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Being motivated by the surge of fermionic quantum Monte Carlo simulations at
finite temperature, we present a detailed analysis of the permutation-cycle prop-
erties of path integral Monte Carlo (PIMC) simulations of degenerate electrons.
Particular emphasis is put onto the uniform electron gas in the warm dense matter
regime. We carry out PIMC simulations of up to N = 100 electrons and investigate
exchange-cycle frequencies, which are found not to follow any simple exponential
law even in the case of ideal fermions due to the finite size of the simulation box.
Moreover, we introduce a permutation-cycle correlation function, which allows us
to analyse the joint probability to simultaneously find cycles of different lengths
within a single configuration. Again, we find that finite-size effects predominate
the observed behaviour. Finally, we briefly consider an inhomogeneous system,
namely electrons in a 2D harmonic trap. We expect our results to be of interest
for the further development of fermionic PIMC methods, in particular to alleviate
the notorious fermion sign problem.
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Keywords: Path-integral Monte-Carlo, degenerate electrons, Quantum-Monte-
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I. INTRODUCTION

The well-known path-integral Monte-Carlo (PIMC) method1–3 constitutes a highly suc-
cessful tool for the simulation of distinguishable particles (often referred to as boltzmannons)
and bosons. Due to its exact nature, PIMC has been pivotal for the understanding of impor-
tant physical effects such as superfluidity4–6 and Bose-Einstein condensation7,8 and, using
state-of-the-art Monte-Carlo sampling techniques like the worm algorithm by Boninsegni et
al.9,10, simulations of up to N ∼ 104 particles are possible.

In stark contrast, PIMC simulations of fermions like He3 or electrons are severely lim-
ited by the notorious fermion sign problem11,12. This is a direct consequence of the anti-
symmetry under particle-exchange, leading to a cancellation of positive and negative terms,
which can result in an almost vanishing signal-to-noise ratio. Consequently, PIMC simula-
tions of electrons are restricted to relatively high temperature or strong coupling, but break
down when quantum-degeneracy effects become important. This is very unfortunate, as
fermionic quantum Monte-Carlo simulations at finite temperature are highly needed for the
description of, e.g., ultracold atoms13–15, lattice models16–18, or even exotic quark-gluon
plasmas19,20.

An application of particular interest is so-called warm dense matter—an extreme state
occurring in astrophysical objects like giant planet interiors21–23, on the pathway towards
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inertial confinement fusion24,25, or in state-of-the art experiments with, e.g., free-electron
lasers or diamond anvil cells, see Ref. 26 for a topical review. More specifically, the warm
dense matter regime is characterized by two parameters that are both of the order of one:
1) the density parameter (or coupling parameter, Wigner-Seitz radius27) rs = r/aB, with
r and aB being the average inter-particle distance and Bohr radius, and 2) the degeneracy
temperature θ = kBT/EF, where EF denotes the usual Fermi energy28. Therefore, the
intricate and nontrivial interplay of a) Coulomb coupling, b) thermal excitation, and c)
quantum degeneracy effects renders a thorough theoretical description most challenging29,
leaving ab initio quantum Monte Carlo methods as the option of choice30. Consequently,
over the last years, there has been a remarkable spark of new developments in the field of
thermodynamic quantum Monte Carlo simulations of electrons at finite temperature31–47.
Yet, despite this impressive progress, there still does not exist a single method that is capable
to provide an accurate description of a correlated Fermi system for all parameters12, which
makes the further development of state-of-the-art QMC simulations indispensable.

In fact, the PIMC representation of the partition function is given by a sum over so-called
permutation cycles. Therefore, in this article, we investigate the permutation properties of
the uniform electron gas in the warm dense matter regime31,48–51, an important model
system, which has been fully described only recently31,35,52. Of particular interest is the
structure of the permutation space of particle coordinates, which fully determines the degree
of severity of the fermion sign problem within a path-integral Monte-Carlo calculation, and,
therefore, whether simulations are feasible53,54. Recently, Dubois et al.55 have proposed that
if permutations of particles were independent of each other, the full fermionic configuration
space could be significantly simplified, and PIMC simulations were possible at parameters
that are currently out of reach for other methods. The main goal of the present work is to
check this assumption by investigating correlation effects (which includes, but is not limited
to effects caused by the Coulomb coupling between electrons) within the permutation cycles
and, in this way, to assess if further simplifications are possible.

The paper is organised as follows: in Sec. II, we introduce the theoretical background
of the PIMC method (II A), how it needs to be adapted to the simulation of identical
particles (II A 1), and, in the case of fermions, how this leads to the fermion sign problem
(II A 2). Furthermore, in Sec. II B we introduce several quantities to measure the desired
permutation cycle properties and give a few useful formulas for the noninteracting (ideal)
case (II C). In Sec. III, we discuss our simulation results starting with noninteracting
fermions (III A), which, remarkably, exhibit a quite nontrivial behaviour due to the finite
size of the simulation box. The bulk of our results is devoted to the warm dense electron gas
(III B), where we investigate different system sizes, coupling strengths, and temperatures.
Further, in Sec. III C we extend our considerations to electrons in a 2D harmonic trap,
where the finite-size effects are an inherent feature of the system. Lastly, in Sec. IV we
summarise our findings and discuss the implications on the future development of PIMC
simulations of electrons at finite temperature.

