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Hanno Kählert1

Christian-Albrechts-Universität zu Kiel, Institut für Theoretische Physik und Astrophysik, Leibnizstr. 15, 24098 Kiel,
Germany

(Dated: 24 May 2019)

The dynamic structure factor (DSF) of the three-dimensional Yukawa one-component plasma is studied with molecular
and Langevin dynamics simulations at moderate and strong coupling. The focus of the investigation is on the depen-
dence of the DSF on the friction coefficient in different frequency and wavenumber regimes. At small to intermediate
wavenumbers, frictional damping reduces the strength of the sound peak and leads to a red-shift of its frequency. In an
intermediate range of friction coefficients, reducing the wavenumber leads to the vanishing of the sound peak at a finite
frequency and the formation of a maximum at zero frequency. This is in contrast to simulations without friction, where
the characteristic Rayleigh and Brillouin peaks are observed. The Rayleigh peak around zero frequency for systems
without dissipation is generally weak. The simulations show that a small amount of friction can initially decrease its
height even further before a strong single maximum is formed at strong damping. At large wavenumbers, the DSF of
moderately coupled Yukawa plasmas with dissipation is well described by a single-particle model without interactions,
provided frictional damping is taken into account.

I. INTRODUCTION

Strongly coupled plasmas exhibit short-range order and
share many similarities with dense liquids. Strong coupling is
encountered in a variety of different systems, including warm
dense matter (WDM),1,2 ultracold neutral plasmas (UCNPs),3

or complex plasmas.4 WDM states are relevant to inertial con-
finement fusion5,6 and can be found in the interiors of giant
planets.7 Here, the electrons are typically moderately cou-
pled and exhibit quantum effects whereas the ions are clas-
sical and strongly coupled. Ultracold neutral plasmas8 are
formed after photoionization of confined laser-cooled atoms.
Complex plasmas9 contain, in addition to a background of
weakly coupled electrons and ions, highly charged and, there-
fore, strongly coupled dust particles with sizes of up to a few
microns.

The dynamic structure factor (DSF) of the strongly cou-
pled species contains a wealth of information on the plasma
state. It is not only affected by the strong coupling of the
ions or the dust particles but also by their interaction with the
other species. One of the reasons is screening, either induced
by electrons (WDM, UCNPs) or by electrons and ions (com-
plex plasmas), which limits the range of the interaction. In
addition, (effective) collisions between the different species
can influence the DSF. In Ref. 10, this was demonstrated for
WDM using Langevin dynamics simulations to mimic effects
related to dynamic electron-ion collisions.11 It was found that
a strongly diffusive mode appears in the DSF around zero fre-
quency, in strong contrast to simulations that neglect dissipa-
tion. At the same time, the sound speed of the ion-acoustic
mode was significantly reduced. The same approach has been
used to study the effect of dust-neutral collisions on the lon-
gitudinal and transverse collective modes in two-dimensional
complex plasmas.12–16 It has been shown that dissipation not
only affects the low-frequency acoustic modes but also the
higher harmonics of the magnetoplasmon in magnetized plas-
mas,15 which occur at very high frequencies. They were found
to successively disappear as the friction coefficient was in-
creased. The effect of frictional damping on wave spectra in
strongly coupled plasmas was also investigated with theoreti-
cal approaches such as the Quasi-Localized Charge Approxi-

mation17 or harmonic lattice theory.18 Besides plasmas, dissi-
pation plays a major role in colloidal suspensions.19–21

In complex plasmas, the DSF (or closely related quantities
such as the longitudinal current fluctuation spectra14,22) can
be determined directly from the positions of the dust parti-
cles. In recent years, sophisticated diagnostics have been de-
veloped for the investigation of complex plasmas on the parti-
cle level.23 The DSF of the ions in WDM has been studied in
detail with DFT-MD simulations, where electrons are treated
with density functional theory (DFT) and ions are prop-
agated classically using molecular dynamics (MD).10,24–26

Approaches based on pair potentials have also been em-
ployed.27–29 The experimental determination of the ion fea-
ture in the DSF of WDM should become feasible with inelas-
tic X-ray scattering.30

