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Being motivated by the surge of fermionic quant D‘/the lo simulations at
finite temperature, we present a detailed analysis of $hé permutation-cycle prop-
erties of path integral Monte Carlo (PIMC) si f degenerate electrons.
Particular emphasis is put onto the uniform electron gasyin the warm dense matter

regime. We carry out PIMC simulations of ::p_to = 100 electrons and investigate

exchange-cycle frequencies, which are found not-to follow any simple exponential
law even in the case of ideal fermions due he finite size of the simulation box.
Moreover, we introduce a permutation-cyele correlation function, which allows us
to analyse the joint probability to Simultanéqusly find cycles of different lengths
within a single configuration. Again, find/that finite-size effects predominate
the observed behaviour. Finally, we“hriefly“consider an inhomogeneous system,
namely electrons in a 2D harmomic trap..We expect our results to be of interest
for the further developmentgof fermienic PIMC methods, in particular to alleviate

the notorious fermion sign p ‘5&71
—

PACS numbers: Valid P appear here
Keywords: Path-integral "Wlonte-Carlo, degenerate electrons, Quantum-Monte-

Carlo, Fermi gas

I. INTRODUCTI

The well—}?évn p —infdegral Monte-Carlo (PIMC) method! 3 constitutes a highly suc-
cessful tool for thegimulation of distinguishable particles (often referred to as boltzmannons)
e to 1t exact nature, PIMC has been pivotal for the understanding of impor-

s of up to N ~ 10* particles are possible.

co‘;drast, PIMC simulations of fermions like He? or electrons are severely lim-
otorious fermion sign problem!!'2. This is a direct consequence of the anti-
1% under particle-exchange, leading to a cancellation of positive and negative terms,

“wwhieh caf result in an almost vanishing signal-to-noise ratio. Consequently, PIMC simula-

\J

tions of electrons are restricted to relatively high temperature or strong coupling, but break
down when quantum-degeneracy effects become important. This is very unfortunate, as
ionic quantum Monte-Carlo simulations at finite temperature are highly needed for the
“description of, e.g., ultracold atoms!® !5 lattice models'® 18 or even exotic quark-gluon
plasmas!?:20,
An application of particular interest is so-called warm dense matter—an extreme state
occurring in astrophysical objects like giant planet interiors?’ 23, on the pathway towards
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inertial confinement fusion?42%, or in state-of-the art experiments with, e.g., free-electron

lasers or diamond anvil cells, see Ref. 26 for a topical review. More specifically, the warm
dense matter regime is characterized by two parameters that are both of the order of one:
1) the density parameter (or coupling parameter, Wigner-Seitz radius®’) r, = 7/ap, with
7 and ap being the average inter-particle distance and Bohr radius, and 2) the degeneracy
temperature § = kpT/Ep, where Er denotes the usual Fermi energy?8. Therefore, the
intricate and nontrivial interplay of a) Coulomb coupling, b) thermaj citation, and ¢

quantum degeneracy effects renders a thorough theoretical description mNengingQg,
leaving ab initio quantum Monte Carlo methods as the option of ghoicé$”. Consequently,
over the last years, there has been a remarkable spark of new developménts in the field of
thermodynamic quantum Monte Carlo simulations of electrons a

nitésgemperature3! 47,
Yet, despite this impressive progress, there still does not exist thod that is capable
to provide an accurate description of a correlated Fermi system for all parameters'?, which
makes the further development of state-of-the-art QMC 'on?ﬁ'fdispensable.

In fact, the PIMC representation of the partition func jon 15 given,by a sum over so-called
permutation cycles. Therefore, in this article, we investigate theh)ermutation properties of
the uniform electron gas in the warm dense mat€r-.reg1 31,4851 an important model

system, which has been fully described only recently3L:3%:52. " Of particular interest is the
structure of the permutation space of particle codrdi S, ‘@ich fully determines the degree
of severity of the fermion sign problem within a path-inteégral Monte-Carlo calculation, and,
therefore, whether simulations are feasible®3: /. Dubois et al.>® have proposed that
if permutations of particles were independm er, the full fermionic configuration

space could be significantly simplified, and PIMC simulations were possible at parameters
that are currently out of reach for other he main goal of the present work is to
check this assumption by investigati ion effects (which includes, but is not limited

corre
to effects caused by the Coulomb cou gh?) tween electrons) within the permutation cycles
and, in this way, to assess if further si iﬁi}ions are possible.