II. THEORY

A. Path Integral Monte Carlo

Let us consider a system of N distinguishable particles in a three-dimensional box of
length L and volume V = L3 at an inverse temperature β = 1/kBT . In thermodynamic
equilibrium, such a system is fully described by the canonical partition function

Z = Tr ρ̂ = Tr e−βĤ , (1)

with the Hamiltonian Ĥ = V̂ + K̂ being the sum of a potential and a kinetic contribution,
respectively. In coordinate space, Eq. (1) becomes

Z =

∫
dR 〈R| e−βĤ |R〉 =

∫
dR ρ(R,R, β) , (2)
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FIG. 1. Possible permutation classes of three spin-polarized electrons in the path-integral Monte-
Carlo formalism—Shown are configurations in the x-τ -plane with no exchange (left), one pair-
exchange and a single particle (center), and two pair-exchanges leading to one three-particle cycle
(right). The corresponding fermionic configuration weights WF(X) are positive, negative, and
positive, respectively.

with R = (r1, . . . , rN )T containing the coordinates of all N particles, and ρ(R,R′, β) being
the thermal density matrix. Unfortunately, Eq. (2) is not directly useful since the matrix

elements of ρ̂ cannot be readily evaluated as V̂ and K̂ do not commute,

e−β(V̂+K̂) 6= e−βV̂ e−βK̂ . (3)

To overcome this obstacle, we use a semi-group property of the density operator,

e−βĤ =

P−1∏
α=0

e−εĤ , (4)

with ε = β/P , and, according to the well-known Trotter formula56,57, the factorization error
from Eq. (3) vanishes in the limit of large P ,

e−β(V̂+K̂) = lim
P→∞

(
e−εV̂ e−εK̂

)P
. (5)

In a nutshell, we can express the density-matrix elements at some temperature T , ρ(R,R′, β),
as a product of P density-matrices, but at a P -times higher temperature, ρ(R,R′, ε). This
is advantageous, since, for sufficiently large P , we can evaluate ρ(R,R′, ε) using a suitable
high-temperature approximation, with P being a convergence parameter within the PIMC
formalism. The partition function thus becomes

Z =

∫
dRdR1 . . . dRP−1

P−1∏
α=0

ρ(Ri,Ri+1, ε) , (6)

with R = R0 = RP due to the definition of the trace. Formally, the density matrices
in Eq. (6) are equivalent to propagators in the imaginary timeτ ∈ [0, β] by a time step ε,
and the trace is then interpreted as the sum over all closed paths X. This is illustrated
in the left panel of Fig. 1, where we show a configuration of N = 3 particles—each being
represented by an entire closed path of P = 6 sets of coordinates—in the x-τ -plane. In this
way, the complicated quantum mechanical system of interest has effectively been mapped
onto a system of classical ring-polymers58. The only seeming drawback of this procedure
is the drastic increase in the dimensionality in Eq. (6), which makes the application of
standard quadrature schemes unfeasible. Fortunately, this obstacle can be overcome by
the utilization of stochastic, i.e., Monte-Carlo methods, which are not afflicted by this
curse of dimensionality59,60. In particular, the basic idea of the path-integral Monte-Carlo
method1–3 is to use the Metropolis algorithm61 to randomly generate a Markov chain ofNMC
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particle configurations X, {X}MC, distributed according to their respective contribution
W (X) to the partition function,

Z =

∫
dX W (X) , (7)

with dX = dR0 . . . dRP−1. The expectation value of a given observable Â is then computed
as the sum over these elements,

〈Â〉 ≈ 1

NMC

∑
X∈{X}MC

A(X) , (8)

with A(X) being the so-called estimator. For completeness, we note that for any finite
number of Monte-Carlo samples NMC, Eq. (8) is subject to a statistical uncertainty ∆A,
which vanishes as

∆A ∼ 1√
NMC

. (9)

Hence, the Monte-Carlo error can—at least in principle—be made arbitrarily small and the
PIMC approach is quasi-exact.

A more detailed introduction of the PIMC method including a description of sampling-
schemes and the computation of observables is beyond the scope of the present work and
the interested reader is referred to, e.g., Refs. 3, 9, and 31.

1. Identical Particles: PIMC simulation of bosons and fermions

Let us next extend our consideration to the simulation of N spin-polarized bosons or
fermions. The partition function is then given by3

ZB,F =
1

N !

∑
σ∈SN

∫
dX (±1)

T
ρ(R0, π̂σR1, ε) (10)

P−1∏
α=1

ρ(Ri,Ri+1, ε) ,

and incorporates a summation over all elements σ of the permutation group SN , with π̂σ
being the corresponding permutation operator. The plus and minus sign corresponds to
bosons and fermions, respectively, which means that the sign of the configuration weight
function W (X) alternates with the number of pair permutations T in the latter case. This
renders fermionic PIMC simulations somewhat tricky, as we shall see in Sec. II A 2.

