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plasma and 2. representative examples of QHD articles.

1 Dust grain destruction mechanism under dense quantum plasma
conditions

The most important destruction mechanisms of a dust particle (if it would exist) in a quantum plasma are due
to the fluxes of ions and electrons to the surface of the grain and include (i) melting and evaporation of the
dust material due to heating, (ii) sputtering of the dust material, and (iii) field emission of ions from the dust
particle. [We do not consider dust material sublimation, which is too slow for our consideration, even though
it becomes relevant on astrophysical time scales [1]].

Mechanism (i) takes place when the cooling of a dust particle by neutral atoms, radiation, thermal emission
of electrons and ions is unable to stabilize the dust material temperature. On the other hand, mechanisms (ii)
and (iii), are important at high energies of ions colliding with the dust particle surface [2, 3]. In the context
of this paper, “high temperature” means that the ion (atom) temperature exceeds the melting temperature
of the dust particle, Ti > Tm. At high temperatures and low plasma density (ne ∼ 1012 − 1014 cm−3), the
investigation of a micron size dust particle evolution in the plasma of tokamak fusion devices showed that the
life time of a dust particle, τ , ranges from τ ∼ 10−4 s to τ ∼ 0.1 s, depending on the initial size of the grain
[3, 4]. Comparing this to quantum plasmas of similar temperature but much higher densities, & 1023 cm−3,
the dust particle life time would be much shorter, because the energy flux to the surface of a dust particle,
which is proportional to ne, is larger billions times.

At lower temperatures and densities in the range of 1023 cm−3 and 1024 cm−3, calculations based on the
model of Ref. [3] that takes into account all important heating and cooling mechanisms as well as sputtering,
yields τ � 1 s. For example, at T = 10 K, for a micron sized dust particle [relevant dust materials are tungsten,
graphite, and silicates], τ < 1 ns, whereas at 1000 K, τ . 0.1 ns. At still higher temperature and fixed
density, τ is obviously even shorter, as dust destruction becomes more efficient with increase of temperature.
Therefore, we conclude that dense astrophysical objects, such as the dense atmosphere of a neutron star, is not
a candidate for a “quantum dusty plasma”.

1.1 Surface temperature of a dust particle in a quantum plasma
Let us now discuss in more detail why a dust particle cannot survive in plasmas with densities, ne > 1023 cm−3

which is required to achieve quantum degeneracy of free electrons (condition I. in the main paper). Recall
that the dust particle surface temperature is stabilized most effectively via cooling by neutral atoms, and by
radiative energy loss [5, 6]. At these densities which are close to the Mott transition or beyond, the degree of
ionization approaches one, and the cooling by neutral atoms is not relevant. For the dust surface temperature
to be stabilized, the heat flux to the grain surface due to energy deposition of collected ions and electrons and
their recombination, ΓH , should equal the energy loss flux due to radiation, ΓR. The former is approximated
as ΓH ≈ J0kBTe(2 + φs + I/kBTe), where I is the ionization energy, and the plasma flux is approximated
in OML, J0 '

√
8πa2DnevTe

exp(−φs), e.g. Ref. [5]. The radiation flux is treated as black body radiation,
ΓR ≈ 4πa2Dσ

(
T 4
s − ζT 4

e

)
, where σ is the Stefan-Boltzmann constant and ζ > 1 is a correction due to a positive
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shift of the radiation frequency in a plasma, ω2 = c2k2 + ω2
p, cf. Ref. [7]. Assuming stability of the surface

temperature, we find:

T 4
s & neT

3/2
e

k
3/2
B√

2πmeσ
e−φs(2 + φs + I/Te) + ζT 4

e , (S1)

where
(

k
3/2
B√

2πmeσ

)1/4

' 2.5× 10−2 (in CGS units).

