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Green function theory

Despite the fully diagonal interaction the exact solution of the Hubbard Hamiltonian [cf. Eq.

(1) in the main text] is known only in some limiting cases1 and for small one-dimensional

systems.2 For large two-dimensional lattices an approximate solution of the Hubbard model

can be found using the Green functions approach.

The retarded (R) and advanced (A) components of the single-particle Green function obey

the Dyson equation [cf. Eq. (2) in the main text]

GR/A(ω) = G
R/A
0 (ω) + G

R/A
0 (ω)ΣR/A(ω)GR/A(ω) , (1)

where all quantities are matrices in the orthonormal basis |i〉 defined by the 2pz atomic

orbitals of the carbon atoms that make up the GNR heterostructure. If the exact self-energy
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ΣR/A(ω) of the system was known, Eq. 1 would provide the exact single-particle Green

function. However, in practice many-body approximations to the self-energy have to be

used. The uncorrelated Green function is given by

G
R/A
0,ij (ω) = 〈i| (ω − ĥ± iη)−1 |j〉 , η → 0 (2)

and depends only on the single-particle Hamiltonian

ĥ = −J
∑

〈i,j〉,α
ĉ†iαĉjα , (3)

where J is the hopping amplitude between adjacent lattice sites, and the operators ĉ†iα and

ĉjα create and annihilate an electron with spin projection α at site i and j, respectively. For

the correlated Green function the lesser (<) and greater (>) components can be determined

by

G<(ω) = −fF(ω − µ)
[
GR(ω)−GA(ω)

]
, (4)

G>(ω) = f̄F(ω − µ)
[
GR(ω)−GA(ω)

]
, (5)

with the Fermi function fF(ω) = 1/
(
eβω + 1

)
, f̄F(ω) = 1 − fF(ω), and GA(ω) =

[
GR(ω)

]†.

These components give access to spectral properties such as the local (Ai) or total (D)

density-of-states (LDOS)

Ai(ω) = i [G>
ii(ω)−G<

ii(ω)] , D(ω) =
∑

i

Ai(ω) . (6)

Correlation effects are included in Eq. 1 via the self-energy ΣR/A(ω) which contains the time-

diagonal Hartree–Fock (HF) self-energy as well as the time non-local correlation part, e.g.

the second Born (2B) or GW approximation. The mean-field (Hartree-Fock) contribution
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can be included into the single-particle Hamiltonian ĥeff that replaces Eq. (3),

ĥeff = −J
∑

〈i,j〉,α
ĉ†iαĉjα + U

∑

i

(ni,↑n̂i,↓ + ni,↓n̂i,↑) , (7)

with n̂i,α = ĉ†iαĉiα and ni,α = 〈n̂i,α〉.

The determination of the GW self-energy is more demanding and takes several steps. First,

the retarded polarizability P R(ω) has to be calculated. It is advantageous to do this in time

space where P R(t) in the random-phase approximation (RPA) is defined as a simple product

of time-local Green functions:

P R(t) = −i~Θ(t)
{
G>(t) ◦ [G<(t)]

∗ −G<(t) ◦ [G>(t)]
∗}

. (8)

Here, Θ(t) is the Heaviside step function, ◦ denotes the Hadamard product between matrices,

and the G≷(t) are determined by Fourier transform,

G≷(t) = F
[
G≷(ω)

]
:=

1

2π

∫ ∞

−∞
dω e−iωtG≷(ω) . (9)

The polarizability in Eq. 8 as introduced by Hedin3 becomes equivalent to the familiar

Lindhard formula4 when considering non-interacting particles. Using the polarizability the

retarded component of the (non-singular) dynamically screened interaction W R(ω) can be

determined. It is defined as the full dynamically screened potential minus the bare interaction

and obeys a Dyson equation as the Green function [cf. Eq. (1)],

W R(ω) = U2P R(ω) + U2
[
P R(ω)

]2
W R(ω) , (10)

where again a Fourier transform P R(ω) = F
[
P R(t)

]
is used. The solution of Eq. (10) is

given by

W R(ω) =
[
1− U2

[
P R(ω)

]2]−1

U2P R(ω) . (11)
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In the Hubbard model every other term of the screened interaction (the terms with an even

number of bubbles in the diagrammatic picture) vanishes due to the on-site interaction and

Pauli blocking resulting in the rather unusual form of Eqs. 10 and 11.

The lesser and greater components of the screened interaction can be calculated using

W<(ω) = fB(ω − µ)
[
W R(ω)−W A(ω)

]
, (12)

W>(ω) = (fB(ω − µ) + 1)
[
W R(ω)−W A(ω)

]
, (13)

with the Bose distribution fB(ω) = 1/
(
eβω − 1

)
and W A(ω) =

[
W R(ω)

]†. In the next step

the self-energy can be calculated. Again, doing so in time space is advantageous due to

time-local relations. First, the lesser and greater components are given by

Σ≷(t) = i~W ≷(t) ◦G≷(t) , (14)

where W ≷(t) = F
[
W ≷(ω)

]
was used. The retarded component is defined as

ΣR(t) = Θ(t) [Σ>(t)−Σ<(t)] , (15)

and with the Fourier transform ΣR(ω) = F
[
ΣR(t)

]
the self-energy in GW approximation

can be included in Eq. (1).