The goal of the present work is to obtain a comprehen-
sive understanding of the effect of dissipation on the DSF.
Since many strongly coupled systems, including the dust par-
ticles in complex plasmas or ions in WDM, can often be
approximately described by a Coulomb potential with expo-
nential screening (neglecting specific effects such as wake
potentials due to streaming ions in complex plasmas31–33 or
additional short-range repulsion due to overlapping electron
shells in WDM27,34) the focus here is on the 3D Yukawa
one-component plasma (YOCP). In particular, for complex
plasmas, wake effects become weak at high pressure (high
ion-neutral damping),31,35 i.e., in a regime where dust-neutral
collisions become important. The YOCP36 has been stud-
ied extensively, both in 2D37–39 and in 3D40–46 and serves
as a widely accepted reference system. Dissipation ef-
fects are included via the Langevin approach as in previous
works.10,13–15,47 The results presented here are directly rele-
vant to the dust particles in complex plasmas at moderate to
high pressure. In addition, they should allow one to make
qualitative predictions for systems described by more special-
ized methods or potentials.

The simulations show that even a small amount of friction
can change the DSF significantly. Dissipation reduces the
height of the sound peak and shifts the peak position to lower
frequencies. While systems without damping feature a well-
defined sound mode in the small wavenumber limit, a finite-
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frequency sound peak can disappear if dissipation is included.
Increasing the damping rate leads to the buildup of a maxi-
mum in the DSF at zero frequency. In systems with a well-
defined Rayleigh peak in the frictionless limit, dissipation can
initially reduce the peak height. At large wavenumbers and
at moderate coupling, a single-particle model with frictional
damping included is able to describe the deviations from the
Gaussian shape of the DSF in systems with dissipation.

This paper is organized as follows. The physical model sys-
tem and the numerical methods are introduced in Sec. II. In
Sec. III, the results of the simulations are presented and dis-
cussed. Section IV provides a summary of the findings and a
brief outlook.

II. MODEL AND SIMULATION METHODS

The Yukawa one-component plasma is composed of N
identical particles with mass m and charge q. Their interac-
tion potential is given by

v(r) =
q2

r
exp(−r/λ ), (1)

where λ is the screening length. The system has density n
and temperature T . Its state is fully specified by the coupling
parameter Γ and the screening parameter κ , which are defined
in terms of the Wigner-Seitz radius, a = [3/(4πn)]1/3, as

Γ =
q2/a
kBT

, κ =
a
λ
. (2)

The Langevin equation of motion for the particle i ∈
{1, . . . ,N} is given by

mr̈i =
N

∑
j 6=i

Fi j−νmṙi +fi(t), (3)

where Fi j is the force of particle j on i, ν the fric-
tion coefficient, and fi(t) a random force term. The lat-
ter has zero mean and is related to the friction coeffi-
cient via the fluctuation-dissipation theorem, 〈 fiα(t) fiβ (t ′)〉=
2mνkBT δ (t − t ′)δαβ δi j. Here, i, j ∈ {1, . . . ,N} are particle
indices, and α,β ∈ {x,y,z} denote coordinates. For the nu-
merical integration of Eq. (3), the SLO (symplectic low order)
algorithm of Ref. 48 is used. In the zero friction limit, the ve-
locity Verlet algorithm is employed instead. For simulations
based on the Langevin equation, the third parameter, in addi-
tion to κ and Γ, is the value of the reduced friction coefficient,
ν/ωp, where ωp =

√
3q2/(ma3) is the plasma frequency.

The dynamic structure factor S(k,ω) is defined as the
Fourier transform of the intermediate scattering function
(ISF),49–51

F(k, t) =
1
N
〈n(k, t)n∗(k,0)〉, (4)

where n(k, t) = ∑
N
i=1 e−ik·ri(t) is the spatial Fourier transform

of the microscopic density. In the simulation,52 the computa-
tion of the DSF is based on the relation (see, e.g., Refs. 15, 54–
56)

S(k,ω) = lim
∆T→∞

1
2πN

〈|n(k,ω)|2〉
∆T

, (5)
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FIG. 1. (a) Static structure factor and (b) pair distribution function for
the systems studied in this work with κ = 2. The coupling parameter
Γ is indicated in the figure.

where n(k,ω) is the Fourier transform of n(k, t) over a time
interval ∆T . In order to improve statistics, 40− 120 simu-
lations of length 27000ω−1

p are performed and subsequently
averaged for the same parameters.

III. RESULTS

Simulations have been performed for a screening param-
eter κ = 2 with two different coupling strengths, Γ = 10
and Γ = 200, covering the moderately and the strongly cou-
pled regime, respectively. The structural properties are il-
lustrated in Fig. 1, which shows the static structure factor,
S(k) = F(k, t = 0), and the pair distribution function, g(r).
While the system with Γ = 10 exhibits a pronounced corre-
lation hole in the pair distribution function, it does not show
significant oscillations in g(r), which appear only in the more
strongly coupled system with Γ = 200. The increased struc-
tural order also manifests itself in the static structure factor,
see Fig. 1(a).