In practice, Eq. (10) implies that we now also have to stochastically generate configura-
tions with trajectories where the start- and end-points of a given particle are not identical.
This leads to so-called exchange-cycles, which are illustrated in Fig. 1 for a system of N = 3
identical particles. The left panel shows a configuration without any permutations, such as
we have already encountered in the discussion of PIMC simulations of distinguishable par-
ticles. Consequently, the corresponding fermionic configuration weight WF(X) is positive.
In contrast, the central panel depicts a configuration with a single pair-exchange, leading to
one path containing two particles and one path containing only one. In the case of fermions,
the sign of the weight function is negative, WF(X) ≤ 0. Finally, in the right panel we show
a configuration with two pair-permutations, leading to only a single path, which contains
all N = 3 particles with a positive configuration weight.

As a side remark, we mention that the efficient realization of such exchange-cycles was
solved only relatively recently by the worm algorithm introduced in Refs. 9 and 10. All
results shown in the present work have been obtained using a canonical adaption of this
approach.
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In the case of bosons, such as ultracold atoms62–64 or composite particles like indirect
excitons65, all contributions to Z in Eq. (10) are strictly positive and PIMC simulations
have been successfully used to study important phenomena such as superfluidity4–6, Bose-
Einstein condensation7,8, and collective excitations66,67. Unfortunately, for fermions, such
as the ubiquitous electrons, this does not hold true, and PIMC simulations are afflicted
with the notorious fermion sign problem11,12.

2. The fermion sign problem

As we have seen in the previous section, a direct utilization of the Metropolis algorithm
to generate a Markov chain of fermionic configurations X distributed according to their
respective weight function WF(X) is not possible, as probabilities must not be negative.
To work around this issue, we can generate a Markov chain of configurations X distributed
according to the absolute value of the fermionic weight function

Z ′ =

∫
dX |WF(X)| = ZB , (11)

which, in the case of standard PIMC, are nothing else than the bosonic weights, as
|WF(X)| = WB(X). The fermionic expectation value of an observable Â is then com-
puted as

〈Â〉 =
〈ÂŜ〉

′

〈Ŝ〉
′ , (12)

with S(X) = WF(X)/WB(X) being the sign of a particular configuration X, and the nota-
tion 〈. . .〉′ referring to the expectation value with respect to the bosonic weights

〈Â〉
′

=
1

ZB

∫
dX WB(X)A(X) = 〈Â〉B . (13)

The denominator in Eq. (12) is the so-called average sign

S := 〈Ŝ〉
′

=
1

ZB

∫
dX WB(X)S(X) (14)

=
ZF

ZB
= e−βN(fF−fB) ,

which is readily identified as the ratio of the fermionic and bosonic partition function (with f
denoting the free energy per particle), and constitutes a measure for the amount cancellation
of positive and negative contributions within the PIMC simulation12,31,68. In particular,
the statistical uncertainty of Eq. (12) is inversely proportional to S,

∆AF ∼
1

S
√
NMC

∼ eβN(fF−fB)

√
NMC

, (15)

and thus exponentially increases both with system size N and towards low temperature.
This can only be compensated by increasing the number of Monte Carlo samples as ∼
1/
√
NMC, which quickly becomes unfeasible as one runs into an exponential wall. This is

the origin of the notorious fermion sign problem11, which limits standard PIMC simulations
of electrons to relatively high temperature or strong coupling and has been shown to be
NP -hard for a certain class of Hamiltonians69.

B. Permutation Cycle Properties

Evidently, the feasibility of a standard PIMC simulation of electrons depends on the
probability of pair-exchanges or, more specifically, on the prevalence of different exchange-
cycles. This is illustrated in Fig. 2, where we show snapshots from a PIMC simulation
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FIG. 2. Snapshots from PIMC simulations of the uniform electron gas at metallic density, rs = 2,
with N = 19 and P = 100 for θ = 4 (top) and θ = 0.5 (bottom). The blue beads correspond to
particle coordinates and the red lines to their respective connection in the imaginary time.

of N = 19 spin-polarized electrons with P = 100 high-temperature factors at a metallic
density, rs = 2. The top panel corresponds to a relatively high temperature, θ = 4. In this
case, the extension of the paths of different particles, which is proportional to the thermal
wavelength λβ =

√
~22πβ/m, is significantly smaller than the average inter-particle dis-

tance r. Consequently, fermionic exchange-effects are not of paramount importance, and
exchange-cycles only seldom occur within a PIMC simulation, which results in an average
sign of S ≈ 0.7. In stark contrast, the bottom panel depicts a snapshot for θ = 0.5, which
falls into the important warm dense matter regime. In this case, λβ is comparable to r,
and fermionic exchange-effects predominate. In fact, as we shall see in Sec. III, at these
conditions even macroscopic exchange-cycles containing all N particles have a significant
weight. Accordingly, configurations with positive and negative configuration weights occur
with a similar frequency, the average sign vanishes within the given statistical uncertainty
[S = 0.0004(3)], and the resulting cancellation renders standard PIMC simulations unfeasi-
ble in this regime.