The paper is organised as foll Nﬁ c. II, we introduce the theoretical background
of the PIMC method (II w it needs to be adapted to the simulation of identical
particles (ITA 1), and, in the cage rmions, how this leads to the fermion sign problem
(ITA2). Furthermore, in Sec. II Bywve introduce several quantities to measure the desired
permutation cycle pr ies and give a few useful formulas for the noninteracting (ideal)
case (IIC). In Sec.llI, we jiscuss our simulation results starting with noninteracting
fermions (IITA), markably, exhibit a quite nontrivial behaviour due to the finite
size of the simulafi
(IIIB), Whe?ﬂre 1 stigg(e different system sizes, coupling strengths, and temperatures.
Further, in Secs I11C
ite—s,l\\ifsfects are an inherent feature of the system. Lastly, in Sec. IV we
summarige oun findings and discuss the implications on the future development of PIMC

simulation! electrons at finite temperature.

A: Patl&ntegral Monte Carlo

-

\J

L§t us consider a system of N distinguishable particles in a three-dimensional box of
th L and volume V = L3 at an inverse temperature 8 = 1/kgT. In thermodynamic
\equilibrium, such a system is fully described by the canonical partition function

Z=Trp=Tre " | (1)

with the Hamiltonian H =V + K being the sum of a potential and a kinetic contribution,
respectively. In coordinate space, Eq. (1) becomes

7= [dar ®Rle T IR) = [aRpRRS) 2)
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FIG. 1. Possible permutation classes of three spin-polarized elec or;s)1 the path-integral Monte-
Carlo formalism—Shown are configurations in the z-7-plane with né exchange (left), one pair-
exchange and a single particle (center), and two pair-exchangés<eading to one three-particle cycle
(right). The corresponding fermionic configuration weights Wr(X), are: positive, negative, and
positive, respectively. S

0 not commute,

with R = (ry,...,rx)7 containing the coordinaﬁgg:; ]aarticles, and p(R, R/, ) being

the thermal density matrix. Unfortunately, Eq. (2)is nﬁ'rdirectly useful since the matrix
elements of p cannot be readily evaluated K@\nd
o . S

-B(V+, )K‘ﬂ . (3)

with e = 3/P, and, according t

from Eq. (3) vanishes in-the limit ofilarge P,

N X N\ P
e AVHE) — lim (e_ﬁve_€K> . (5)
P—oo
In a nutshell, wé ca {pres the density-matrix elements at some temperature 7', p(R, R/, 3),
as a product &g:li' fmatrices, but at a P-times higher temperature, p(R, R/, €). This
)

is advantageous, siuce, for sufficiently large P, we can evaluate p(R, R/, €) using a suitable
re approximation, with P being a convergence parameter within the PIMC

formalism™Tlie partition function thus becomes
y P—1
= y. Z = /deRl...dRp_l l_IOp(Ri,Riﬂ,e) , (6)
o=

1 R} Ry = Rp due to the definition of the trace. Formally, the density matrices

in Eq*(6) are equivalent to propagators in the imaginary timer € [0, 3] by a time step e,
and\the trace is then interpreted as the sum over all closed paths X. This is illustrated
in the left panel of Fig. 1, where we show a configuration of N = 3 particles—each being
represented by an entire closed path of P = 6 sets of coordinates—in the x-7-plane. In this
may, the complicated quantum mechanical system of interest has effectively been mapped
onto a system of classical ring-polymers®®. The only seeming drawback of this procedure
is the drastic increase in the dimensionality in Eq. (6), which makes the application of
standard quadrature schemes unfeasible. Fortunately, this obstacle can be overcome by
the utilization of stochastic, i.e., Monte-Carlo methods, which are not afflicted by this
curse of dimensionality®®%°. In particular, the basic idea of the path-integral Monte-Carlo
method! 3 is to use the Metropolis algorithm®! to randomly generate a Markov chain of Ny
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particle configurations X, {X}nc, distributed according to their respective contribution
W(X) to the partition function,

7= /dX wWX) (7)

with dX = dRyg...dRp_1. The expectation value of a given observable g/is then computed
as the sum over these elements,

Ar o 3 AX) (®)

Xe{X}mc
with A(X) being the so-called estimator. For completene @note 1at for any finite

number of Monte-Carlo samples Nyc, Eq. (8) is subject to“a statistical uncertainty AA,
which vanishes as -

AA~ L . 3 9)

7

PIMC approach is quasi-ezact.

A more detailed introduction of the PIMGunethodsincluding a description of sampling-
schemes and the computation of observableg is ond the scope of the present work and
the interested reader is referred to, e.g.,,Refs."8, 9, 31.

