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Previous papers on the quantum wakefield around an ion moving in a dense plasma

have considered the collision frequency in the static approximation. In this work, we

present the results of the dynamically screened ion potential taking into account the

dynamical electron–ion collision frequency. The Lenard–Balescu dynamical colli-

sion frequency and various approximations to it are considered. As a main result of

our investigation for the subsonic, sonic, and supersonic regimes, we find that the

frequency dependence of collisions can be safely discarded if the electronic stream-

ing velocity (relative to an ion) is comparable to or less than the electronic Fermi

velocity.
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1 INTRODUCTION

Electrons streaming relative to ions can appear in plasmas as a result of the impact by electron (ion) beams and electron

acceleration by lasers.[1,2] In our previous works,[3–5] we have studied the wakefield created by streaming electrons around an

(immobile) ion by using the Mermin dynamical quantum dielectric function in relaxation time approximation.[6] We extensively

investigated different plasma parameters (densities, temperatures) and streaming velocities. The results clearly showed a sig-

nificant deviation of the potential and the electronic density distribution from those of the corresponding equilibrium case.[3]

The common features and differences between the wakefield (dynamically screened ion potential) in dense quantum plasmas, in

classical complex (dusty) plasmas,[7–9] and in ultra-relativistic quark-gluon plasmas have been analysed in ref. [4]. The peculiar

non-monotonic dependence of the dynamically screened ion potential was reported in ref. [5].

In all the mentioned studies, a static collision frequency of electrons was used. However, it has been shown that taking into

account the frequency dependence of the electron–ion (e–i) collision frequency is crucial for the description of the transport and

optical properties of dense plasmas and warm dense matter.[10–14] Therefore, in this paper, we extend our analysis of the wakefield

in dense plasmas by implementing the Lenard–Balescu (LB) dynamical collision frequency.[15] Often, the LB approach has been

used with additional simplifications.[16–18] In this work, we also implement these approximations to assess their applicability

for the computation of the dynamically screened ion potential.

As an ansatz, we compute the dynamically screened ion potential in the framework of linear response theory as[19]

Φ(−→r ) = ∫
d3k
2𝜋2

Qi

k2𝜀(−→k ,−→k ⋅ −→u e)
ei
−→
k ⋅−→r , (1)

where Qi =Zi ∣ e∣ is the charge of an ion, ue is the constant streaming velocity of electrons relative to an ion, and 𝜀 is the

electronic dielectric function. For the computation of the 3D Fourier transformation, we used an adapted version of the code

Kielstream.[20] The latter was originally designed for the calculation of the dynamically screened potential in classical

complex plasmas. For the case under consideration, Kielstream has been modified by implementing the dynamic dielectric

function of quantum electrons and by changing the characteristic length and energy scales.
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The state of the electronic component of dense plasmas is entirely defined by the degeneracy parameter 𝜃 = kBT/EF, i.e.

the ratio of the characteristic electronic thermal energy (𝛽−1 = kBT) to the Fermi energy, as well as by the density parameter

rs = a/aB, where a is the mean inter-particle distance and aB is the first Bohr radius. In addition, we use the streaming parameter

M = ue/uF, where uF is the Fermi velocity.

2 MERMIN DIELECTRIC FUNCTION WITH DYNAMICAL COLLISION FREQUENCY

Going beyond the static relaxation time approximation, dynamical electronic collision effects are included in the Mermin

dielectric function[15]:

𝜀M(−→k , 𝜔) = 1 + (𝜔 + 𝑖𝜈(𝜔))[𝜀RPA(
−→
k , 𝜔 + 𝑖𝜈(𝜔)) − 1]

𝜔 + 𝑖𝜈(𝜔)[𝜀RPA(
−→
k , 𝜔 + 𝑖𝜈(𝜔)) − 1]∕[𝜀RPA(

−→
k , 0) − 1]

, (2)

where 𝜈(𝜔)= 𝜈ei(𝜔)+ 𝜈ee(𝜔) denotes the dynamical electron collision frequency, with 𝜈ei and 𝜈ee being the contributions due

to e–i and electron–electron (e–e) collisions, respectively. In Equation (2), 𝜀RPA(
−→
k , 𝜔) is the Lindhard dielectric function,[21]

i.e. the dielectric function in the random phase approximation (RPA).

