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Thermodynamic and transport coefficients from the dynamic structure factor of Yukawa liquids
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The ion-ion dynamic structure factor (DSF) of warm dense matter and dense plasmas contains information
on collective ionic modes and various thermodynamic and transport coefficients, which are important for
modeling the interiors of giant planets or the dense plasmas occurring in inertial confinement fusion. Here, it
is demonstrated, using the Yukawa liquid as a reduced model, that the complete hydrodynamic information
encoded in the DSF can be extracted with an accuracy comparable to that of dedicated methods. This is achieved
by applying a generalized hydrodynamic and a viscoelastic model and extrapolating the results at finite wave
numbers into the hydrodynamic limit. Very good agreement with previous data is obtained for the sound speed
and the viscosity. The thermal diffusivities deduced from different methods exhibit somewhat larger deviations.
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I. INTRODUCTION

Warm dense matter (WDM) is an unusual state of matter—
between a solid and a fully ionized plasma—with solid densi-
ties, megabar pressures, and temperatures in the eV range [1].
At keV temperatures, one enters the regime of a hot dense
plasma [2]. Matter at such extreme conditions is character-
ized by partial ionization, moderately coupled and partially
degenerate electrons, and strongly coupled classical ions. The
thermodynamic and transport properties of WDM and dense
plasmas are of high importance for a variety of fields, includ-
ing planetary science [3–5] and astrophysics [6,7], and for the
advancement of inertial confinement fusion concepts [8–10].

Various methods have been devised for the creation and
diagnostic of these exotic states [11]. In particular, x-ray scat-
tering provides detailed insights into their properties [12–17].
The analysis of collective modes of the electrons [18], e.g.,
gives access to the electron density and temperature [19,20],
and the electrical conductivity [21]. A significant step forward
can be expected from the LCLS at Stanford [22] or the
European XFEL [23]. In particular, it should become possible
to diagnose collective modes of the ions [24], which carry
information on fundamental material properties such as the
viscosity but are very difficult to resolve. Within the Chihara
decomposition [25] of the total electron dynamic structure
factor, which determines the scattering signal [13], they mani-
fest themselves in the ion-ion dynamic structure factor (DSF).

In recent years, significant efforts have been made to
compute the ion-ion DSF from ab initio simulations [26],
combining a classical description of the ions with a quantum
treatment of the electrons [27–31]. The computational cost
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can be reduced by employing effective ion-ion pair poten-
tials [32–34]. Several theoretical models have been proposed
to describe the DSF in dense plasmas and WDM. Mithen
et al. [35] have used the hydrodynamic result to model
the DSF of a strongly coupled Yukawa liquid and later ex-
tended their investigations via the memory function formal-
ism [36,37]. Vorberger et al. [38] performed a comparison of
various models [35,39–41] for the DSF of shocked Silicon,
computed from simulations with a modified Yukawa potential.
Recently, Choi et al. [42] performed a similar comparison
for Coulomb and Yukawa liquids. Arkhipov et al. [43] used
the moments method to investigate the DSF of Coulomb and
Yukawa one-component plasmas.

Rather than attempting to reproduce the DSF with as
few free parameters as possible, a different goal is pursued
in this work. In the hydrodynamic limit, the DSF contains
information on the fundamental thermodynamic and trans-
port properties of a liquid [44–46]. Here, it is demonstrated
that this can be exploited to extract various hydrodynamic
properties of strongly coupled Yukawa liquids solely from
the DSF. The Yukawa model is chosen for two reasons.
First, it has been used as a simplified model for a reduced
description of WDM and dense plasmas [2,34,47]. For a
direct comparison with experimental or ab initio simulation
data, a short-ranged repulsive potential can be added to the
Yukawa potential to capture effects related to bound electrons
and to better match the ion structural properties [20,38,48].
Second, and more importantly, a large amount of accurate data
are available for the thermodynamic [49–51] and transport
properties [52–56], which will be used to demonstrate the
feasibility of the method. The methodology could provide a
practical means for the determination of hydrodynamic coeffi-
cients (e.g., viscosity) from experimental and simulation data
for the ion-ion DSF of WDM and dense plasmas, which are of
high importance for simulations of inertial confinement fusion
implosions or the modeling of planetary interiors. Since the
Yukawa liquid is a very general model system, the results
could also be relevant to ultracold neutral plasmas [57], dusty
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(complex) plasmas [58], or colloidal dispersions [59]. In the
latter two cases, however, frictional damping is important.