S~

}(joson and fermions
.~

Let us next extend our consideration the simulation of N spin-polarized bosons or
fermions. The partition funefien is themsgiven by>

Mcf
Hence, the Monte-Carlo error can—at least in p%ﬁ%{nade arbitrarily small and the

1. Identical Particles: PIMC simulati

T .
Zoy =% [ X (D p(Ro, 7R (10)
" oeSn
P-1
H p(RivRi+17€) 5

/ / a=1
and incorpog a sumulation over all elements ¢ of the permutation group Sy, with 7,
being the gorresponding permutation operator. The plus and minus sign corresponds to
bosons 1ions, respectively, which means that the sign of the configuration weight

functi alternates with the number of pair permutations 7" in the latter case. This
ic PIMC simulations somewhat tricky, as we shall see in Sec. IT A 2.
ice, Eq. (10) implies that we now also have to stochastically generate configura-
ons, wi trzﬁctories where the start- and end-points of a given particle are not identical.
his leads t0'so-called exchange-cycles, which are illustrated in Fig. 1 for a system of N = 3
tical particles. The left panel shows a configuration without any permutations, such as
already encountered in the discussion of PIMC simulations of distinguishable par-
ticles. Consequently, the corresponding fermionic configuration weight Wg(X) is positive.
n contrast, the central panel depicts a configuration with a single pair-exchange, leading to
one path containing two particles and one path containing only one. In the case of fermions,
“the sign of the weight function is negative, Wg(X) < 0. Finally, in the right panel we show
a configuration with two pair-permutations, leading to only a single path, which contains
all N = 3 particles with a positive configuration weight.

As a side remark, we mention that the efficient realization of such exchange-cycles was
solved only relatively recently by the worm algorithm introduced in Refs. 9 and 10. All
results shown in the present work have been obtained using a canonical adaption of this
approach.
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In the case of bosons, such as ultracold atoms®2* or composite particles like indirect

excitons®, all contributions to Z in Eq. (10) are strictly positive and PIMC simulations
have been successfully used to study important phenomena such as superfluidity*®, Bose-
Einstein condensation”®, and collective excitations®®:67. Unfortunately, for fermions, such
as the ubiquitous electrons, this does not hold true, and PIMC simulations are afflicted
with the notorious fermion sign problem!!:12, /

2. The fermion sign problem 3\

As we have seen in the previous section, a direct utilization of
to generate a Markov chain of fermionic configurations X
respective weight function Wg(X) is not possible, as pro
To work around this issue, we can generate a Markov chain o
according to the absolute value of the fermionic weight function

7 = /dX |WF(X)C;ZB 3 (11)

which, in the case of standard PIMC, are ngthi els%)than the bosonic weights, as
[Wr(X)|] = Wp(X). The fermionic expectationwaluedof an observable A is then com-
puted as

opolis algorithm
ibuted according to their
ilities must' not be negative.

ﬁmtions X distributed

(12)

with S(X) = Wg(X)/Wg(X) being Nﬁ

tion (.. .>/ referring to the expectation‘yalie'with respect to the bosonic weights

I
@
ke
=
Lo
I

=
o)

(13)

The denominator in Eq. (12) is‘%’called average sign

\% Sy = ZLB / X Wi (X)S(X) (14)
4 _ % _ ANUr—fo)

which is read{ identified 4 the ratio of the fermionic and bosonic partition function (with f
denoting the % per particle), and constitutes a measure for the amount cancellation
ne

of positiye ﬂ gatiye contributions within the PIMC simulation'?3%:68. In particular,
the st icalduncertainty of Eq. (12) is inversely proportional to S,
AA 1 eBN(fr—fB) (15)
o~ ~ , 15
_— / Sv Nuc Nue

nd thu onentially increases both with system size N and towards low temperature.
is carSonly be compensated by increasing the number of Monte Carlo samples as ~

, which quickly becomes unfeasible as one runs into an exponential wall. This is
the§rigin of the notorious fermion sign problem!!, which limits standard PIMC simulations
of electrons to relatively high temperature or strong coupling and has been shown to be

S

“hard for a certain class of Hamiltonians®.

B. Permutation Cycle Properties

Evidently, the feasibility of a standard PIMC simulation of electrons depends on the
probability of pair-exchanges or, more specifically, on the prevalence of different exchange-
cycles. This is illustrated in Fig. 2, where we show snapshots from a PIMC simulation
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FIG. 2. Snapshots from PIMC sim s of the uniform electron gas at metallic density, rs = 2,
with N = 19 and P = 100 forf0 = 4 {op)and 0 = 0.5 (bottom). The blue beads correspond to

Meir respective connection in the imaginary time.

zed elegtrons with P = 100 high-temperature factors at a metallic

anel jcorresponds to a relatively high temperature, 6 = 4. In this

s of different particles, which is proportional to the thermal

wavelength 22/: 27 5/m, is significantly smaller than the average inter-particle dis-
cles

tance 7. Co uentlyy, férmionic exchange-effects are not of paramount importance, and
exchange- Ml om occur within a PIMC simulation, which results in an average
sign of S In stark contrast, the bottom panel depicts a snapshot for § = 0.5, which