First, let us discuss the e–i collision frequency. The LB dynamical e–i collision frequency reads[15]

𝜈LB
ei
(𝜔) = i

𝜀0niΩ2
0

6𝜋2e2neme ∫
∞

0

d𝑘𝑘6𝜙2
ei
(k)Si(k) ×

1

𝜔
[𝜀−1

RPA
(k, 𝜔) − 𝜀−1

RPA
(k, 0)], (3)

where 𝜙ei(k) = −Zie2∕(𝜀0Ω0k2), and Si(k) is the ionic static structure factor. The latter can be taken from the solution of the

Ornstein–Zernike equation or from molecular dynamics (MD) simulations.[22] Equation (3) can be obtained by solving the

quantum LB kinetic equation using the energy-dependent relaxation time approximation.[23]

Equation (3) has a strong non-monotonic behaviour around 𝜔≈𝜔p, which requires careful calculations with very high res-

olution. However, for the description of the plasma properties, this feature usually can be safely neglected and replaced by

the monotonically behaving 𝜔 dependence,[11–14] see discussion below. Therefore, to facilitate the calculation of the dynamical

collision frequency, a statically screened dynamical collision frequency is often used[11–14]:

𝜈RPA
ei

(𝜔) = − i
𝜔

𝜀0niΩ2
0

6𝜋2e2neme ∫
∞

0

d𝑘𝑘6Φ̃2
RPA

(k)Si(k) × [𝜀RPA(k, 𝜔) − 𝜀RPA(k, 0)], (4)

where Φ̃RPA(k) = 𝜙ei(k)𝜀−1
RPA

(k, 0) is the statically screened e–i interaction potential with the electronic screening in the RPA.

Equation (4) was obtained from Equation (3) by assuming that[16] 𝜀−1
RPA

(k, 𝜔) ≈ [Re 𝜀RPA(k, 𝜔)−iIm 𝜀RPA(k, 𝜔)]∕[Re 𝜀RPA(k, 0)]2,

meaning |Re 𝜀RPA(k,𝜔)|2 ≫ |Im 𝜀RPA(k,𝜔)|2.

Furthermore, often the statically screened potential Φ̃RPA(k) is approximated by the Yukawa potential Φ̃Y(k) =
−Zie2∕[𝜀0Ω0(k2+k2

Y
)], which is obtained using the long-wavelength result 𝜀−1

RPA
(k, 0) ≈ 𝜀−1

RPA
(k → 0, 0) = k2∕(k2+k2

Y
),[24] where

the Yukawa screening length is defined by the relation k2
Y
= 1

2
k2

TF
𝜃1∕2I−1∕2(𝜇∕kBTe). Here, I−1/2 is the Fermi integral of order

−1/2, kTF =
√

3𝜔p∕vF is the Thomas–Fermi wave number, and 𝜇 is the chemical potential of ideal electrons. Implementing the

long-wavelength approximation for the statically screened (Yukawa) potential, one can find[11,12,14,16]

𝜈Y
ei
(𝜔) = i

𝜔

ni

6𝜋2𝜀0neme ∫
∞

0

d𝑘𝑘6
Z2

i
e2

(k2 + k2
Y )2

Si(k) × [𝜀RPA(k, 𝜔) − 𝜀RPA(k, 0)]. (5)

In general, in dense plasmas, the ionic structure leads to slightly lower value of the e–i collision frequency and less pronounced

non-monotonic behaviour close to 𝜔≈𝜔p.[25] In this work, we are not further interested in the effect of Si(k) on 𝜈ei. Therefore,

we take Si(k)= 1. Moreover, as the aim of this study is to explore the effect of the dynamical collision frequency on the plasma

wakefield, without loss of generality, we set Zi = 1.

Figures 1 and 2a show the LB collison frequency, 𝜈ei(𝜔), and simplifications based on the statically screened RPA and Yukawa

potentials, corresponding to Equations (3)–(5), respectively. Specifically, Figure 1 illustrates the numerical integration of 𝜈ei(𝜔)

by means of two independent codes – a C++ code and a Mathematica[26] program for the above-mentioned approximations.

Additionally, in Figure 2a comparisons of our calculations with the results by Fortmann et al.[17] are shown, which are in good

agreement.

Comparing Figures 1a,b, it can be deduced that the absolute value, of both the real and imaginary parts, of 𝜈ei decreases with

increase in temperature 𝜃 at a constant density rs = 1.0. In addition, 𝜈ei decreases with increase in density, see Figure 2a. It

should be stressed that the non-monotonic feature of 𝜈LB
ei

around 𝜔≈𝜔p, as seen in Figure 1, is absent in the case of 𝜈Y
ei

and 𝜈RPA
ei

.