The analysis of Mithen et al. [35] has shown that the
Rayleigh-Brillouin triplet [44,46] accurately describes the
DSF of Yukawa liquids at small wave numbers k. It consists of
a central Lorentzian line, representing a diffusive heat mode,
and two shifted Lorentzians, representing propagating sound
modes. The hydrodynamic parameters determine their widths
and intensities. When fitted to the DSF at a single wave
number [35,37], the model gave hydrodynamics coefficients
that were in reasonable agreement with the available data
at the time. In this work, the DSF is analyzed using two
extensions of the hydrodynamic model. In the generalized
hydrodynamic (GH) model [60], the frequency dependence
of the hydrodynamic DSF is left unchanged but the peak
intensities and widths can have an arbitrary k dependence. The
viscoelastic (VE) model extends hydrodynamics to finite fre-
quencies by introducing the concept of viscoelasticity. Here,
the DSF contains an additional central Lorentzian peak, which
vanishes in the hydrodynamic limit [60]. By (i) fitting the
model parameters to simulation data and (ii) extrapolating the
results to k → 0 (similar to recent work by Guarini et al. [61]
and Silvestri et al. [62]), the complete thermodynamic and
transport properties contained in the DSF are obtained, with
an accuracy comparable to dedicated other methods [52–56].
The VE model allows one to go beyond a purely hydro-
dynamic description and yields results for the viscoelastic
properties.

This paper is organized as follows. A brief description of
the simulation method is given in Sec. II. The two models
used for the DSF and their relation to the hydrodynamic
limit are introduced in Sec. III. Results for the DSF and
the hydrodynamic parameters are presented and discussed in
Sec. IV. Section V provides a brief summary and outlook.

II. SIMULATIONS

Molecular dynamics (MD) simulations are carried out for
particles of mass m interacting via the Yukawa potential,
v(r) = q2 exp(−r/λs)/r, where q is the particle charge and
λs the screening length. The screening parameter, κ = a/λs,
where a = (3/4πn)1/3 is the Wigner-Seitz radius and n the
particle density, is chosen as κ = 2. The reason is that a
large body of data for the transport coefficients are avail-
able [52–56]. The values for the coupling parameter, � =
q2/(a kBT ), where T is the temperature, are in the range
� = 10, . . . , 200, covering a wide range of conditions – from
a moderately coupled system at �/�m ≈ 0.02 up to a strongly
coupled liquid at �/�m ≈ 0.5, where �m ≈ 440 is the melting
point [49]. Two sets of simulations were carried out using
N = 3800 and N = 5000 particles, which gives access to
wave numbers with ka � 0.23.1 The dynamic structure fac-
tor, which is defined in terms of the intermediate scattering
function, F (k, t ) = N−1〈nk(t )n−k(0)〉, as

S(k, ω) = 1

2π

∫ ∞

−∞
F (k, t )eiωt dt, (1)

1Data for N = 3800 at � = 10 and � = 200 from Ref. [63] are used
again for the present analysis.

is computed from the Fourier transform of nk(t ) =∑N
i=1 e−ik·ri (t ) [63].

III. THEORY

As discussed above, the hydrodynamic result for the DSF
can be written as the sum of a central Lorentzian (will be re-
ferred to as “heat mode“) and two shifted Lorentzians (“sound
modes“) [44,46]. Compared to some of the previous applica-
tions in the field of WDM [32,35,38,64], the asymmetry of
the latter [45] is taken into account, which leads to a finite
second frequency moment [60]. Following Bafile et al. [60],
the generalized hydrodynamics (GH) model is written as

π SGH(k, ω)

S(k)
= Ih zh

ω2 + z2
h

+ Is

∑
m=±1

zs + m bs(ω + m ωs)