The friction coefficient is varied from ν/ωp = 0 up to
ν/ωp = 1, in order to trace the transition from a frictionless to
a strongly damped system. The simulations are carried out for
N = 3800 particles, which results in a minimum wavenum-
ber kmin ≈ 0.25/a. This is sufficient to probe the system in a
variety of different regimes, including long wavelengths.

III.1. DSF with dissipation

The effect of the friction coefficient on the DSF for vari-
ous different wavenumbers is illustrated in Fig. 2 for a cou-
pling strength Γ = 10. In the system without friction, the
DSF shows a well pronounced sound peak and a much smaller
zero frequency peak for the smallest wavenumber, ka = 0.433
[Fig. 2(a)]. At ka = 0.999, the local maximum at ω = 0 has
almost vanished, and the sound peak has become significantly
broader. As the wavenumber increases further, the DSF forms
a valley in the low frequency region without a maximum at
ω = 0 [Fig. 2(c)], which eventually transforms into a broad
plateau, and the DSF decays monotonically [Fig. 2(d)]. This
behavior is consistent with earlier observations for strongly
coupled Yukawa plasmas.41,57
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FIG. 2. Dynamic structure factor S(k,ω) for a system with κ = 2
and Γ = 10 as a function of frequency for different wavenumbers ka.
The numbers in the figure denote the value of the friction coefficient,
ν/ωp.

The effect of friction is twofold. Provided a well-
pronounced sound peak exists for ν = 0, a small damping rate
leads (i) to a reduction of the peak height and (ii) shifts the
peak position to lower frequencies, see Fig. 2(a) and Fig. 2(b).
At the same time, the DSF is modified substantially in the low-
frequency domain. At the smallest wavenumber, ka = 0.433,
damping initially leads to a slight reduction of the maximum
at ω = 0, compare ν/ωp = 0 and ν/ωp = 0.02. As the damp-
ing becomes stronger, the DSF increases in this region. This
non-monotonic behavior will be investigated more closely in
Sec. III.2. At ka = 0.999, the zero frequency maximum for
ν = 0 is much weaker, and an initial decrease for finite damp-
ing is not observed but might possibly occur for even lower
values of the friction coefficient. For strong damping, the DSF
has its maximum at ω = 0, and the peak at finite frequency
vanishes. At larger values of the wavenumber, see Fig. 2(c)
and (d), the effect is very similar. The vanishing of the max-
imum at finite frequencies and the emergence of the zero fre-
quency peak are analogous to previous simulation results for
ions in warm dense matter.10

Consider now the case Γ = 200 in Fig. 3. In the sys-
tem without friction, the simulations show a well-pronounced
sound mode at ka = 0.559 and ka = 1.50. It has been shown
that in Yukawa plasmas, the thermal Rayleigh mode around
zero frequency is typically weak, in particular at very strong
coupling. The reason is that the ratio of specific heats, which
controls the relative intensities of the Rayleigh and Brillouin
(sound) peaks at small k,51 is very close to 1.41,57 This is also
observed here, see Fig. 3(a), where the local maximum at
ω = 0 is barely noticeable. As the wavenumber increases, the
sound peak broadens and finally vanishes [Fig. 3(d)]. Similar
to the case Γ = 10, the DSF decays monotonically for large
wavenumbers, with a maximum at ω = 0.
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FIG. 3. Dynamic structure factor S(k,ω) for a system with κ = 2 and
Γ = 200 as a function of frequency for different wavenumbers ka.
The numbers in the figure denote the value of the friction coefficient,
ν/ωp.

For small wavenumbers, the observations for the damped
system are also similar to the case Γ = 10, see Fig. 3(a).
Damping leads to a reduction and a red-shift of the sound
peak. At the same time, the DSF increases at zero fre-
quency, which gives rise to a monotonically decaying DSF
at large damping (ν/ωp = 0.5). For intermediate wavenum-
bers, on the other hand, the observations are somewhat dif-
ferent, see Fig. 3(b) and Fig. 3(c). Here, damping initially
leads to the emergence of a well-defined two-peak structure
for ν/ωp = 0.1 and ν/ωp = 0.2, which is significantly more
pronounced than for ν/ωp = 0. Here, spectral weight is trans-
ferred from the sound peak to the peak at ω = 0. At even
higher damping, the remnant of the sound peak disappears,
and the DSF develops a very narrow peak around zero fre-
quency, which is followed by a much slower decay of the DSF
towards larger frequencies, see ν/ωp = 0.5. At the highest
wavenumber, shown in Fig. 3(d), the width of the DSF signif-
icantly reduces as the friction coefficient is increased.