In the following section, we will introduce two quantities that allow for a more rigorous
characterization of the permutation cycle properties of a PIMC simulation.

The probability to find a permutation cycle of length l (i.e., a path of length l · β in the
imaginary time) can be readily defined as

P (l) =
1

lN

〈
N∑
i=1

δ(i, l)

〉
, (16)

with δ(i, l) vanishing, except when particle i is involved in an exchange-cycle of length l.
Note that the pre-factor 1/l makes us count each cycle of length l only once in the definition
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of P (l), and the division by N ensures the normalization to one independent of the system
size. The PIMC expectation value for Eq. (16) is then expressed as

P (l) =
1

NMC

∑
X∈{X}MC

 1

N

∑
m∈{m}X

δm,l

 , (17)

with the second sum being carried out over all lengths m in the set of permutation cycles
{m}X present in a particular Monte-Carlo configuration X. Note that, even in the case of
a fermionic PIMC simulation, Eq. (17) is always computed as a bosonic expectation value,
i.e., an observable in the modified configuration space Z ′ = ZB.

For the ideal (i.e., non-interacting) system, Eq. (16) can be computed semi-analytically
from different partition functions (see Sec II C) as70

P (l) =
ZB,1(lβ)ZB,N−l(β)

l ZB,N(β)
, (18)

which can be used to check the validity of our implementation.
One of the central questions to be investigated in this work is whether the probability

to find a cycle of length l within a PIMC simulation depends on the presence of other
permutation cycles or, more specifically, on {m}X. To answer this question, we define a
permutation-cycle correlation function

P (l, k) =
2

lkN(N − 1)

〈
N∑
i=1

N∑
j>i

δ(i, l)δ(j, k)

〉
, (19)

which is evaluated in our PIMC simulations as

P (l, k) =
1

NMC

∑
X∈{X}MC

(
1

N(N − 1)
(20)

∑
m∈{m}X

∑
n∈{n}X

δm,lδn,k(1− δm,n)

 .

In particular, if the probability for a cycle of length l is independent of the presence of other
cycles, Eq. (20) should coincide with the uncorrelated quantity

Pu(l, k) = P (l)P (k) , (21)

for all l and k. In that case, the explicit evaluation of the N ! positive and negative terms
in Eq. (10) can be reduced to the (still a-priori unknown) N permutation-cycle frequencies
P (l) [cf. Eq.(16)], which would lead to an effective computational cost scaling as O (N) with
the size of the system55 and, thereby, circumvent the fermion sign problem. Moreover, the
authors of Ref.55 assume an exponential distribution P (l) = c−l, which reduces the fermionic
PIMC simulation to a single unknown parameter, i.e., c. The empirical investigation of both
claims is one of the central goals of the present work.

C. Ideal Bose and Fermi gas

To check the validity of our implementation and analyze our PIMC results for correlated
electrons, it is useful to consider the ideal system where P (l) can be computed from Eq. (18).
The ideal canonical partition function obeys a recursion relation with respect to the system
size N of the form70

ZB,N (β) =
1

N

N∑
η=1

ZB,1(ηβ)ZB,N−η(β) , (22)

http://dx.doi.org/10.1063/1.5093171


8

FIG. 3. Partition function ZB,1 for a single particle in a periodic box corresponding to θ = 0.5 and
rs = 2 for N = 100 (squares) and N = 19 (boxes). The colored and dark grey symbols correspond
to the exact infinite sum [Eq. (23)] and approximate analytical result [Eq. (24)], respectively.

with ZB,0 = 1. The initial condition for Eq. (22) is given by the single particle partition
function ZB,1, which for a three-dimensional periodic box of length L is given by

ZB,1(β) =

( ∞∑
x=−∞

e−βEx

)3

, (23)

Ex =

(
2πx

L

)2
1

2
,

and has to be evaluated at different multiples of the inverse temperature β. In the limit of
a large box (compared to the thermal wavelength, L � λβ), the sum in Eq. (23) can be
transformed into a continuous integral, and we obtain the simple expression∑

x

→
∫

dx⇒ ZB,1(β) =
V

λ3β
. (24)

In Fig. 3, we show ZB,1(ηβ) computed from Eq. (23) for the relevant multiples of β
for the UEG with N = 100 (green squares) and N = 19 (red circles) at θ = 0.5. With
decreasing temperature (i.e., increasing inverse temperature ηβ), only the lowest state in
Eq. (23) is occupied, and Z converges to one. In addition, the dark grey symbols depict
the results for ZB,1(ηβ) from the continuous approximation Eq. (24). At large temperature
(small η), replacing the discrete sum by an integral is accurate, but with increasing η
the thermal wavelength eventually becomes comparable to L and the approximation breaks
down. Naturally, this happens at slightly lower temperature for the larger system. Thus, we
conclude that a numerical evaluation of the infinite sum, Eq. (23), is essential to accurately
compute the permutation-cycle distribution P (l), and to perform a meaningful check of our
PIMC data.