For the self-consistent solution of Eq. (1) the following scheme is iterated until convergence

is achieved:

0) Diagonalize the effective single-particle Hamiltonian ĥeff , cf. Eq. (7), and initialize

GR(ω) = GR
0 (ω), cf. Eq. (2)

1) Calculate G≷(ω) from GR(ω), using Eqs. (5) and (4)

2) Perform the Fourier transform, G≷(t) = F
[
G≷(ω)

]

3) Calculate Σ≷(t) and ΣR(t) using Eqs. (8)–(15)
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4) Perform the Fourier transform ΣR(ω) = F
[
ΣR(t)

]

5) Solve the Dyson equation for GR(ω), Eq. (1), using the new ΣR(ω)

6) If GR(ω) is not yet converged start again at 1)

To improve the convergence of the above scheme, the input Green function at iteration N

(GR
in,N) is determined by mixing the solutions of the two previous iterations

GR
in,N(ω) = αGR

out,N−1(ω) + (1− α)GR
out,N−2(ω) , (16)

where a mixing parameter of α = 0.05 was used.

While throughout this work the above presented scheme is solved self-consistently, there

exists an alternative approach, G0W0, where only one iteration is performed. We compared

both strategies and found that, while overall the results were qualitatively comparable, the

self-consistent solution better describes screening effects, e.g. the spatial extension of the

zero-energy state discussed in Fig. 1 of the main text and Fig. S2.

To generate the spatially resolved dI/dV data 2pz orbitals are placed on top of the atomic

sites of the lattice structure, following the procedures described in Refs. 5,6. In a first

approximation the differential conductance in the energy interval [E1, E2] at a constant

height z0 above the system is then given by

dI

dV
(x, y, z0) =

∫ E2

E1

dω
∑

ij

Aij(ω)z2
0eλ

−1|r−ri|eλ
−1|r−rj | , (17)

with z0 = 4Å, λ = 1.72Å, and

Aij(ω) = i
[
G>
ij(ω)−G<

ij(ω)
]
. (18)
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Determining the Hubbard interaction U for GW

The Hubbard Hamiltonian [Eq. (1) in the main text] includes two free parameters, the

hopping amplitude J = 2.7 eV7 and the on-site interaction strength U . To obtain the value

of U that is appropriate for use with the GW approximation, we perform calculations for a

7-9-AGNR heterostructure of six unit cells for various interaction strengths U = 0, . . . , 3.5J

and compare the band gap between the topological bulk bands to the experimental result

of Ref. 8. The results are shown in Fig. S1. Increasing the interaction strength results in

an opening of the band gap. We find that for U = 2.5J the theory best reproduces the

experimental band gap for the GNR heterostructure on Au(111). Therefore, this choice of

U includes screening effects of the metallic substrate which reduce the effective on-site in-

teraction. For the description of free-standing GNRs a larger on-site interaction is required.9

Including environmental screening by modifying the Hubbard interaction U corresponds to

assuming a constant dielectric function of the substrate εenv which modifies the screened

interaction of the isolated system W R
iso:

W R
tot(ω) = ε−1

envW
R
iso(ω) . (19)

In leading order the non-singular screened interaction in the Hubbard model is given by

W R
iso(ω) = U2

isoP
R(ω), which corresponds to the well known static second Born approxima-

tion.

In our model, instead of using an external dielectric function, we include the substrate screen-

ing in an effective Hubbard interaction resulting in W R
tot(ω) = U2

effP
R(ω). Comparing the

above equations leads to

ε−1
envU

2
isoP (ω) = U2

effP (ω) , (20)

which results in a relation between the Hubbard interaction of the isolated system, the
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effective interaction, and the dielectric constant of the substrate,

Ueff =
Uiso√
εenv

. (21)

For similar systems separate fits for Ueff and Uiso lead to reasonable values for εenv in the

range of 2–5 for the Au(111) substrate.9 As a major advantage this approach does not

violate any sum rules or conservation laws but preserves all properties inherent in the GW

approximation. In general, this is not necessarily the case when considering more advanced

(momentum or frequency dependent) external dielectric functions of the substrate.

Screening of topological states

The GW approximation reduces the spatial extension of the topological zero-energy end

state. This is shown in Fig. S2 where the dI/dV maps of the zero-energy state of a 7-9-

AGNR heterostructure containing six unit cells are compared for TB and GW . While the

state is strongly confined in the end cell for GW , for TB it extends well into the second and

third unit cell. This gives rise to the unphysical contribution at the Fermi energy observed

in Fig. 1(b) of the main text for TB.

7-AGNR states

To classify the states occurring for the extended system in Fig. 4(b) in the main text, in

Fig. S3 the DOS and the dI/dV maps of three states are shown for a pristine 7-AGNR system

containing 504 atoms for GW . The states are labeled “1, 3 and 5”, for a better comparison

to the corresponding states in Fig. 4(b) of the main text. While the energy levels slightly

differ, the spatial distribution of the pristine 7-AGNR states perfectly agrees with the states

localized in the short 7-AGNR regions of the extended 7-9-AGNR.
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Figure S1: Gap between the topological bulk bands of a 7-9-AGNR heterostructure contain-
ing six unit cells, calculated using the GW self-energy (see text) and different interaction
strengths, U = 0, . . . , 3.5J . The dashed line marks the experimental value for the same
heterostructure on Au(111) obtained in Ref. 8.
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Figure S2: Differential conductance map of the zero-energy state of a 7-9-AGNR heterostruc-
ture containing six unit cells, from TB andGW simulations. Only part of the system is shown
as indicated by the black dots.
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Figure S3: (a) DOS for a pristine 7-AGNR containing 504 atoms within the GW self-energy.
(b) Differential conductance maps for the three states labeled in (a). Only part of the system
is shown as indicated by the black dots.
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