(ω + m ωs)2 + z2
s

,

(2)

where S(k) is the static structure factor, Ih [Is = (1 − Ih)/2]
denotes the intensity of the heat (sound) peak and zh (zs) its
width. The parameter bs = ω−1

s [zs + zh Ih/(1 − Ih)] describes
the asymmetry of the sound peaks. In the hydrodynamic limit,
the parameters are given by, to lowest order in k, zh = DTk2,
zs = �s k2 = [(γ − 1)DT + νl]k2/2, Ih = 1 − γ −1, and ωs =
cs k. Here, DT is the thermal diffusivity, �s the sound attenu-
ation coefficient, γ = cp/cv the adiabatic index (with specific
heats at constant pressure and volume, cp and cv, respectively),
νl = (4 ηs/3 + ηb)/(nm) the longitudinal kinematic viscosity
(with the shear viscosity ηs and the bulk viscosity ηb), and cs

the adiabatic sound speed [45,60].
The VE model is typically formulated in the framework of

the memory function formalism [44–46], where the instanta-
neous decay of the viscous term in the hydrodynamic model is
replaced by an exponential decay [60]. It has been shown [60]
that it can be expressed, at small k, in the same form as the
GH model but with an additional central Lorentzian (intensity
I2, width z2),

π SVE(k, ω)

S(k)
= Ih zh

ω2 + z2
h

+ I2 z2

ω2 + z2
2

+ Is

∑
m=±1

zs + m bs(ω + m ωs)

(ω + m ωs)2 + z2
s

, (3)

where now bs = ω−1
s [zs + (Ihzh + I2z2)/(1 − Ih − I2)] and

Is = (1 − Ih − I2)/2. The intensity I2 can be written in terms
of zh, zs, z2, ωs, and Ih as

I2 = z2
s + ω2

s

(z2 − zs)2 + ω2
s

zh

zh − z2

[
1 − α

z2(2 zs + zh)

zh(2 zs + z2)

]
, (4)

α = 1 − Ih
(zh − zs)2 + ω2

s

z2
s + ω2

s

(
z2 − zh

z2

)
. (5)

In the limit k → 0, I2 should vanish as I2 ∝ k4 while the width
z2 should turn into a constant, z2 → 1/τ , to be consistent
with the hydrodynamic limit. Here, τ is the k → 0 limit of
the viscoelastic relaxation time. Theory shows that for con-
sistency with hydrodynamics, τ is given by τ = νl/(c2

L − c2
s ),

where cL is the k = 0 limit of the infinite-frequency (longitu-
dinal) sound speed [60]. A liquid shows elastic response for
frequencies ω � τ−1 while viscous behavior is found at low
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FIG. 1. Comparison of the GH fit with the MD data for � = 10
(black, circles) and � = 50 (red, triangles). The wave number is ka =
0.23 in (a) and (c) and ka = 0.68 in (b) and (d). The contribution of
the heat (sound) mode is shown by the dashed (dashed-dotted) line.
For a better presentation, the data for � = 10 in (c) and (d) have been
multiplied by a factor 1/3.

frequencies, ω 	 τ−1. The widths and intensities of the heat
and sound peak have the same limits as above. Compared to
the GH model, the VE model has a finite fourth moment [60].
Both models can be considered few-term approximations of
an exact expansion of the DSF in a series of Lorentzian
functions [65]. The parameters of the memory function can
be reconstructed from the above parameters, if necessary.
In particular, Bafile et al. [60] provide explicit formulas for
ω2

k (k) = 〈ω2〉/S(k) and ω2
L(k) = 〈ω4〉/〈ω2〉 (only VE), where

〈ωk〉 are the frequency moments of the DSF.
A least-squares fit is used to determine the widths

zh, zs, z2, the frequency of the sound mode, ωs, and the
intensity Ih. In addition, the static structure factor is used as
a fit parameter. All other parameters follow from the model.
Since the DSF decays very rapidly at high frequencies [42,66],
the fit region for Eq. (2) is restricted to the central peak and

the main body of the sound peak [ω � ωs(k) + zs(k)]. The
VE model is applicable at higher frequencies, and a larger fit
range has been chosen, ω < 0.4 ωp, where ωp =

√
4πq2n/m

is the plasma frequency.

IV. RESULTS

A. Dynamic structure factor

A comparison between the simulation data and the GH fit
is shown in Fig. 1.2 While the model provides a very good fit
function for the low-frequency part, the DSF decays faster at
high frequencies. Also shown are the individual contributions
of the heat and sound peaks from Eq. (2). At ka = 0.23, the
central peak is almost fully reproduced by the heat mode while
at ka = 0.68 the sound mode makes an important contribution
at ω = 0. A similar comparison is shown in Fig. 2 for the VE
model. One observes that the VE model accurately describes
the decay of the DSF immediately following the sound peak.
Figure 2(d) shows the intensities of the various peaks. The
intensity of the second central peak, I2, is consistent with a
k4 decay in the k → 0 limit, as anticipated from theoretical
considerations [60] and discussed above.