III. RESULTS

A. Ideal Fermi gas

Let us start our investigation of the permutation-cycle properties by considering N ideal
spin-polarized fermions in a three-dimensional periodic box of length L. The corresponding
Hamiltonian is simply given by

Ĥ = − ~2

2m

N∑
k=1

∇2
k , (25)
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FIG. 4. PIMC results for the permutation cycle properties of the ideal Fermi gas at θ = 0.5—
Probability of each particle to be involved in a permutation cycle of length l, P (l)l (panel a, symbols
depict PIMC data and blue lines the analytical result [Eq. (18)]), and segments of the permutation
cycle pair distribution function P (k, l) for k = 1, 3, 10 (panels b,c,d), with the colored and grey
symbols corresponding to our PIMC results and the uncorrelated analogue Pu(k, l) = P (l)P (k),
respectively.

which is readily diagonalised by plane-waves of the form

Φk(r) = 〈r|k〉 =
eir·k√
V

, (26)

with k = 2πL−1(a0, a1, a2)T and ai ∈ Z, leading to the partition function in Eq. (23).
In panel a) of Fig. 4, we show the probability of a single particle to be in a permutation-

cycle of length l, P (l)l, for N = 1000 (yellow triangles), N = 100 (green squares), N = 33
(red circles), and N = 19 (black crosses) ideal fermions at θ = 0.5. For completeness, we
mention that the density-parameter has been chosen as rs = 2 in our PIMC simulations,
although the ideal results are independent of rs. The symbols correspond to our PIMC
data evaluated as a histogram according to Eq. (17), and the continuous blue lines to the
semi-analytical result, Eq. (18). First and foremost, we note the perfect agreement between
the PIMC data and the exact result over the entire l-range, which is a strong verification of
our implementation. An additional comparison for different temperatures can be found in
Fig. 9. Moreover, the P (l)l data for different N are in agreement with each other for small
l, but there appear large-sized deviations for l & 4. These finite-size effects manifest as a
steep decrease for large l, which is a consequence of the periodicity of the simulation box.
More specifically, if we have a permutation-cycle of length l and propose a pair-exchange
with a particle that is already involved in the same trajectory, this exchange-cycle is split
up into two smaller ones. Therefore, large permutation-cycles are significantly suppressed
as compared to the macroscopic system in the thermodynamic limit, N → ∞. Lastly, we
mention that P (l)l does not exhibit an exponential decay with l for any depicted system
size, even in the case of noninteracting fermions.

In Fig. 4 b), we show PIMC data for the permutation-cycle correlation function P (1, l)

http://dx.doi.org/10.1063/1.5093171
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FIG. 5. Permutation cycle pair distribution function P (k, l) for the ideal Fermi gas with N = 33
and θ = 0.5. The top and bottom panels correspond to the PIMC results [see Eq. (20)] and the
uncorrelated analogue given by Pu(k, l) = P (l)P (k), respectively.

[see Eq. (20)] for N = 100 (green squares) and N = 33 (red circles), which is a measure for
the joint probability to find one single particle and one permutation-cycle of length l within
the PIMC simulation at the same time. Again, we observe a perfect agreement of both data
sets for small l, and significant finite-size effects for l & 5. The dark grey symbols show
the corresponding uncorrelated function Pu(1, l) [see Eq. (21) in Sec. II B], which, for ideal
fermions in the thermodynamic limit, should exactly reproduce P (1, l). While this does
indeed (approximately) hold for N = 100 over the entire depicted l-range, there appear
sizeable deviations for N = 33 for l & 15. In fact, it always holds P (k, l) = 0 for k+ l > N ,
which is not the case for the uncorrelated analogue Pu(k, l), and the two quantities deviate
even for l + k < N , cf. Fig. 5. In panels c) and d) of Fig. 4, we show P (3, l) and P (10, l),
which exhibit a similar behavior, although the finite-size effects are more pronounced and
start for smaller l.

For completeness, in Fig. 5 we show the full k- and l-dependence of P (k, l) (top) and
Pu(k, l) (bottom) for the case of N = 33. In a nutshell, the joint probability to find a
permutation-cycle of length l depends on the composition of a configuration X even for
ideal fermions, which is a direct consequence of the finite number of particles.

B. Uniform electron gas

Let us next consider the case of the uniform electron gas31,71, which is governed by the
Hamiltonian

Ĥ = − ~2

2m

N∑
k=1

∇2
k +

N∑
k=1

N∑
l=k+1

W (r̂k, r̂l) , (27)
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FIG. 6. Probability of a particle to be involved in a permutation cycle of length l, P (l)l, for the
uniform electron gas for different particle numbers N at rs = 2 and θ = 0.5 (top) and for different
density parameters rs at N = 33 and θ = 0.5 (bottom).

with W (r, r′) being the pair-interaction. To speed up our calculations, we have replaced the
usual Ewald summation72 with the spherically-averaged potential by Yakub and Ronchi73,74,
where the summations in reciprocal and coordinate space can be carried out analytically.
In the moderately coupled warm dense matter regime that is of interest in this work, the
effect on the permutation-cycle properties is negligible.