III.2. Small wavenumber regime

The hydrodynamic limit of the DSF for the Yukawa OCP
without dissipation has been studied in Ref. 41, and the crite-
rion for the hydrodynamic description to apply has been de-
termined as ka < 0.43κ . This condition is satisfied for the
smallest wavenumbers used here with ka & 0.25 and κ = 2.
In this section, the effect of friction on the small wavenumber
and low frequency limit of the DSF is investigated in more
detail.

Figures 4 and 5 show the DSF for small wavenumbers
in systems with and without dissipation. In the frictionless
case, the sound peak becomes significantly more narrow as
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FIG. 5. Dynamic structure factor for a system with screening param-
eter κ = 2 and coupling parameter Γ = 200. Panel (a) shows results
for a system without friction while in panel (b) the friction coefficient
is ν/ωp = 0.1. Numbers in the figure denote the wavenumber, ka.

the wavenumber is decreased. Here, the well-known hydro-
dynamic behavior with a two-peak structure can be observed,
representing the Brillouin and Rayleigh peak. In contrast, the
behavior for the system with dissipation is vastly different.
The height of the sound peak shows a slight increase towards
smaller ka but, at the same time, the DSF increases faster at
ω = 0. In particular, the finite-frequency sound peak com-
pletely disappears for small ka, see Fig. 4(b). At the smallest
wavenumber, ka = 0.25, only a single maximum at zero fre-
quency remains. For the system with Γ = 200, a very weak
maximum at finite ω persists at ka = 0.25. As discussed in
Ref. 58, the sound mode can be considered overdamped in
this limit. In Fig. 6, the position of the sound peak in the
DSF is shown for different values of the friction coefficient.59

Damping generally leads to a red-shift of the frequency, as
discussed in Sec. III.1. Below a certain cutoff wavenumber,
which is rather sensitive to the value of ν/ωp, the sound peak
at finite ω vanishes, as demonstrated in Fig. 4. Note that,
for ν/ωp = 0.1, a very weak peak persists at the smallest
wavenumber available in the simulation.

The damping of the sound mode, as measured by the
FWHM (full-width at half maximum), denoted ∆ω , is shown
in Fig. 7(a) for the system with Γ = 10 at two different
wavenumbers. The peak width increases with the friction
coefficient in a way that slightly exceeds a linear behavior,
∆ω(ν) = ∆ω0 + ν , as indicated by the dashed lines. At the
same time, the peak height drops rapidly with ν , see Fig. 7(b).
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FIG. 6. Peak position as obtained from the DSF as a function of the
wavenumber for various values of the friction coefficient, as indi-
cated in the figure. The coupling parameter is (a) Γ = 10 and (b)
Γ = 200. The vertical dashed lines indicate the lowest available
wavenumber.

As an example, a friction coefficient ν/ωp = 0.01, amount-
ing to less than 10% of the frequency of the sound mode at
the wavenumber ka = 0.25, is sufficient to decrease the peak
height by a factor two. This demonstrates again the high sensi-
tivity of the sound mode to even a small amount of friction,10

in particular at small wavenumbers. For a related investigation
of the longitudinal current spectrum in a 2D Yukawa plasma,
see Ref. 12, where similar observations concerning the height
and width of the sound peak have been reported.

The behavior described above is reminiscent of a damped
harmonic oscillator. If the damping rate ν is much smaller
than the natural oscillator frequency, ω0, the oscillations are
weakly damped (underdamped), with an effective oscillation
frequency that is below ω0 and that decreases with the damp-
ing. For damping rates much larger than ω0, on the other hand,
the oscillatory behavior disappears (overdamped limit). Pro-
vided the ISF at small k can be approximately described as a
damped oscillator with a wavenumber dependent frequency,
ω0(k), this could explain (i) the red-shift of the peak position,
(ii) the increase of the peak width with increasing ν (damp-
ing), and (iii) the observation that the sound peak at small k
vanishes prior to the sound mode at larger k. The reason for
(iii) is that the frequency increases with the wavenumber, ap-
proximately ω0(k)∝ k. Thus, the overdamped limit is reached
earlier at small k. Note, however, that other effects such as vis-
cous damping or the thermal mode have been disregarded. In
the context of the memory function formalism, a damped har-
monic oscillator model has been discussed as a simplified hy-
drodynamic description for the ISF and the DSF of frictionless
systems, where the ratio of specific heats is exactly γ = 1.60

For a memory function description with frictional damping,
see Refs. 13 and 58.