B. Fit parameters and extrapolation

The fit parameters are shown in Fig. 3. Their k → 0 limits
yield values for (a) the sound speed, (c) the sound attenuation
coefficient, (d) the inverse of the viscoelastic relaxation time,
and (e) the thermal diffusivity. Figure 3(b) shows Ih/(2 Is),
which reduces to the Landau-Placzek ratio, Ih/(2 Is) → γ −
1, in the hydrodynamic limit [46]. The hydrodynamic scaling,
ωs → csk, zs → �sk2, and zh → DTk2, has been removed.
For the isotropic liquid, a simple polynomial ansatz with
even powers of k̄ = ka, f (k̄) = c0 + c2 k̄2 + c4 k̄4, is used
for the estimation of the hydrodynamic coefficient, c0. In
some cases, a simple average over the first few values has
been employed instead. In particular for intermediate coupling
strengths, 30 � � � 70, the hydrodynamic scaling is excel-
lent, and the remaining dependence on k is typically weak, see

2Note that the number of data points has been reduced for a better
presentation.

FIG. 2. [(a)–(c)] Comparison of the VE model (full line) with the MD data (circles) for � = 100. Also shown are the contributions of
the heat mode (dashed line), the sound mode (dashed-dotted), and the second central line (dotted). (d) shows their respective intensities. The
dashed line indicates a ∝k4 behavior.
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FIG. 3. Fit parameters obtained from the GH and VE model. The
parameters in (a), (c), and (e) have been scaled by inverse powers of
k̄ = ka such that they reduce to constant values (the hydrodynamic
coefficients) in the k̄ → 0 limit. All frequencies are given in units
of the plasma frequency, denoted by a bar. Dashed lines show the
fits used for the extrapolation. They are shown in their respective fit
range. Data in (e) for � = 20 have been shifted for clarity.

� = 50. The thermal diffusivity is the most difficult quantity
to determine (e.g., � = 10 and 200), which is possibly related
to the smallness of the central peak, in particular at strong
coupling. Interestingly, the sound dispersion, ωs(k), appears
to change from negative to positive for � � 10 and � � 200.
However, larger simulations would be required to confirm this
behavior.

C. Thermodynamic and transport data

The thermodynamic coefficients obtained from the extrap-
olation are shown in Fig. 4. For comparison, recent data
for the sound speed by Silvestri et al. [62] and data ob-
tained from fits for the internal energy of a single-component
Yukawa fluid (without background terms) from Khrapak and
Thomas [50,51] are included. Note that the sound speed and
the adiabatic index are related by c2

s = γ /(n m χT), where χT

is the isothermal compressibility [44,46]. Excellent agreement
is found between all data sets for the sound speed (deviations
� 1%). The adiabatic index from the present analysis is
slightly smaller than the analytical result for � � 20. For
larger �, the agreement is very good.

FIG. 4. (a) Sound speed and (b) adiabatic index as obtained from
the GH and VE models. The sound speed and adiabatic index ob-
tained from the internal energy of Khrapak and Thomas (KT) [50,51]
and the MD results of Silvestri et al. [62] are shown for comparison.

Figure 5 depicts the results for the transport coefficients.
Recent data for the thermal diffusivity DT are available
from the work of Ott et al. [56]. In addition, DT can be
computed from the thermal conductivity λ and cp via DT =
λ/(n cp) [45,60]. While results for λ are available from
Refs. [52,55], cp is calculated from the fits of Refs. [50,51].
The results for DT obtained in the present work are in
very good agreement with the corresponding values of Ott
et al. (OBHD) [56], albeit slightly lower (≈5%–10%). Good
agreement is also observed when the nonequilibrium results
for λ of Donkó and Hartmann [52] are used (DH-KT). The
Green-Kubo data of Ott et al. (OBD-KT) [55] yield somewhat
larger values (roughly 10%−20%, 25% larger than GH at
� = 70), as noted previously [56]. The longitudinal viscosity,
νl = 2 �s − (γ − 1)DT, is shown in Fig. 5(b). The mutual
agreement between data in the literature [53,54] and the
present results is very good, with particularly small deviations
in the range � ≈ 30, . . . , 100. The GH and VE model yield
almost identical results and even allow one to determine
the famous viscosity minimum. The interpolation formula of
Khrapak [67] provides an accurate analytical expression for
the viscosity.