In Fig. 6 (top), we show PIMC results for P (l)l for the spin-polarized UEG in the warm
dense matter regime at rs = 2 and θ = 0.5 with N = 100 (green squares), N = 33 (red
circles), N = 19 (black crosses), and N = 10 (blue diamonds). First and foremost, we note
that the results are qualitatively very similar to the noninteracing data shown in Fig. 4,
including the distinct finite-size effects. Moreover, here, too, we do not find an exponential
decay of P (l) with the permutation-cycle length l. In the bottom panel, we compare PIMC
data for the UEG with N = 33 electrons at θ = 0.5 for rs = 2 (green squares), rs = 10
(red circles), rs = 20 (black crosses), and the noninteracting case (blue diamonds). With
increasing rs, the system becomes more sparse and, consequently, the coupling strength
increases28. The resulting repulsion-induced inter-particle separation leads to a suppression
of exchange-effects. Thus, we find an increased probability of single-particle trajectories,
whereas permutation-cycles with l ≥ 2 occur less often as compared to the noninteracting
case.

Let us next consider the permutation-cycle correlation function P (k, l), which is shown in
Fig. 7. In the top panel, we investigate the correlation between single-particles and cycles
of length l, P (1, l), for N = 33 and θ = 0.5 for rs = 2 (green squares), rs = 20 (red circles),
and the ideal case (blue diamonds). We note that all three curves exhibit a very similar
behaviour. The dark grey symbols correspond to the uncorrelated joint probability Pu(k, l),
cf. Eq. (21). Remarkably, we find that independent of the coupling strength, Pu(k, l) and
P (k, l) are approximately identical for small l, which means that the probabilities to find
such permutation-cycles are not correlated. In addition, the deviation between the grey
and coloured symbols for larger l is qualitatively identical for all three curves. This is a
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FIG. 7. Segments of the permutation cycle pair distribution function P (k, l) for k = 1 (top) and
k = 6 (bottom) for the uniform electron gas with N = 33, and θ = 0.5 for rs = 2 and rs = 20.
The colored and grey symbols correspond to our PIMC results and the uncorrelated analogue
Pu(k, l) = P (l)P (k), respectively.

strong indication that the observed correlations in the exchange-cycles are a direct result of
the finite number of electrons, and not due to the Coulomb repulsion, even for the strongly
coupled case (rs = 20). In the bottom panel, we show the same information for P (6, l).
While the deviations between P and Pu start to appear even at l = 2, this difference is
again already qualitatively present for the noninteracting case, which means that here, too,
Coulomb correlations due not constitute the dominating effect.

Finally, in Fig. 8, we show the full l- and k-dependence of P (l, k) (left column) and Pu(l, k)
(right column) for rs = 2 (top row) and rs = 20 (bottom row). Firstly, the grey areas in the
top-right corner of the P -plots directly follow from the fact that P (l, k) = 0 for l + k > N ,
see the corresponding discussion in Sec. III A. Apart from this, the uncorrelated function
relatively accurately reproduces the real joint probability from our PIMC simulations for
small k and l, whereas the deviations become more manifest for larger permutation-lengths
due to the finite system size.

Let us conclude our analysis of the permutation-cycle properties of PIMC simulations of
the warm dense electron gas with an investigation of the temperature-dependence, which is
shown in Fig. 9.

In panel a), we show PIMC results for P (l)l for a system of N = 33 ideal fermions at
θ = 0.125 (green squares), θ = 0.5 (red circles), θ = 1 (black crosses), and θ = 4 (yellow
triangles). Again, the continuous blue lines correspond to the semi-analytical solution [see
Eq. (18)] and are in perfect agreement with our PIMC data over the entire l-range for all four
temperatures. At θ = 0.125, the probability of a particle to be included in a permutation-
cycle of length l is almost independent of l, resulting in a nearly flat curve. In fact, in the
ground state limit, θ → 0, this probability becomes exactly constant, P (l)l = 1/N , which
leads to a vanishing average sign S in a PIMC simulation70. Therefore, the associated
statistical uncertainty, Eq. (15), diverges and PIMC simulations are even theoretically im-
possible. With increasing temperature, P (l)l exhibits an increasingly steep descent, whereas
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FIG. 8. Permutation cycle pair distribution function P (k, l) for the uniform electron gas with
N = 33, and θ = 0.5 for rs = 2 (top row) and rs = 20 (bottom row). The left and right
panels correspond to the PIMC results [see Eq. (20)] and the uncorrelated analogue given by
Pu(k, l) = P (l)P (k), respectively.

the probability to find single-particle trajectories is larger. This is a direct consequence of
the smaller extension of the single-particle wave function, cf. the discussion of Fig. 2 in
Sec. II B. Moreover, we note that, at θ = 1 and θ = 4, P (l)l does exhibit an approximately
exponential decay.