Moreover, Figure 1 clearly shows that 𝜈Y
ei

underestimates the value of the real part of the e–i collision frequency in comparison
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(a) (b)

FIGURE 1 Real and imaginary part of the electron–ion dynamical collision frequency at (a) 𝜃 = 0.01 and (b) 𝜃 = 1.0, where Lenard–Balescu (LB) refers to

Equation (3), random phase approximation (RPA) to Equation (4), and Y to Equation (5), respectively. For comparison, two independent numerical

implementations with C++ (lines) and Mathematica (symbols) are given. The legend applies to both figures

(a) (b)

FIGURE 2 (a) Real and imaginary parts of the electron–ion dynamical collision frequency, Equation (5), at 𝜃 = 0.01 for different values of rs compared to

results by Fortmann et al.[17] (symbols). (b) Electron–electron static collision frequency, Equation (6), for various values of 𝜃 and rs

to both 𝜈RPA
ei

and 𝜈LB
ei

. Also, both 𝜈RPA
ei

and 𝜈Y
ei

essentially fail to correctly describe the general shape as well as the value of the

imaginary part of 𝜈LB
ei

. As will be shown below, the latter is critical for the correct computation of the dynamical ion potential.

Let us now discuss the contribution of e–e collisions to the total electronic collision frequency. For arbitrary degeneracy and

in the Born approximation,[27] the parameterization for the static e–e collision frequency 𝜈ee(𝜔= 0) reads[28]

𝜈ee(𝜔 = 0) = 𝜈0√
1 + 0.2T∕TF

, (6)

where 𝜈0 is defined as

𝜈0 ≡ 𝜈ee(𝜔 = 0; 𝜃 → 0) = 3(kBT)2

2ℏmec2

√
𝛼x3

𝜋3(1 + x2)5∕2
J(y) ; (7)

and x = vF∕c, y =
√

3ℏ�̃�p∕kBT , and �̃�p = [4𝜋e2ne∕(me(1 + x2)]1∕2. The function J(y) has the form[29]

J(y) =
[

y3

3(1 + 0.07414y)3
× ln

(
2.810

y
− 0.810x2

y(1 + x2)
+ 1

)
+ 𝜋5

6

y4

(13.91 + y)4

]
⋅
(

1 + 6

5x2
+ 2

5x4

)
. (8)

Equation (6) is applicable in the density range 1.4× 10−4 ≤ rs ≤ 1.46 (or equivalently 0.01≤ x≤ 100). The functional depen-

dence of 𝜈ee(𝜔= 0) on 𝜃 and rs is shown in Figure 2b. It is seen that, with increasing rs, 𝜈ee(𝜔= 0) increases as the e–e coupling
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FIGURE 3 Dynamically screened ion potential for the sonic case, M = 1, at rs = 1 and 𝜃 = 0.01. In cylindrical coordinates, the electron streaming velocity

relative to a resting ion (located at r = 0 and z= 0) is directed from left to right along the z-axis. In (a), the upper panel (indicated as 𝜈ei = 0) is neglecting

electronic collisions while in the lower panel (indicated as LB 𝜈ei(𝜔)) the Lenard–Balescu electron–ion collision frequency, Equation (3), is used. The right

side (b) shows a section through the ion potential along the z-axis using Equation (3) (Lenard–Balescu [LB]), Equation (4) (random phase approximation

[RPA]), Equation (5) (Y), as well as neglecting electronic collisions (𝜈ei = 0)

(correlations) becomes stronger. At 𝜃 ≲ 1, the temperature dependence is non-monotonic because of the interplay between Pauli

blocking and thermal excitations.

Finally, let us consider the relevance of the e–e collisions: At rs = 1, for 𝜃 = 1.0 we have 𝜈LB
ei
∕𝜈ee|𝜔=0 ≈ 2.5 and for 𝜃 = 0.01

this ratio is substantially larger, 𝜈LB
ei
∕𝜈ee|𝜔=0 ≈ 30. With decreasing temperature 𝜃, Pauli blocking leads to a decrease of the e–e

collision frequency. On the contrary, with decreasing temperature, the e–i collision frequency increases because of the stronger

e–i coupling.

In the following, we investigate the particular effect of the frequency dependence of collisions on the dynamical screening

by using 𝜈LB
ei
(𝜔). Therefore, we focus on the case of strong degeneracy (𝜃 = 0.01) and neglect the minor contribution of 𝜈ee(𝜔).