D. Relaxation time and infinite-frequency sound speeds

Figure 3(d) shows that the inverse relaxation time, τ−1 =
limk→0 z2(k), decreases with the coupling strength, i.e., the
transition from viscous to elastic response takes place at
increasingly lower frequencies. Using the previous data for
νL, cs, and τ in the relation τ = νl/(c2

L − c2
s ) (see Sec. III), one

may compute a value for cL, which can be compared with the
theoretical value. The latter is related to the high-frequency
shear (G∞) and bulk (K∞) elastic moduli and the k → 0 limit
of ω2

L(k) = 〈ω4〉/〈ω2〉 [45,60],

c2
L = 1

m n

(
4

3
G∞ + K∞

)
= lim

k→0

ω2
L(k)

k2
. (6)
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FIG. 5. (a) Thermal diffusivity and (b) longitudinal viscosity
from the GH and VE models, shown with 5% error bars for a better
assessment of the deviations. Results for the thermal conductivity
of Donkó and Hartmann (DH-KT) [52] and Ott, Bonitz, and Donkó
(OBD-KT) [55] have been used to calculate DT via DT = λ/(n cp),
see the text for details. Also shown are the results for DT from
Ref. [56] (OBHD). The shear viscosities of Donkó and Hartmann
(DH) [53] and Daligault, Rasmussen and Baalrud (DRB) [54], and
the interpolation formula of Khrapak [67] have been used to compute
the longitudinal viscosity from νl ≈ 4 ηs/(3 n m). The bulk viscosity
is negligible [68] and has been neglected.

The elastic moduli have been calculated as specific integrals
over the pair distribution function involving derivatives of the
Yukawa potential [45,69],

G∞ = nkBT + 2π n2

15

∫ ∞

0
g(r)

d

dr
[v′(r)r4]dr, (7)

K∞ = 5

3
G∞ + 2(p − nkBT ), (8)

p = nkBT − 2π n2

3

∫ ∞

0
g(r)v′(r)r3dr. (9)

Here, p is the pressure and g(r) the pair distribution function.
The results are shown in Fig. 6. Figure 6(a) shows that

the calculation of cL from the extrapolation of the various
fit parameters is consistent with the k → 0 limit of ωL(k)/k,
using the provided formula in Ref. [60]. The same applies
to the data taken directly from the moments of the DSF

FIG. 6. (a) The ratio ωL(k)/k as obtained from the moments of
the DSF and the VE fit (see text) for � = 100. The filled symbols
at k = 0 show a calculation of cL via the elastic moduli [Eq. (6),
triangle] and from the relation c2

L = c2
s + νL/τ with the extrapolated

fit parameters (circle). These values are shown in (b) as a function of
the coupling strength. Also depicted are the adiabatic sound speed cs

from the VE model and the infinite-frequency sound speed c∞.

and the calculation of cL via the pair distribution function.
However, there is a shift between these data, mainly caused
by an overestimation of the fourth moment in the VE model.3

This could be related to the very fast decay of the DSF in
the high-frequency limit (see also Ref. [42]), which becomes
increasingly important for the high-order moments. The re-
sulting deviations for cL are on the order of a few percent
and decrease with the coupling strength, see Fig. 6(b). Even
though the deviations from the theoretical value are rather

3Similarly, the GH model overestimates the second moment.

FIG. 7. Relaxation times as a function of �. Shown are calcula-
tions of τ and τM via Eq. (10) (theory), where the shear viscosity
has been taken from the interpolation formula of Khrapak [67] (bulk
viscosity neglected for τ ) and the VE value for cs has been used.
Elastic moduli have been calculated via the pair distribution function.
Also shown are the VE value for τ from the extrapolation and the
inverse crossover frequency of the complex shear viscosity computed
by Goree, Donkó, and Hartmann (GDH) [72].
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TABLE I. Adiabatic sound speed, thermal diffusivity, and longitudinal viscosity from the GH and VE models (κ = 2).

cs/(ωp a) DT/(ωp a2) νL/(ωp a2)