In panel b) we show the same information, but for an interacting electron gas at rs = 2,
i.e., at a metallic density in the warm dense matter regime. First and foremost, we stress
the qualitative similarity to the noninteracting case shown in panel a), in particular for the
lowest temperature. In contrast, for θ = 1 and θ = 4, P (l) does exhibit an exponential
decay similar to the ideal case, but with a significantly steeper slope. Therefore, somewhat
counter-intuitively, Coulomb-correlation effects are more visible in the permutation-cycle
probability at larger temperature, where the system is more weakly coupled.

Finally, in the bottom row of Fig. 9 we compare the permutation-cycle correlation function
P (k, l) for different temperatures. In panel c), we show PIMC results for P (1, l) of the UEG
at θ = 0.125 (green squares) and θ = 1 (red circles). In addition, the corresponding dark
grey and yellow symbols depict results for Pu(1, l) and PIMC results for P (1, l) for the
noninteracting system at the same conditions, respectively. At the lower temperature, all
three curves approximately coincide for l . 30, i.e., almost over the entire l-range. Only for
large permutation-lengths, finite-size effects lead to a deviation towards the uncorrelated
joint probability Pu(1, l), whereas the data for the UEG and the noninteracing system are
still in agreement. Evidently, the latter fact is a direct consequence of P (l)l being almost
flat in both cases. In contrast, at θ = 1, P (1, l) and Pu(1, l) are still in good agreement,
while the ideal results significantly deviate for all l.

Lastly, panel d) shows results for P (6, l) and Pu(6, l) for the same conditions, with similar
results albeit distinctly larger finite-size effects, as it is expected.
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FIG. 9. PIMC results for the permutation cycle properties of the ideal Fermi gas and the UEG at
rs = 2 with N = 33—Probability of each particle to be involved in a permutation cycle of length
l, P (l)l for the ideal system (panel a, symbols depict PIMC data and blue lines the analytical
result [Eq. (18)]), and the UEG (panel b). Segments of the permutation cycle pair distribution
function P (k, l) of the UEG for k = 1, 6 (panels c and d), with the colored, yellow and grey symbols
corresponding to our PIMC results for the UEG and ideal system, and the uncorrelated analogue
Pu(k, l) = P (l)P (k) for the UEG, respectively.

1. Relative importance of permutation cycle correlations

To further quantify the importance of correlations between permutation cycles, we con-
sider the relative deviation between P (l, k) and Pu(l, k),

δP (l, k) =
P (l, k)− P (l)P (k)

P (l, k)
. (28)

The results for Eq. (28) are shown in Fig. 10 where we plot δP (1, l) (top) and δP (3, l)
(bottom) for N = 33 particles with rs = 2 and θ = 0.5. The green squares correspond to
the case of ideal fermions and the red circles to the uniform electron gas. In both plots,
we observe a remarkably small deviation for small permutation cycles, as it is expected. In
contrast, for large cycles (l ∼ 20) there appear significant relative deviations of several hun-
dred percent. This illustrates that the previously observed qualitative agreement between
P (l, k) and Pu(l, k) does not mean that correlation effects of the permutation properties
within a PIMC simulation are not important.

C. 2D quantum dot

Let us conclude this paper by extending our considerations to an inhomogeneous system.
For this purpose, we simulate electrons in a two-dimensional harmonic trap, which are
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FIG. 10. Relative deviation δP (l, k) [see Eq. (28)] between P (l, k) and Pu(l, k) = P (l)P (k) for
N = 33 particles at rs = 2 and θ = 0.5. The green squares and red circles correspond to ideal
fermions and the uniform electron gas, respectively.

governed by the Hamiltonian

Ĥ = −1

2

N∑
k=1

∇2
k +

1

2

N∑
k=1

r2k +

N∑
k=1

N∑
l=k+1

λ

|rl − rk|
, (29)

where we have used oscillator units (i.e., distances are given in units of l0 =
√

~/(mω) and
energies in units of E0 = ~ω), and λ denotes the dimensionless coupling constant. Such a
system is often used as a simple model for electrons in a quantum dot75–77, and constitutes
a useful benchmark for the development of quantum Monte Carlo methods32,78,79.

In Fig. 11 a), we show radial density profiles for N = 10 electrons at a moderate tem-
perature and weak coupling, β = 0.5 and λ = 0.5. The green curve corresponds to the
bosonic density measured in the modified configuration space Z ′ = ZB and the red curve
to the corresponding fermioninc density profile that has been computed from Eq. (12).
Evidently, bosons tend to cluster more around the centre of the trap, whereas the Pauli
blocking acts as an effective repulsive force80, which leads to a more pronounced spatial
separation and pushes the electrons outwards. We again stress that both data sets have
been obtained within the same PIMC simulation and the differences between bosons and
fermions are purely a result of the cancellation of positive and negative terms, see Ref. 68
for an extensive topical discussion.