Note that the effect of thermal excitations on the wakefield around an ion was studied in detail in our previous works.[3,5] The

general trend is that electronic thermal excitations lead to a reduction of the wake effects.[3] Detailed discussions of the nature

of the e–e collisions in warm dense matter and related problems have been given by Reinholz et al.[30]

3 DYNAMICALLY SCREENED ION POTENTIAL

The dynamically screened ion potential (1) is plotted in Figure 3 for the sonic case M = 1 at rs = 1 and 𝜃 = 0.01. The electronic

streaming velocity relative to an immobile ion is directed from left to right along the z-axis. The ion is located at the origin

(r = 0 and z= 0). The upper panel of the contour plot, Figure 3a, neglects electronic collisions, while the lower panel displays

the ion potential taking into account 𝜈e = 𝜈LB
ei
(𝜔). From Figure 3a, we can deduce that electronic collisions lead to a pronounced

second maximum (located approximately at z= 4aB). This effect is known as collision–induced amplification of the wakefield.[5]

Therefore, for adequate description of the wakefield, the inclusion of collisions is important.

In Figure 3b, the ion potential along the z-axis is shown. Here we compare the results obtained using 𝜈LB
ei
(𝜔), 𝜈RPA

ei
(𝜔), 𝜈Y

ei
(𝜔),

and the collisionless case. Figure 3b clearly shows that not only the collisionless case but also the 𝜈RPA
ei

(𝜔)- and 𝜈Y
ei
(𝜔)-based

results (which are on top of each other) cannot be regarded as accurate approximations to the 𝜈LB
ei
(𝜔)-based potential, as they

have lower absolute values of the minima and maxima in the downstream direction (z> 0). The main reason for this observation

is that 𝜈RPA
ei

(𝜔) and 𝜈Y
ei
(𝜔) essentially fail to describe the imaginary part of 𝜈LB

ei
(𝜔) (see Appendix for more details). Therefore,

instead of the computationally much simpler models 𝜈RPA
ei

(𝜔) and 𝜈Y
ei
(𝜔), in the following the effect of dynamical collisions on

the ion potential is considered on the basis of 𝜈LB
ei
(𝜔).

We recall that in the range 𝜔<𝜔p, the real part of the collision frequency 𝜈LB
ei
(𝜔) is almost constant and can be well approx-

imated by a static collision frequency 𝜈ei = 𝜈LB
ei
(𝜔 = 0), see Figure 1. At larger frequencies, 𝜔 > 𝜔p, 𝜈LB

ei
(𝜔) strongly differs

from the static collision frequency 𝜈ei = 𝜈LB
ei
(𝜔 = 0). In the same range, the imaginary part is small, but non-zero overall.

In order to analyse the effect of the frequency dependence of electronic collisions, we compare the results obtained using

𝜈LB
ei
(𝜔) with those computed using the static collision frequency 𝜈LB

ei
(𝜔 = 0). Additionally, to evaluate the impact of the imagi-

nary part in more detail, the LB data is also compared with the result obtained by neglecting the imaginary part of 𝜈LB
ei
(𝜔), i.e.

assuming 𝜈LB
ei
(𝜔) = Re 𝜈LB

ei
(𝜔) and Im 𝜈LB

ei
(𝜔) = 0. For M = 1, the corresponding results are presented in Figure 4a,b at rs = 1
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FIGURE 4 Dynamically screened ion potential for the sonic case, M = 1, at (a) rs = 1 (see also the lower panel in Figure 3a), and (b) rs = 0.3 using

Lenard–Balescu, Equation (3), a static collision frequency 𝜈ei = 𝜈LB
ei
(𝜔 = 0), and neglecting the imaginary part of 𝜈LB

ei
(𝜔), i.e. Im 𝜈LB

ei
(𝜔) = 0
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FIGURE 5 Dynamically screened ion potential for the super sonic case, M = 1.5, at rs = 0.3 and 𝜃 = 0.01. Left side (a) is for the same approximations as in

Figure 4. In (b), the upper panel (indicated as 𝜈ei = const) corresponds to a static collision frequency 𝜈ei = 𝜈LB
ei
(𝜔 = 0) = 0.044𝜔p, while the lower panel

(indicated as LB, 𝜈ei(𝜔)) corresponds to a dynamic electron–ion collision frequency, 𝜈LB
ei
(𝜔), given by Equation (3)

and rs = 0.3, respectively. From these figures we see that the static collision frequency and the dynamic collision frequency give

almost the same result. This means that the behaviour of 𝜈LB
ei
(𝜔) at 𝜔>𝜔p (high energies) is not relevant to the formation of the

wakefield. Indeed, from Figure 4 we see that neglecting the imaginary part of 𝜈LB
ei
(𝜔) makes no changes in the ion potential as

well, since Im 𝜈LB
ei
(𝜔) is negligibly small in comparison to Re 𝜈LB

ei
(𝜔) at 𝜔<𝜔p, as discussed above.