Using Eq. (S1) with φs ∼ 1 and kBTe & I, we find that radiation is unable to prevent dust particle melting

as Ts >
(

1016 × T 3/2
e + T 4

e

)1/4
, at ne & 1023 cm−3. Indeed, even if we minimize thermal effects by assuming

an unrealistically low plasma temperature, Te = 1 K, we find that Ts > 104 × T 3/8
e ' 104 K and, at the

considered high densities, the dust particle surface temperature is well above the melting temperature of all
known materials. At a more realistic plasma temperature, T ∼ 104 K, we find that Ts > 105 K. Therefore, at
these high densities, melting of the dust particle is unavoidable. Melting, in turn, facilitates evaporation of
atoms, sputtering, and field emission from the surface and rapid destruction of the dust particle. Indeed, the
heat flux per dust particle atom, ΓH/N , exceeds the binding energy of the surface atoms, ED, which is in the
range of a few eV, and one easily finds that a micron sized dust particle of the considered materials will loose
every single atom within less than 1 ns.
To summarize, we conclude that dust particles cannot survive in dense plasmas with ne & 1023 cm−3. In

particular, a dust particle would not be stable in the atmosphere of neutron stars or the interior of white
dwarfs. This conclusion is also backed by the independent analysis of the quantum pressure of degenerate
electrons that destroys micrometer and nanometer size particles, cf. Sec. V.C of the main text.

1.2 Surface potential of a dust particle in a quantum plasma
Here we show that, if a dust particle would exist in a quantum plasma, its dimensionless surface potential
would be on the order of unity. In dense quantum plasmas (see Fig. 2 in the main manuscript), the diameter
of a micro- or nano-particle is much larger than the characteristic plasma length scales such as the mean
interelectronic distance and the screening length (Thomas-Fermi screening length). Therefore, the flux (total
current) of electrons and ions through a closed spherical surface of radius r around a dust particle can be
computed using the drift-diffusion (extended Mermin) approximation:

Ji(e) = 4πr2
(
±Zi(e)|e|µi(e)ni(e)E − Zi(e)|e|Di(e)

∂ni(e)

∂r

)
, (S2)

where the upper and lower signs correspond to the flux of ions and electrons, respectively. In Eq. (S2), µi(e)
denotes the mobility, Di(e) the diffusion coefficient, Zi the charge number of an ion, and Ze = 1. For classical
ions, Einstein’s relation applies: Di = µikBTi/(|Zie|). For quantum electrons, the analogue of the classical
Einstein relation is more complicated, e.g. [8, 9]. In the case of strong degeneracy, θe � 1, one can use
De ' (2/8)(EFµe/|e|), cf. Ref. [9]. In a stationary state (∂ni(e)/∂t = 0), the total flux Ji(e) is constant.
Assuming that all electrons and ions colliding with the dust particle surface are absorbed (recombine), we
have the boundary condition ni(e)(r = ad) = 0. From this and, taking E = Zde

r2 in the vicinity of the dust
particle, we find the solution of Eq. (S2):

ni(e)(r) = ±
Ji(e)

4πZde2µi(e)Zi(e)

[
1− exp

{
±
Zd|e|µi(e)
Di(e)

(
1

ad
− 1

r

)}]
. (S3)

Using the second set of boundary conditions, Zini(r →∞) = ne(r →∞) = n0, for the total flux, we find from
Eq. (S3):

Ji(e) =
±4πZde

2µi(e)n0

1− exp
{
±Zd|e|µi(e)

Di(e)ad

} . (S4)

The non-linear equation for the dust particle charge follows from Eq. (S4) recalling that, in a steady state,
the total current of electrons is equal to that of ions. For the quantum plasma with classical ions and degenerate
electrons, EF � kBTe(i), we derive the charge number of the dust particle:

Zd ' −
ad
|e|
De

µe
ln

(
µe
µi

+ 1

)
, (S5)

from which we find for φs = −Zde2/aDEFe:

φs '
|e|
EF

De

µe
ln

(
µe
µi

+ 1

)
. (S6)
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For Zi = 1 (Zi = 10), assuming µe

µi
' me

mi
, and taking De ' (2/8)(EFµe/|e|) [9], we obtain φs ' 1.9 (φs ' 2.5),

in agreement with the discussion in Sec. V.A. in the main manuscript. Note that, for classical electrons,
De = µekBTe/|e|, and Eq. (S5) reproduces the result for a low temperature classical plasma with Te � Ti [10].