?}nportant warm dense matter regime. In this case, Ag is comparable to 7,
and férmionicegxchange-effects predominate. In fact, as we shall see in Sec. III, at these
i eve acroscopic exchange-cycles containing all N particles have a significant
cight. coygingly, configurations with positive and negative configuration weights occur
ith a similar frequency, the average sign vanishes within the given statistical uncertainty
= 0.0004(3)], and the resulting cancellation renders standard PIMC simulations unfeasi-
S regime.
I the following section, we will introduce two quantities that allow for a more rigorous
characterization of the permutation cycle properties of a PIMC simulation.
e probability to find a permutation cycle of length [ (i.e., a path of length [ - 3 in the
“fmaginary time) can be readily defined as

1 N
P(l) = <Z 6(i,l)> : (16)

with §(¢,1) vanishing, except when particle 4 is involved in an exchange-cycle of length .
Note that the pre-factor 1/I makes us count each cycle of length [ only once in the definition



http://dx.doi.org/10.1063/1.5093171

AllP

Publishing

| This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.

of P(1), and the division by N ensures the normalization to one independent of the system
size. The PIMC expectation value for Eq. (16) is then expressed as

- > % S bmal| (17)

Nuc

Xe{X}uo me{m}x /
with the second sum being carried out over all lengths m in the set ofspermutation cycles

seven 1n the case of
a fermionic PIMC simulation, Eq. (17) is always computed as a boSenic ¢xpectation value,

i.e., an observable in the modified configuration space Z' = Zg.
For the ideal (i.e., non-interacting) system, Eq. (16) can be.computed Semi-analytically

from different partition functions (see Sec IIC) as™ ‘)
z Zp,N— -
PO = B,1(18)ZB,n-1(B) " (18)
I Zp,Np) 5
n

One of the central questions to be investigated {in this work is whether the probability
to find a cycle of length [ within a PIMC simula depends on the presence of other
permutation cycles or, more specifically, on {m}xe_Tolamswer this question, we define a
permutation-cycle correlation function

which can be used to check the validity of our imptmenta i

2
PR = G S

which is evaluated in our PIMC simu %s{s
1
P = —_—— 2
e{X}mc

¥

800000, k>> , (19)

Z 5m,l6n,k(1 - 5m,n)

me{m}x ne{n}x
In particular, if thé probability for a cycle of length [ is independent of the presence of other
cycles, Eq. uld coincide with the uncorrelated quantity

(20),1
/ / Pu(l,k) = P()P(k) (21)

for all [ Int case, the explicit evaluation of the N! positive and negative terms
can be reduced to the (still a-priori unknown) N permutation-cycle frequencies

ﬁ(d‘r’ assume an exponential distribution P(I) = ¢~!, which reduces the fermionic
tion to a single unknown parameter, i.e., c. The empirical investigation of both

C. Sdeal Bose and Fermi gas

S & To check the validity of our implementation and analyze our PIMC results for correlated

electrons, it is useful to consider the ideal system where P(l) can be computed from Eq. (18).
The ideal canonical partition function obeys a recursion relation with respect to the system
size N of the form™

N
Zp,N(B) = %ZZB,I(WB)ZB,an(B) ; (22)
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rrespeonding to 8 = 0.5 and
grey symbols correspond
S[E

¥ (24)], respectively.
with Zg ¢ = 1. The initial condition for Eq. (22) c giveﬂj)y the single particle partition
function Zp 1, which for a three-dimensional perigdic OL length L is given by

) .

t m 1ple? of the inverse temperature 8. In the limit of
wayelength, L > Ag), the sum in Eq. (23) can be

FIG. 3. Partition function Zg,1 for a single particle in a periodic b
rs = 2 for N =100 (squares) and N = 19 (boxes). The coloyéd and
to the exact infinite sum [Eq. (23)] and approximate analytigal resul

Zp1(B) =

and has to be evaluated at diffe
a large box (compared to the th :
transformed into a continu

(24)

In Fig. 3, we s computed from Eq. (23) for the relevant multiples of g
for the UEG wi reen squares) and N = 19 (red circles) at 8 = 0.5. With
decreasmg , increasing inverse temperature 73), only the lowest state in

is %ple 1df'Z converges to one. In addition, the dark grey symbols depict
the results f w(np) from the continuous approximation Eq. (24). At large temperature
acin e discrete sum by an integral is accurate, but with increasing n
the the wavelength eventually becomes comparable to L and the approximation breaks
downd Naturally, this happens at slightly lower temperature for the larger system. Thus, we
de ghat a‘numerical evaluation of the infinite sum, Eq. (23), is essential to accurately
the pérmutation—cycle distribution P(l), and to perform a meaningful check of our

