [42,55–60]. Applying our derivation allows one to
identify those RDM approximations that are equivalent
to common selfenergies in NEGF theory what enables one
to make use of the full power of Feynman diagrams in
RDM theory. We expect that the demonstrated astonishing
scaling of the G1–G2 scheme will make highly accurate
NEGF simulations of many nonequilibrium processes such
as in laser-excited correlated systems achievable.
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