In the following, the low-frequency part of the DSF around
ω = 0 will be inspected more closely. It has already been
noted in Sec. III.1 that the DSF displays a non-monotonic de-
pendence on the friction coefficient in this domain. This is
illustrated in Figure 8 in more detail, where the DSF is shown
for low damping, ν/ωp ≤ 0.1. As the inset shows, the peak
height at ω = 0 initially decreases and reaches a minimum
around ν/ωp ≈ 0.02. From this point, the zero frequency
peak increases while, at the same time, the sound mode be-
comes significantly weaker, and only a weak remnant remains
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at ν/ωp ≈ 0.1, see also Fig. 2(a)

III.3. Large wavenumbers

At high wavenumbers, i.e., on small length scales, the DSF
can be compared with the result for non-interacting particles.
For strongly coupled Yukawa plasmas without friction, the
transition to free particle (ideal gas) behavior has been inves-
tigated in Ref. 57. In this section, the effect of friction on the
DSF at large wavenumbers is studied by comparing the sim-
ulation results with analytical limits for a damped system of
non-interacting particles, which are briefly reviewed first.

The ISF for a single Brownian particle described by the
Langevin equation, Eq. (3), can be written as Fs(k, t) =

exp
[
− k2

6 〈r
2(t)〉

]
,58 where the mean-squared-displacement is

given by

〈r2(t)〉= 6(v2
th/ν

2){ν t +[exp(−ν t)−1]} . (6)
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mation are shown for comparison in panels (a) and (b), respectively.
Note the different scaling of the axes.

The thermal velocity is vth =
√

kBT/m. For comparison with
the simulations, the ISF must be converted into frequency
space. The Laplace transform of the ISF can be written in
terms of the confluent hypergeometric function, 1F1(a,c;z),
as

F̃s(k,ω) =
1
ν

1F1(1,q2− iω/ν +1;q2)

q2− iω/ν
, (7)

where q = k vth/ν is a dimensionless wavenumber, see Ap-
pendix A. The DSF is then calculated from Ss(k,ω) =
Re F̃s(k,ω)/π .

There exist two important limiting cases. In the free-
particle (Newtonian, ν = 0) limit, the single-particle DSF has
a Gaussian shape, Ss(k,ω) = (2π σ2

0 )
−1/2 exp(−ω2/2σ2

0 ),
where σ0 = kvth.49,51,57 This can be obtained by using the
short-time (ballistic) limit of Eq. (6), 〈r2(t)〉 ≈ 3v2

th t2, for
the calculation of the Laplace transform. On the other hand,
in the long-time limit, νt � 1, the mean-squared displace-
ment shows diffusive behavior, 〈r2(t)〉 ≈ 6D0 t, with D0 =
kBT/(mν) being the diffusion coefficient of the ideal sys-
tem. When the ISF decays strictly exponentially, a Lorentzian
shape is obtained, Ss(k,ω) = (σ∞/π)/

(
ω2 +σ2

∞

)
, where

σ∞ = k2v2
th/ν .49 Figure 9 shows the single-particle DSF for

various values of q. For large q, i.e., on length scales much
smaller than vth/ν [Fig. 9(a)], the DSF almost acquires a
Gaussian shape while for small q [Fig. 9(b)], the DSF resem-
bles the Lorentzian. Note, however, that the high-frequency
limits are different.

The analytical results can now be compared with the large
wavenumber DSF of the interacting system. Figure 10 shows
results for the system with Γ = 10. Note that the values for
S(k) are close to unity for these parameters, see Fig. 1(a). For
ka = 5.25 [Fig. 10(a)], there are still substantial deviations
between the non-interacting DSF and the simulations while
they are significantly reduced at ka = 7.38 [Fig. 10(b)]. Here,
for ν = 0, the simulations are in excellent agreement with
the ideal gas DSF, which indicates that interaction effects are
weak. On the other hand, frictional damping strongly affects
the DSF and increases (decreases) the DSF at low (high) fre-
quencies. The deviations are well captured by Eq. (7), which
accounts for friction but still neglects interactions. The re-
duced wavenumber q takes on values q≈ 2.7 for ν/ωp = 0.5
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FIG. 10. Dynamic structure factor for a system with Γ = 10 and
κ = 2 at two wavenumbers. Numbers in the figure denote the value
of ν/ωp. The symbols correspond to the simulation results, and the
lines show the analytical result for the single-particle DSF.
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FIG. 11. Dynamic structure factor for a system with Γ = 200 and
κ = 2 at two wavenumbers. Numbers in the figure denote the value
of ν/ωp. The symbols correspond to the simulation results, and the
lines show the analytical result for the single-particle DSF.