Let us start our investigation of the permutation-cycle properties by considering N ideal
spin-polarized fermions in a three-dimensional periodic box of length L. The corresponding
Hamiltonian is simply given by

oL,
om Z Vi (25)
h=1
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FIG. 4. PIMC results for the permutation cycle properties of the ideal Fermi gas at 6 = 0.5—
Probability of each particle to be involved 1 ermutation cycle of length [, P(I)l (panel a, symbols
depict PIMC data and blue lines t anal result [Eq. (18)]), and segments of the permutation
cycle pair distribution function P r = 1,3,10 (panels b,c,d), with the colored and grey
symbols corresponding to our ts nd the uncorrelated analogue P, (k,l) = P(I)P(k),
respectively.

which is readily diag aﬁ@%v plane-waves of the form
ir-k
= (rlk) == | (26)

v
with k = 27T/

aop, ar, and a; € Z, leading to the partition function in Eq. (23).
of 4, we show the probability of a Slngle particle to be in a permutation-
n?c?l P(1)E, for N = 1000 (yellow triangles), N = 100 (green squares), N = 33
nd N = 19 (black crosses) ideal fermions at # = 0.5. For completeness, we

e density-parameter has been chosen as rs = 2 in our PIMC simulations,
ideal results are independent of r;. The symbols correspond to our PIMC
as a histogram according to Eq. (17), and the continuous blue lines to the

data and the exact result over the entire I-range, which is a strong verification of
mentation. An additional comparison for different temperatures can be found in
Figh9. Moreover, the P(1)! data for different N are in agreement with each other for small
but there appear large-sized deviations for [ = 4. These finite-size effects manifest as a
\ steep decrease for large I, which is a consequence of the periodicity of the simulation box.
“More specifically, if we have a permutation-cycle of length [ and propose a pair-exchange
with a particle that is already involved in the same trajectory, this exchange-cycle is split
up into two smaller ones. Therefore, large permutation-cycles are significantly suppressed
as compared to the macroscopic system in the thermodynamic limit, N — oo. Lastly, we
mention that P(I)] does not exhibit an exponential decay with [ for any depicted system

size, even in the case of noninteracting fermions.
In Fig. 4 b), we show PIMC data for the permutation-cycle correlation function P(1,1)
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FIG. 5. Permutation cycle pair distributien function P(k,[) for the ideal Fermi gas with N = 33
co 0
ik

nd to the PIMC results [see Eq. (20)] and the

and € = 0.5. The top and bottom pane
uncorrelated analogue given by PHQ ), respectively.

NN\

[see Eq. (20)] for N = 100 (gre\sqhws) and N = 33 (red circles), which is a measure for

the joint probability to find one single particle and one permutation-cycle of length | within

the PIMC simulation t%le time. Again, we observe a perfect agreement of both data
ignifica

sets for small [, an finite-size effects for I 2 5. The dark grey symbols show
the correspondingfuncorrelated function P,(1,1) [see Eq. (21) in Sec. IIB], which, for ideal
fermions in th rdodynamic limit, should exactly reproduce P(1,1). While this does
indeed (apprgdgmat h}fﬁl for N = 100 over the entire depicted l-range, there appear
sizeable deviationg for Na= 33 for [ 2 15. In fact, it always holds P(k,l) =0 for k+1 > N,
which is e casefor the uncorrelated analogue P, (k,[), and the two quantities deviate

+ kK N, cf. Fig. 5. In panels ¢) and d) of Fig. 4, we show P(3,1) and P(10,1),
xhibit_a similar behavior, although the finite-size effects are more pronounced and

pleténess, in Fig. 5 we show the full k- and I[-dependence of P(k,l) (top) and
om) for the case of N = 33. In a nutshell, the joint probability to find a

S B. Uniform electron gas
S

Let us next consider the case of the uniform electron gas3!:7!

Hamiltonian

, which is governed by the

e N N

T 2 PO

H_—%ka+z > Witk i) (27)
k=1 k=11=k+1
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T

FIG. 6. Probability of a particle to be inml\\‘mrmu‘ca‘cion cycle of length I, P(l)l, for the

uniform electron gas for different parti ﬂg{ber N at s =2 and 6 = 0.5 (top) and for different
5

density parameters s at N = 33 and 6

bettom).

with W (r,r’) being the pair- hﬁ%‘o speed up our calculations, we have replaced the
usual Ewald summation” with thespherically-averaged potential by Yakub and Ronchi” 7,
where the summationsdiizeciprocalvand coordinate space can be carried out analytically.
pled m dense matter regime that is of interest in this work, the
effect on the permutation-cyclé properties is negligible.