2 Examples
In the following we consider a few representative examples of QHD papers for quantum plasmas.

2.1 The paper of Ali and Shukla, Ref. [11]
In the very first paper on “quantum dusty plasmas” Ali and Shukla considered the one-dimensional problem of
a zero-temperature mixture of three ideal Fermi gases of electrons (e), ions (i) and dust particles (d) with
the Fermi temperatures kBTFj = EFj and mean densities nj0, where j = e, i, d. Electrons and ions were
considered inertialess, obeying the following linearized momentum equations:

0 = ∓e∂φ
∂x
−

2kBTFi(e)

ni(e)0

∂ni(e)1

∂x
+

~2

4mi(e)ni(e)0

∂3ni(e)1

∂x3
, (S7)

where the upper (lower) sign is for ions (electrons). In Eq. (S7), ni(e)1 denotes a small ion (electron) density
perturbation, and φ stands for the mean electrostatic potential. The negatively charged dust particles are
described by the continuity equation and the linearized momentum equation,

md

(
∂

∂t
+ νd

)
ud = Zde

∂φ

∂x
− 2kBTFd

nd0

∂nd1
∂x

+
~2

4mdnd0

∂3nd1
∂x3

, (S8)

where nd1 � nd0 is the perturbation of the dust particles density, and νd is the dust-neutral collision frequency.
The last terms on the right hand sides of Eqs. (S7) and (S8) are due to the Bohm potential, cf. Sec. III of the
main text.
Solving Eqs. (S7) and (S8), together with the relevant continuity equations, the dispersion relation of the

quantum dust acoustic wave was obtained [11]:

ω(k) = −iνd
2
±

[
−ν

2
d

4
+ k2V 2

Fd(1 + γd) +
k2C2

Dq(1 + γi)

1 + σ

]1/2
, (S9)

where σ = ne0TFi (1 + γi) /ni0TFe(1 + γe), CDq = Zd(2kBTFind0/mdni0)1/2, γj = ~2k2/8mjkBTFj , and
V 2
Fd = 2kBTFd/md. For the collisionless case, νd = 0, Eq. (S9) simplifies to

ω(k) = k

[
V 2
Fd(1 + γd) +

C2
Dq(1 + γi)

1 + σ

]1/2
. (S10)

The classical dust acoustic wave is recovered if the Bohm potential is neglected (γj → 0) and TFj is replaced
by the temperature Tj . On the basis of Eqs. (S9) and (S10), the authors concluded that the dust acoustic wave
in a “quantum dusty plasma” significantly differs from that in a classical dusty plasma. Without discussing the
validity of their results the authors came to the conclusion that they “can be helpful for diagnostics of charged
dust impurities in microelectronics”.

However, it remains completely open what the considered model has in common with materials or devices
that are being used in microelectronics and whether the computed dust acoustic mode can occur at all in
these systems. In fact, as we have shown in Sec. V.C of the main text, elementary considerations lead to the
conclusion that the dust acoustic mode (S9) does not exist in a quantum plasma.

A further example is discussed in the next section. We note in passing that the original QHD equations (S7,
S8) are incorrect: in the low-frequency regime the Bohm term has to be multiplied by a factor 1/9 [12, 13],
and also the Fermi pressure term is incorrect, cf. Sec. III.F of the main text.

2.2 The example of reference [14]
The authors of this reference considered a slightly more realistic [compared to Sec. 2.1] case of QDP where the
dust particles are non-degenerate whereas electrons and ions are treated as a zero-temperature Fermi gases.
After analyzing linear dust acoustic waves, the authors turn to nonlinear excitations such as solitons. Applying
standard methods they derive a Korteweg de Vries equation, for low-amplitude dust acoustic solitons, and a
Sagdeev potential, for high amplitude solitons, in analogy to classical dusty plasmas. The analysis appears to
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be formally correct and carefully done, and the soliton properties are systematically studied by varying the
QDP parameters in a broad range. Examples from that article for two cases of QDP (using the terminology
of the authors) – “semiconductor quantum wells” and “white dwarfs, magnet stars etc.” – are reproduced in
table 1.