In panel b), we show the corresponding permutation-cycle probabilities P (l)l for β = 0.5
(green squares), β = 1 (red circles), and β = 3 (blue diamonds). Note that the average
signs are given by S = 0.0615(1), S = 0.00022(4), and S = −0.00003(3), respectively, which
means that PIMC simulations are only feasible at β = 0.5. In contrast, for the lowest
considered temperature, the sign vanishes within the given statistical uncertainty. For the
largest temperature, we find a smooth decay with l, whereas for β = 3 the probability
to find a particle in an exchange-cycle of length l is again almost constant, see also the
description of Fig. 9 for a more extensive discussion.
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FIG. 11. PIMC results for the density and permutation cycle properties of N = 10 electrons in a
2D harmonic trap with coupling strength λ = 0.5 and β = 0.5, 1, 3—Radial density distribution
n(r) for bosons and fermions in dependence of the distance to the center of the trap r (panel
a). Probability to find each particle in a permutation cycle of length l, P (l)l for different inverse
temperatures, (panel b), and segments of the permutation cycle pair distribution function P (k, l)
for k = 1, 3 (panels c,d), with the colored and dark grey symbols corresponding to our PIMC results
and the uncorrelated analogue Pu(k, l) = P (l)P (k), respectively.

Finally, in panels c) and d), we show our PIMC results for the joint probability P (1, l)
and P (3, l), and compare them to the corresponding uncorrelated function Pu(l, k) (dark
grey symbols). Similar to the previously discussed case of the warm dense electron gas, we
find that correlations between exchange-cycles are more pronounced for higher temperature,
and increase for larger cycle-lengths l. However, in contrast to the UEG, in the case of an
inhomogeneous system in an external potential, any finite-size effects have real physical
meaning and are not merely an artifact due to the inevitably limited finite simulation box
within a PIMC simulation. Therefore, approximation schemes that rely on the absence of
correlations between different permutation-cycles within a given configuration as proposed
in Ref. 55 are not applicable in this case.

IV. SUMMARY AND DISCUSSION

In summary, we have provided a detailed analysis of the permutation-cycle properties of
path-integral Monte-Carlo simulations of correlated, quantum degenerate electrons. To ver-
ify our implementation, and to further analyse our results for the warm dense electron gas,
we have begun our investigations by considering N ideal spin-polarised fermions in periodic
box. Even for this most simple case, we find an exponential decay in the permutation-cycle
distribution function P (l) only at relatively high temperatures, θ & 1. In addition, this
quantity exhibits severe finite-size effects, which increase with the cycle length l. Simi-
larly, the corresponding analysis of the permutation-cycle correlation-function P (l, k) has
revealed that cycles of different lengths are independent only for small l, whereas correla-
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tions increase for larger l, again due to the finite number of particles within the simulation.
In contrast, permutation-cycles of noninteracting fermions are completely independent in
the thermodynamic limit.

Extending our considerations to the warm dense electron gas, here, too, we have found
that exchange-cycles are almost independent for small l, and deviations between P (l, k) and
Pu(k, l) = P (k)P (l) only start to become important for long cycles. Due to the striking sim-
ilarity to the previously investigated ideal case, we have concluded that correlation effects of
permutation-cycle properties within a PIMC simulation are dominated by finite-size effects
and not, as it might have been expected, by the Coulomb interaction. In addition, we have
also investigated the temperature-dependence of these properties, which, again, has revealed
a remarkable behaviour: at low temperatures, where the system is most strongly correlated,
the permutation properties of the electron gas most closely resemble the exact behavior of
ideal electrons; at high temperatures, where correlation effects are expected to be less impor-
tant, the ideal and interacting system exhibit more pronounced deviations. The explanation
for this rather peculiar finding is the ground-state limit for the permutation-cycle distri-
bution function, P (l)l = 1/N , which is equal both in the interacting and noninteracting
cases.

In a nutshell, we have found that the permutation-cycle properties of interacting electrons
are qualitatively very similar to the noninteracting case. In particular, cycles of different
lengths are surprisingly uncorrelated, and the observed correlation effects in P (l, k) for large
l and k appear to be mainly an artifact due to the finite number of electrons within a given
simulation. Therefore, the proposed simplification of the fermionic configuration space from
Ref. 55 does indeed constitute a promising starting point to alleviate the sign problem and,
thus, to extend fermionic PIMC simulations to lower temperatures and stronger quantum
degeneracy. Moreover, neglecting the system size effects in P (l, k) might not necessarily
be a shortcoming, but could turn out to be a handy way to mitigate finite-size effects81,82.
Yet, it is important to note that the assumptions from Ref. 55 are only true qualitatively,
and the method does not necessarily become exact in the thermodynamic limit. Hence,
this scheme constitutes a (for now) uncontrolled approximation so that the exact character,
which is the main advantage of the PIMC method, is lost, while the computational cost will
still be substantial.

Finally, we have further extended our considerations to a finite system in an external
harmonic potential. In this case, however, the observed finite-size and correlation effects in
the permutation-cycle properties are not of an artificial nature, but instead represent real
physical behaviour. Therefore, neglecting correlations between cycles is not appropriate,
even for noninteracting fermions.

We expect our results to be of interest for the further development of PIMC simulations
of fermions, which, in turn is of high importance for many fields like the simulation of
ultracold atoms13–15, quark-gluon plasmas19,20, and warm dense matter30,31.
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