C results for P(1)! for the spin-polarized UEG in the warm
rf 2 and 6 = 0.5 with N = 100 (green squares), N = 33 (red
circles), N (blac sses), and N = 10 (blue diamonds). First and foremost, we note
that the r sulté&&ga itatively very similar to the noninteracing data shown in Fig. 4,
including’the distinct*finite-size effects. Moreover, here, too, we do not find an exponential
ith the permutation-cycle length [. In the bottom panel, we compare PIMC
datador the WEG with N = 33 electrons at 6§ = 0.5 for rs = 2 (green squares), rs = 10
(redeizclés), ry = 20 (black crosses), and the noninteracting case (blue diamonds). With
i rs/fhe system becomes more sparse and, consequently, the coupling strength

dense matter pégime at

1crease he resulting repulsion-induced inter-particle separation leads to a suppression
o) excha&;e—effects. Thus, we find an increased probability of single-particle trajectories,
permutation-cycles with [ > 2 occur less often as compared to the noninteracting

L§t us next consider the permutation-cycle correlation function P(k,1), which is shown in
Fig. 7. In the top panel, we investigate the correlation between single-particles and cycles
ot length I, P(1,1), for N = 33 and 6 = 0.5 for rs = 2 (green squares), rs = 20 (red circles),
and the ideal case (blue diamonds). We note that all three curves exhibit a very similar
behaviour. The dark grey symbols correspond to the uncorrelated joint probability P, (k,1),
cf. Eq. (21). Remarkably, we find that independent of the coupling strength, P,(k,!) and
P(k,l) are approximately identical for small I, which means that the probabilities to find
such permutation-cycles are not correlated. In addition, the deviation between the grey
and coloured symbols for larger [ is qualitatively identical for all three curves. This is a
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10°
104

10°

P(6,l)

10
107

108

10°

k = 6 (bottom) for the uniform electromygasywith N = 33, and 6 = 0.5 for s = 2 and r, = 20.
The colored and grey symbols cofrespond, fo our PIMC results and the uncorrelated analogue
Py(k,1) = P(l)P(k), respectively.

FIG. 7. Segments of the permutation Q%&:ﬂi,r istribution function P(k,l) for k = 1 (top) and

strong indication that the observed,correlations in the exchange-cycles are a direct result of
the finite number of elet s, and not due to the Coulomb repulsion, even for the strongly
coupled case (rs = . In the bottom panel, we show the same information for P(6,1).
While the deviati een)P and P, start to appear even at [ = 2, this difference is
again already q sent for the noninteracting case, which means that here, too,

Coulomb correlati due }tot constitute the dominating effect.
Finally, ind'i

= 2 (top row) and r, = 20 (bottom row). Firstly, the grey areas in the
of the P-plots directly follow from the fact that P(l,k) =0 for I+ k > N,

\&{ 6w the full I- and k-dependence of P(I, k) (left column) and P, (I, k)
for

te system size.
lude our analysis of the permutation-cycle properties of PIMC simulations of
dense electron gas with an investigation of the temperature-dependence, which is
Fig. 9.
Is panel a), we show PIMC results for P(l)l for a system of N = 33 ideal fermions at
=70.125 (green squares), § = 0.5 (red circles), § = 1 (black crosses), and 6 = 4 (yellow
triangles). Again, the continuous blue lines correspond to the semi-analytical solution [see
}q. (18)] and are in perfect agreement with our PIMC data over the entire I-range for all four
temperatures. At 8 = 0.125, the probability of a particle to be included in a permutation-
cycle of length [ is almost independent of [, resulting in a nearly flat curve. In fact, in the
ground state limit, 8 — 0, this probability becomes exactly constant, P(I)l = 1/N, which
leads to a vanishing average sign S in a PIMC simulation”™. Therefore, the associated
statistical uncertainty, Eq. (15), diverges and PIMC simulations are even theoretically im-
possible. With increasing temperature, P(l)! exhibits an increasingly steep descent, whereas


http://dx.doi.org/10.1063/1.5093171

AlPP

Publishing

“at

\J

| This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |
13

100
102
104
106

108

10710
10—12

1074

J
o

107
14 10714
1 16 21 6 1 16 21
| \
FIG. 8. Permutation cycle pair distr &%on P(k,1) for the uniform electron gas with
0P\ IO (

N = 33, and § = 0.5 for s = 2 (t ).an rs = 20 (bottom row). The left and right
panels correspond to the PIMC Its [Seé Eq. (20)] and the uncorrelated analogue given by
Py(k,1) = P(l)P(k), respectively. \

the probability to findssingle-particle trajectories is larger. This is a direct consequence of
the smaller extensiod _of the“single-particle wave function, cf. the discussion of Fig. 2 in
Sec. II B. Moreover, we'npte that, at § = 1 and 6 = 4, P(1)l does exhibit an approximately
exponential dec