� GH VE GH VE GH VE

10 0.483 0.292 0.175
20 0.442 0.189 0.101
30 0.426 0.161 0.0834
50 0.412 0.411 0.149 0.162 0.0769 0.0720
70 0.405 0.404 0.148 0.155 0.0785 0.0755
100 0.399 0.399 0.154 0.159 0.0871 0.0848
200 0.392 0.184 0.119

small, they can significantly affect τ as cL and cs are of
the same order [see Fig. 6(b)] and τ ∝ (c2

L − c2
s )−1, see the

discussion below.
A related quantity is the infinite-frequency sound

speed c∞ = √
K∞/(mn) [70,71], which involves the (high-

frequency) bulk modulus only. Note that in the present case,
the kinetic terms ∼nkBT are included in the calculation of
the elastic moduli. As shown in Fig. 6(b), c∞ is in excellent
agreement with the adiabatic sound speed cs, in line with
previous results for Yukawa [70] and soft inverse power-law
interactions [71]. Using the approximations cs ≈ c∞ and νl ≈
4 ηs/(3nm) (neglecting the bulk viscosity), and making use
of the relation c2

L = c2
∞ + 4 G∞/(3 nm), one obtains, for the

theoretical value of the relaxation time,

τ = νl

c2
L − c2

s

≈ ηs

G∞
= τM. (10)

Here, τM is the Maxwell relaxation time [45,72], which de-
scribes shear relaxation in a liquid. As shown in Fig. 7, the
theoretical value for τ practically coincides with τM. As could
be anticipated from the discussion above, the VE value for
τ is somewhat lower, in particular at intermediate coupling
strengths. On the other hand, it is in rather good agreement
with the inverse crossover frequency of the real and complex
parts of the generalized shear viscosity determined by Goree
et al. [72], which was used as an empirical measure of τM. A
more detailed investigation of these aspects would be required
but is beyond the scope of this work.

E. Discussion

In summary, the analysis of the DSF at small frequencies
and wave numbers can yield comprehensive insights into
the hydrodynamic properties of Yukawa liquids. Compared
to other approaches such as nonequilibrium or Green-Kubo
methods, which typically only yield one particular transport
coefficient, the method used here allows one to estimate
several coefficients at the same time. On the other hand,
it relies (i) on a specific model for the DSF and (ii) an
extrapolation scheme, which must be sufficiently accurate
to avoid systematic errors. Comparisons with a variety of
available data sets show that the deviations from the results of
other methods are relatively small, in particular for the sound
speed (�1%) and the viscosity (∼5%–10%). The largest
deviations among different methods are found for the thermal
diffusivity, which requires further investigation. For reference,

the adiabatic sound speed and the transport coefficients are
summarized in Table I.

V. CONCLUSION

It has been demonstrated that fundamental thermodynamic
and transport properties of Yukawa liquids can be obtained
with high accuracy from an analysis of the DSF. The VE
model even allows one to quantify viscoelasticity in the
strongly coupled liquid regime, giving access to properties
beyond a purely hydrodynamic description. It remains to test
the applicability of the method for a wider range of screening
and coupling parameters. The analysis of Mithen et al. [35]
suggests that it could be easier to apply the method at stronger
screening, where the applicability range of the hydrodynamic
model becomes larger. On the other hand, in the very weakly
coupled limit, it has recently been shown [62] that the acoustic
peak disappears below a critical �, rendering the applicability
of the hydrodynamic approach doubtful in this regime. Note
that other extensions of hydrodynamics to finite ω and k (see,
e.g., Refs. [36,60]) could be more appropriate than the GH or
VE model under certain conditions.

For ab initio (density functional theory based) MD simu-
lations in the WDM regime, it may become difficult to reach
sufficiently small wave numbers since the number of particles
that can be simulated is much smaller than for simulations
with a pair potential. Thus, one may resort, e.g., to effec-
tive potentials deduced from average atom models [32,33].
The wave numbers required for an appropriate extrapolation,
however, will depend on the applicability of the GH and
VE model under WDM conditions. Further, treating electrons
dynamically [31] has an effect on the DSF. Provided the very
narrow acoustic and diffusive peaks in the ion-ion DSF at
small wave numbers can be resolved in future experiments,
which requires meV resolution, it could become possible to
accurately determine transport quantities such as the viscosity
from experimental data [24].
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