Parameter “Semiconductor “white dwarfs,
quantum well” magnet stars, etc.”

ne0 [cm−3] 5 · 1016 2 · 1027

TFe [K] 5.74 6.71 · 107

TFi [K] 10−4 2946
nd0 [cm−3] 1011 1.9 · 1021

md [mi] 1012 ?
Zd0 103 103

soliton amplitude [V] −3.93 · 10−15 −2.14 · 10−8

soliton width [Å] 0.807 0.0136

Table 1: “Quantum dusty plasma” parameters used by and dust acoustic soliton parameters obtained in
Ref. [14]. The amplitude of the electrostatic pulse is given in volts.

Let us critically analyze the validity of these parameters. First, for the semiconductor case (second column),
the authors write that they “adopt a set of parameters of relevance to semiconductor quantum wells” [citation
from pp. 9-10]. Instead of consulting a primary source on semiconductor physics, they refer to another
reference on QDP, Ref. [15]. However, already elementary knowledge in semiconductor physics, cf. Sec. IV A.
in the main manuscript, raises serious questions and concerns about the chosen parameters: at low temperature
the density of free electrons (in the conduction band) is typically small. So how is this density produced and
what is its lifetime against recombination? What are the ions in a semiconductor quantum well to which the
given Fermi temperature refers to? By comparing the Fermi temperatures of electrons and ions one concludes
that the mass of the ions equals 57, 400 me. So, what material do the authors consider? However, there is
no “gas of ions” inside a semiconductor and no Fermi gas in particular. Ions form the host lattice but they
are essentially immobile and, at typical temperatures, far from quantum degeneracy. Further, the authors
do not present a value for the temperature of the semiconductor. Their Fermi gas analysis is only formally
correct if the temperature is well below the Fermi temperature. This means they have to suppose that the ion
temperature is on the order of or below 10−5 K. How can such a situation be realized in a real semiconductor?
As the second example (third column), the authors use the “typical set” of parameters for “white dwarfs,

magnet stars, etc.” [citing from p. 10]. One may wonder how such diverse systems can have “typical” parameters
(besides, it is not even explained what a “magnet star” is). And indeed, their choice is again not based on
a primary source, but on another QDP reference, Ref. [16]. While the electron density is in the range of
white dwarf parameters [cf. Fig. 2 in the main manuscript], the ion data raise questions. Even though the
authors omit information about the ion species, from the ratio of the Fermi temperatures, one can conclude
that the ions, probably, refer to carbon. However, treating the ions as a Fermi gas, as the authors do, requires
elementary tests for the system to be physical. Are these C6+ ions? Ions of what carbon isotope? In fact, the
most common isotope 12C is a boson for which the present considerations are wrong. The 13C nucleus, on
the other hand, is a fermion but its natural abundance (on Earth) is about one percent. This means that
the analysis of fermionic plasma properties has to be revised. Finally, as in the case of the semiconductor
example, thermal effects are ignored which means that the temperature is implied to be much less than the
ion Fermi temperature, i.e. T . 1000K. Such low temperatures are not expected to exist in the core of white
dwarf stars to which the given electron density refers to. So both quantum plasma examples that have been
discussed in Ref. [14] are internally inconsistent and have nothing to do with reality, even without considering
an additional dust component. An analysis based on such examples will never have the chance to be taken
serious by the semiconductor or astrophysics communities or even to contribute new knowledge in these fields.

Let us now turn to the dust component, cf. table 1. The authors assume that the plasma of a white dwarf
star contains dust particles of a density that exceeds 1021 cm−3. There is no explanation given how a system of
dust particles that have a mean interparticle distance of 5 Å each and acommodate 1000 elementary charges,
can exist and what the particle radius would be. These elementary considerations did not even involve the
questions of stability of dust particles in a quantum plasma that were analyzed in Sec. 1 and in Sec. V C. in
the main manuscript. The situation is even more critical for the semiconductor example. A dust particle with
a charge number Zd = 1000 has (in a dusty plasma) a radius of about aD ∼ 1 µm whereas the given density
corresponds to a mean distance between neighboring dust particles of 1.3 µm. Finally, the authors suggest
that one can insert into a cube of solid semiconductor material of side length 1cm a total of 1011 of these dust
particles. Before that one would need to remove the host semiconductor material to make room for the dust
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particles. Finally, let us consider the parameters of the dust acoustic solitons that are presented in the bottom
lines of Tab. 1. Even if one would assume that the presented QDP exists, the prediction of a soliton amplitude
on the order of 10−15 V (10−8 V) makes the results irrelevant for a semiconductor (white dwarf), compared to
other fields existing in these systems. Moreover, by predicting a soliton width of less than 1 Å implies that
QHD can resolve subatomic length scales which is impossible as was shown in Sec. V.F of the main text.