In panel M géame information, but for an interacting electron gas at rs = 2,
i.e., at a m in the warm dense matter regime. First and foremost, we stress
the qualitafi %ﬁ{c‘y to the noninteracting case shown in panel a), in particular for the
lowest témperature. contrast, for 8 = 1 and § = 4, P(l) does exhibit an exponential
decay Simi o the ideal case, but with a significantly steeper slope. Therefore, somewhat

, Coulomb-correlation effects are more visible in the permutation-cycle
v aVarger temperature, where the system is more weakly coupled.

Finally, inthe bottom row of Fig. 9 we compare the permutation-cycle correlation function
k,1) f% different temperatures. In panel c), we show PIMC results for P(1,!) of the UEG
{125 (green squares) and 6 = 1 (red circles). In addition, the corresponding dark
grey. and yellow symbols depict results for P,(1,1) and PIMC results for P(1,1) for the
noninteracting system at the same conditions, respectively. At the lower temperature, all
curves approximately coincide for [ < 30, i.e., almost over the entire [-range. Only for
“darge permutation-lengths, finite-size effects lead to a deviation towards the uncorrelated
joint probability P,(1,1), whereas the data for the UEG and the noninteracing system are
still in agreement. Evidently, the latter fact is a direct consequence of P(l)l being almost
flat in both cases. In contrast, at § = 1, P(1,1) and P,(1,1) are still in good agreement,
while the ideal results significantly deviate for all [.

Lastly, panel d) shows results for P(6,1) and P,(6,1) for the same conditions, with similar
results albeit distinctly larger finite-size effects, as it is expected.
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P.(k,1) = P(I)P(k) for the UEG, r

nce }Atation cycle correlations

£

To furthe%ant theﬁnportance of correlations between permutation cycles, we con-
: :

sider the reldf w n between P(l, k) and P,(l, k),

The r ﬁs fy Eq. (28) are shown in Fig. 10 where we plot 6P(1,1) (top) and JP(3,1)

ottom) N = 33 particles with r; = 2 and # = 0.5. The green squares correspond to
e casefof ideal fermions and the red circles to the uniform electron gas. In both plots,
bserve a remarkably small deviation for small permutation cycles, as it is expected. In
contrast; for large cycles (I ~ 20) there appear significant relative deviations of several hun-
dredi percent. This illustrates that the previously observed qualitative agreement between
k) and P,(l,k) does not mean that correlation effects of the permutation properties

\within a PIMC simulation are not important.

1. Relative impor

P(i,k) — P(1)P(k)
P, k)

SP(L,k) = (28)

C. 2D quantum dot

Let us conclude this paper by extending our considerations to an inhomogeneous system.
For this purpose, we simulate electrons in a two-dimensional harmonic trap, which are
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FIG. 10. Relative deviation dP(l, k) [see Eq. (28)] between P(l,k) and P.(l,k) = P(l)P(k) for
N = 33 particles at rs = 2 and 6 = e gr squares and red circles correspond to ideal
fermions and the uniform electron gas, respeétively.

governed by the Hamiltonia \
1
2
*ﬁ%ﬁ ZIWZ > |rl_rk| : (29)
k=11=k+1

where we have used o;mllat units (i.e., distances are given in units of Iy = /h/(mw) and

energies in units o ), and A denotes the dimensionless coupling constant. Such a

system is ofJ e smlple model for electrons in a quantum dot™ 77, and constitutes
“‘Nrothe development of quantum Monte Carlo methods32 78,79,

11 a), we show radial density profiles for N = 10 electrons at a moderate tem-

eak coupling, 8 = 0.5 and A = 0.5. The green curve corresponds to the
measured in the modified configuration space Z’ = Zg and the red curve

ons tend to cluster more around the centre of the trap, whereas the Pauli
as an effective repulsive force®?, which leads to a more pronounced spatial
and pushes the electrons outwards. We again stress that both data sets have
ained within the same PIMC simulation and the differences between bosons and
ferr?ons are purely a result of the cancellation of positive and negative terms, see Ref. 68
or-an extensive topical discussion.

n panel b), we show the corresponding permutation-cycle probabilities P({)! for 8 = 0.5