and q≈ 1.3 for ν/ωp = 1 at ka = 7.38. Figure 9(a) shows that
deviations from the Gaussian shape are to be expected at these
parameters if the single-particle description is applicable.

Figure 11 shows the same comparison for Γ = 200. The
deviations between the single-particle DSF and the simula-
tion results are significantly larger than for Γ = 10. Similar
observations have been made in Ref. 57 for Yukawa plasmas
without dissipation, where the ideal gas limit provided a bet-
ter description for the DSF in the case of more weakly coupled
systems. Similar to the results shown in Fig. 10, friction leads
to a more narrow peak. Note that even though S(k) ≈ 1 for
the specific wavenumbers shown in Fig. 11, the static struc-
ture factor still shows substantial oscillations around one in
this wavenumber region, see Fig. 1(a).

IV. CONCLUSION

In summary, the DSF of the strongly coupled Yukawa
plasma has been studied with molecular and Langevin dynam-
ics simulations over a wide range of friction coefficients and
wavenumbers. The simulations show that frictional damping
can have a large effect on the DSF. In general, it decreases
the height of the sound peak and leads to a red-shift of its fre-
quency. In the high damping limit, the DSF develops a strong
maximum at zero frequency. For intermediate wavenumbers
and very strong coupling, a narrow zero frequency peak is

followed by a much slower decay of the DSF towards higher
frequencies.

Friction has a particularly strong effect on the small
wavenumber limit. The simulations show that a sound peak
at finite ω , which exists for intermediate wavenumbers, may
disappear at smaller k and transform into a peak at zero fre-
quency. This is in stark contrast to frictionless simulations,
where two well-defined Rayleigh- and Brillouin modes at
ω = 0 and at finite ω , respectively, are observed at small
wavenumbers. A theoretical treatment of this aspect can be
found in Ref. 58. Simulations with different ν at a small
wavenumber, where a well-defined Rayleigh peak exists for
ν = 0, show that weak damping can initially reduce its height.
In this case, the DSF shows a non-monotonic behavior as a
function of the friction coefficient at ω = 0. It would be inter-
esting to study this effect in systems that exhibit a stronger
Rayleigh peak, which is usually weak in strongly coupled
Yukawa plasmas.

In order to decipher the individual contributions of the ther-
mal mode and the sound mode to the DSF, one could com-
pare the simulation results with a memory function descrip-
tion,49–51,60 where frictional damping is included.13,58 It has
already been shown that the DSF of the strongly coupled
Yukawa OCP without friction is well described in terms of a
single Gaussian term in the memory function.57 However, this
model does not account for the thermal mode, whose contribu-
tion could be added to the memory function. While its contri-
bution to the DSF is small, it contains important information
on the thermodynamic and transport properties of the plasma,
e.g., the thermal diffusivity.51 Further, this might allow one to
develop a better understanding of the influence of friction on
the thermal (Rayleigh) mode.
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Appendix A: Laplace transform of the single particle ISF

Using Eq. (6) and Fs(k, t) = exp
[
− k2

6 〈r
2(t)〉

]
58 one ob-

tains

F̃s(k,ω) =
∫

∞

0
eiωtFs(k, t)dt

=
∫

∞

0
e−νt(q2−iω/ν)−q2(e−νt−1) dt

= ν
−1eq2

(q2)−q2+iω/ν
γ(q2− iω/ν ,q2), (A1)

where γ(a,z) =
∫ z

0 ya−1e−y dy is the incomplete Gamma func-
tion.61 The result can also be expressed in terms of Kum-
mer’s confluent hypergeometric function, 1F1(a,c;z), which
is related to the incomplete Gamma function via γ(a,z) =
a−1 za e−z

1F1(1,a+ 1;z).61 This relation leads to Eq. (7) in
the main text. One identifies the denominator of Eq. (7) with
the Laplace transform of the overdamped (diffusive) limit for
the ISF.
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