To conclude this brief discussion of Ref. [14] we quote from the abstract of that paper: “Our results aim at
elucidating the characteristics of electrostatic excitations in dust-contaminated dense plasmas, e.g., in metallic
electronic devices, and also arguably in supernova environments, where charged dust defects may occur in
the quantum plasma regime.” This claim is re-iterated in the concluding paragraph, even though the authors
only consider (fictiteous) semiconductors and compact dwarf stars in their paper, but nowhere they consider
parameters of metallic electronic devices or supernovas.

2.3 Application of QHD to semiconductors. The example of Ref. [17]
Aside from the QDP topic, there are serious more general problems with many of the QHD-based quantum
plasma papers. As discussed in the introduction and in Sec. V of the main manuscript, and illustrated on the
examples above, it has become common in QHD-based quantum plasmas paper to “extend” their results to
other systems, in particular, semiconductors. Let us consider a typical recent example that is not related to
“quantum dust” but to solitons. The article is entitled “The effects of geometrical configurations on the head
collision on nonlinear solitary pulses in a quantum semiconductor plasma: A case study on GaAs semiconductor”
and is by EL-Shamy, Gohman, Alqahtani, and AlFaify, Ref. [17]. The authors start by citing some quantum
plasma papers to motivate their research. They also cite experimental papers from semiconductor physics
where the observation of solitons and acoustic pulses was reported, e.g. [18, 19]. The authors of Ref. [17] then
formulate coupled QHD equations for electrons and holes for the one-dimensional (1D) and isotropic 2D and
3D cases, including an exchange-correlation potential Vxc according to Manfredi et al. [20].

The equations are cast into dimensionless form, and nonlinear solutions are derived using the standard
Poincare-Lighthill-Kuo technique. The authors then investigate the collision of two planar and nonplanar
solitary pulses, in particular the dependence of the phase shift on the electron density and on Vxc. For the
numerical analysis they use the effective masses of electrons and holes, m∗e = 0.047meg, m∗h = 0.4meg (g is not
defined) and the background dielectric function ε = 12.8 for GaAs. The authors also present results for GaN,
for which no material parameters are given, and conclude their paper with the statement (quote) “...we believe
that the present results may help in gaining a deep understanding of the dynamic behavior of nonlinear dark
pulses that propagate in quantum semiconductor plasmas.”
Unfortunately, Ref. [17] does not allow to gain any understanding of semiconductor plasmas. The results

in the figures (in dimensionless units or without labels at all), make it practically impossible to assess how
realistic the obtained soliton parameters are. Even though the authors underline in the introduction the
experimental observation of solitons in semiconductors, they do not perform a comparison of their results with
the experiments. In fact, a quick look at the experimental papers reveals that the reported solitons are caused
by completely different physics: they are related to lattice effects (strain pulses) [18, 19] and have nothing to
do with plasma effects. Of course, it is not excluded from the beginning that there could be solitons of charged
particles in the present electron-hole plasma. However, it is the responsibility of the authors to prove that
their results are not only a mathematically correct solution but are also of practical relevance: in particular
they would need to verify that dissipation effects between the carriers and with the lattice (which they neglect)
do not destroy the solitons and that the electron-hole populations live long enough before recombining [cf.
Sec. IV A.] so that the solitons can form at all. Unfortunately, no validity analysis is presented in Ref. [17].
As a consequence, the presented results have to be regarded as irrelevant for real semiconductors.
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