“ereen squares), 8 = 1 (red circles), and 8 = 3 (blue diamonds). Note that the average

signs are given by S = 0.0615(1), S = 0.00022(4), and S = —0.00003(3), respectively, which
means that PIMC simulations are only feasible at § = 0.5. In contrast, for the lowest
considered temperature, the sign vanishes within the given statistical uncertainty. For the
largest temperature, we find a smooth decay with [, whereas for f = 3 the probability
to find a particle in an exchange-cycle of length [ is again almost constant, see also the
description of Fig. 9 for a more extensive discussion.
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FIG. 11. PIMC results for the densitygand permutation cycle properties of N = 10 electrons in a
2D harmonic trap with coupling stren, = 0.5%and 8 = 0.5,1,3—Radial density distribution
n(r) for bosons and fermions in dépendéucd of the distance to the center of the trap r (panel
a). Probability to find each partic a pegmutation cycle of length I, P(1)! for different inverse
temperatures, (panel b), and s gmenNe ermutation cycle pair distribution function P(k,!)
for k = 1,3 (panels c¢,d), with t E'bb,mr}l dark grey symbols corresponding to our PIMC results
and the uncorrelated analogue P,(%,1) =P (1) P(k), respectively.

Finally, in panelg c)%and d),y we show our PIMC results for the joint probability P(1,1)
and P(3,1), and dompare them to the corresponding uncorrelated function P, (I, k) (dark
grey symbols). 'laf to the'previously discussed case of the warm dense electron gas, we
en exchange-cycles are more pronounced for higher temperature,
and increase for larger cycle-lengths [. However, in contrast to the UEG, in the case of an
inhomogefie Sys in an external potential, any finite-size effects have real physical
e not merely an artifact due to the inevitably limited finite simulation box
aP simulation. Therefore, approximation schemes that rely on the absence of
ations between different permutation-cycles within a given configuration as proposed
areyﬁot applicable in this case.

TV MMARY AND DISCUSSION

Ave:

I> summary, we have provided a detailed analysis of the permutation-cycle properties of
path-integral Monte-Carlo simulations of correlated, quantum degenerate electrons. To ver-
ify our implementation, and to further analyse our results for the warm dense electron gas,
we have begun our investigations by considering N ideal spin-polarised fermions in periodic
box. Even for this most simple case, we find an exponential decay in the permutation-cycle
distribution function P(I) only at relatively high temperatures, 8 = 1. In addition, this
quantity exhibits severe finite-size effects, which increase with the cycle length [. Simi-
larly, the corresponding analysis of the permutation-cycle correlation-function P(l, k) has
revealed that cycles of different lengths are independent only for small [, whereas correla-
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tions increase for larger [, again due to the finite number of particles within the simulation.
In contrast, permutation-cycles of noninteracting fermions are completely independent in
the thermodynamic limit.

Extending our considerations to the warm dense electron gas, here, too, we have found
that exchange-cycles are almost independent for small [, and deviations between P(I, k) and
P,(k,1) = P(k)P(l) only start to become important for long cycles. Due td the striking sim-
ilarity to the previously investigated ideal case, we have concluded that {%ﬁij effects of

permutation-cycle properties within a PIMC simulation are dominat v finige-size effects
. Inaddition, we have
also investigated the temperature-dependence of these properties, whi gain, has revealed
a remarkable behaviour: at low temperatures, where the system is ongly correlated,
the permutation properties of the electron gas most closely res ct behavior of
ideal electrons; at high temperatures, where correlation effec ij ected to be less impor-
tant, the ideal and interacting system exhibit more pronounce viations. The explanation
for this rather peculiar finding is the ground-state limit for the rmutation-cycle distri-
bution function, P(I)I = 1/N, which is equal both in

cases. -

In a nutshell, we have found that the permutatloks;(;le roperties of interacting electrons
are qualitatively very similar to the noninteracting ‘ease. In particular, cycles of different
d cazzélation effects in P(l, k) for large
l and k appear to be mainly an artifact due towhe finibe number of electrons within a given
simulation. Therefore, the proposed simpliﬂba{i;; fermionic configuration space from

sta

Ref. 55 does indeed constitute a promising ing point to alleviate the sign problem and,
thus, to extend fermionic PIMC simulatiens er temperatures and stronger quantum
degeneracy. Moreover, neglecting size effects in P(l, k) might not necessarily
a handy way to mitigate finite-size effects®!:32,

and the method does not necessarilyy beéeme exact in the thermodynamic limit. Hence,
this scheme constitutes a (f w) tpcongrolled approximation so that the exact character,
which is the main advantage of\the IC method, is lost, while the computational cost will
still be substantial.
Finally, we have fi
harmonic potential.
the permutation-
physical behavi Pherefore, neglecting correlations between cycles is not appropriate,
even for nom eracting fermions.
We expect{oug, results,to be of interest for the further development of PIMC simulations
of fermio ;hh\mq turn is of high importance for many fields like the simulation of
ultracold{atoms'3 '° “quark-gluon plasmas'®?°, and warm dense matter3%3!.
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