Similar to the discussed sonic case, in the subsonic regime – where lower energy is deposited to induce the wakefield – it is

also found that (i) the ion potential employing the approximation 𝜈RPA
ei

(𝜔) or 𝜈Y
ei
(𝜔) does not provide an accurate description of

𝜈LB
ei
(𝜔)-based results, while (ii) the result computed using a static collision frequency 𝜈ei(𝜔= 0) is in good agreement with that

obtained by fully taking into account frequency-dependent collisions.

Finally, it is interesting to check whether the frequency dependence of electronic collisions is important in the supersonic case

(M > 1). The results for this case are shown in Figure 5. In Figure 5a, the ion potential along the z-axis is presented for the same

approximations as discussed in the sonic case. Additionally, the contour plot in Figure 5b shows the values of the ion potential

on the (r − z) plane, where the upper panel corresponds to the case of a static collision frequency,𝜈e = 𝜈LB
ei
(𝜔 = 0), while the

lower panel shows the potential including a dynamical collision frequency, 𝜈e = 𝜈LB
ei
(𝜔). From these figures, it is evident that

the frequency dependence of the electronic collisions is not relevant in the considered supersonic case as well.

4 CONCLUSION

The LB model for the dynamical e–i collision frequency was used to study the dynamical screening in dense plasmas at rs ≤ 1.

It was shown that the dynamically screened ion potential is not sensitive to the energy (frequency) dependence of the electronic
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collisions in the subsonic, sonic, and moderately supersonic cases. This means that the result for the static electronic colli-

sion frequency from other more accurate methods (e.g. the T-matrix approximation,[15,16,31] MD simulation,[10,32] or density

functional theory[30]) can be used neglecting the frequency dependence, without loss of accuracy. This significantly reduces

the complexity of the computation of the ion potential in streaming plasmas, e.g. in a time-dependent multi-scale modelling

where the electronic dynamics are computed using quantum hydrodynamics[33,34] or by linear response theory,[19] and where

the ions are treated by an MD simulation. Note that an effect related to the energy (frequency) dependence of the electronic

collisions may manifest itself at very high values of the streaming velocity, M ≫ 1, but the latter case is out of the scope of

the present work and is left for future studies. Finally, we note that an alternative to include correlation effects in the elec-

tronic dielectric function is via local field corrections that can be obtained, for warm dense electrons, via quantum Monte Carlo

simulations.[35,36]
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APPENDIX

In Figure A1 we present the dynamically screened ion potential obtained for M = 1, rs = 1, and 𝜃 = 0.01. In (a) and (b) we

compare 𝜈RPA
ei

(𝜔)- and 𝜈Y
ei
(𝜔)-based potentials, respectively, with the corresponding static collision frequency approximation as

well as the result neglecting the imaginary part of 𝜈ei(𝜔), i.e. taking 𝜈ei(𝜔)=Re 𝜈ei(𝜔).

In contrast to the case with 𝜈LB
ei
(𝜔), in Figure A1 we see that the imaginary parts of 𝜈RPA

ei
(𝜔) and 𝜈Y

ei
(𝜔) have significant impact

on the dynamical screening. As shown in Figure 1, both 𝜈RPA
ei

(𝜔) and 𝜈Y
ei
(𝜔), being approximations to the more accurate 𝜈LB

ei
(𝜔),

significantly overestimate the imaginary part of the collision frequency at 𝜔<𝜔p in comparison to 𝜈LB
ei
(𝜔). This discrepancy

leads to lower absolute values of the dynamically screened potential compared to LB result, see Figure 3b. Indeed, in both parts

of Figure A1, the potential with Im 𝜈RPA
ei

(𝜔) = 0 (as well as Im 𝜈Y
ei
(𝜔) = 0) are very close to the potential with the constant

collision frequency, which, in turn, is a very good approximation of the potential with LB dynamical collision frequency, see

Figure 4.
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FIGURE A1 Dynamically screened ion potential obtained for M = 1 at rs = 1.0 and 𝜃 = 0.01, in analogy to Figure 4 but (a) for 𝜈RPA
ei

(𝜔), Equation (4), and (b)

for 𝜈Y
ei
(𝜔), Equation (5)
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