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I. IMAGINARY-TIME CORRELATION
FUNCTIONS

Let us define the imaginary-time density–density cor-
relation function [1–3] as

F (q, τ) =
1

N
〈nq(τ)n−q(0)〉 , (1)

where the densities are evaluated at different imagi-
nary times. Therefore, F (q, τ) is readily available in
path integral Monte Carlo (PIMC) simulations, see, e.g.,
Refs. [4, 5] for details. Eq. (1) is related to the dynamic
structure factor via

F (q, τ) =

∫ ∞
−∞

dω S(q, ω)e−τω (2)

Furthermore, F (q, τ) gives direct access to the static
response function function, which are linked by the
imaginary-time version of the fluctuation dissipation the-
orem, Ref. [6]

χ(q, 0) = −n
∫ β

0

dτ F (q, τ) . (3)

II. SUM RULES OF THE DYNAMIC
STRUCTURE FACTOR

Let us define the k-th frequency moment of S(q, ω) as

〈ωk〉 =

∫ ∞
−∞

dω ωkS(q, ω) (4)

=

∫ ∞
0

dω ωkS(q, ω)
(
1 + (−1)ke−βω

)
,

where the second equality follows from the detailed bal-
ance condition

S(q, ω) = −S(q,−ω)e−βω . (5)

In particular, four frequency moments can be computed
analytically or from our equilibrium PIMC data:

1. The f sum-rule is simply given by [9]

〈ω1〉 =
q2

2
. (6)
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FIG. 1. PIMC data for the imaginary-time density–density
correlation function F (q, τ) for rs = 10, θ = 0.75 and N = 34
for P = 100 imaginary-time slices (every 4th slice is shown).
In the τ = 0 limit, F (q, τ) approaches the static structure
factor S(q). Furthermore, F is symmetric with respect to
τ = β/2, i.e., F (q, τ) = F (q, β − τ) (for τ ≤ β/2).

2. The cubic sum-rule was first reported by Puff [7, 8]
and reads [9–11]

〈ω3〉 =
q2

2

( ( q2

2

)2

+ q2nvq + 2q2K (7)

+ ω2
p

(
1− I(q)

))
,

and the potential contribution [9, 11] can be
expressed in spherical coordinates as a one-
dimensional integral

I(q) =
1

8π2n

∫ ∞
0

dk k2
(
1− S(k)

)
(8)

×

(
5

3
− k2

q2
+

(
k2 − q2

)2
2kq3

log

∣∣∣∣∣k + q

k − q

∣∣∣∣∣
)

.
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FIG. 2. Same as Fig. 1, but with θ = 1, P = 50 and N = 34,
rs = 2.

3. The inverse frequency moment is directly propor-
tional to the static density response function [10,
12, 13]

〈ω−1〉 = −χ(q, 0)

2n
, (9)

where χ(q, 0) is computed from Eq. (3).

4. Finally, the normalization of S(q, ω) is given by the
static structure factor [14]

〈ω0〉 = S(q) . (10)

III. DENSITY RESPONSE AND LOCAL FIELD
CORRECTION

The dynamic structure factor is directly linked to the
imaginary part of the dynamic density response function
χ(q, ω) by the fluctuation dissipation theorem [9, 15]

S(q, ω) = − Imχ(q, ω)

πn(1− e−βω)
. (11)

Typically, χ(q, ω) is expressed in terms of the ideal re-
sponse function χ0(q, ω) and the dynamic local field cor-
rection (LFC) G(q, ω), e.g., Refs. [9, 15–17]

χ(q, ω) =
χ0(q, ω)

1− vq
(
1−G(q, ω)

)
χ0(q, ω)

, (12)

with the Fourier transform of the Coulomb interaction

vq =
4π

q2
. (13)

Setting G(q, ω) = 0 corresponds to the well-known ran-
dom phase approximation (RPA) and, therefore, the LFC
contains all exchange-correlation effects in the density re-
sponse beyond the mean-field level. In a nutshell, the
reconstruction of S(q, ω) can be re-cast into the com-
putation of G(q, ω). This is very convenient as several
properties of the LFC are known exactly, which can be
exploited to further improve the reconstruction proce-
dure:

1. The Kramers-Kronig relations link real and imagi-
nary parts [15]:

ReG(q, ω) = ReG(q,∞) +
1

π

∫ ∞
−∞

dω
ImG(q, ω)

ω − ω
(14)

ImG(q, ω) = (15)

− 1

π

∫ ∞
−∞

dω
ReG(q, ω)− ReG(q,∞)

ω − ω

2. The real and imaginary parts of G(q, ω) are even
and odd functions with respect to ω, respec-
tively [16].

3. The imaginary part of G(q, ω) vanishes for high
and low frequency [16]:

ImG(q, 0) = ImG(q,∞) = 0 (16)

4. The static limit of ReG(q, ω) can be computed from
the static density response function (see Eq. (3)),
which is real for ω → 0 [9]:

ReG(q, 0) = 1− 1

vq

(
1

χ0(q, 0)
− 1

χ(q, 0)

)
(17)

5. The high frequency limit of ReG(q, ω) [11] is given
in terms of the static structure factor S(q) (which is
needed for the computation of I(q), see Eq. (8)) and
the exchange-correlation contribution to the kinetic
energy Kxc,

ReG(q,∞) = I(q)− 2q2Kxc

ω2
p

, (18)

with the plasma frequency

ωp =

(
3

r3
s

)1/2

, (19)

and the kinetic term being obtained from the
exchange-correlation free energy [18, 19]

Kxc = K − U0 (20)

= −fxc(rs, θ)− θ
∂fxc(rs, θ)

∂θ

∣∣∣∣∣
rs

(21)

−rs
∂fxc(rs, θ)

∂rs

∣∣∣∣∣
θ

. (22)
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IV. STOCHASTIC LFC RECONSTRUCTION

The task at hand is to find a local field correction
G(q, ω) ∈ C that i) fulfills the known exact properties
listed in the previous section, ii) is consistent with our
PIMC data for F (q, τ) (see Eq. (2)), and iii) is consistent
with the sum-rules for 〈ωk〉 (see Eq. (4)). Being inspired
by Refs. [16, 17], we introduce an extended Padé type
parametrization of the imaginary part of the form

ImG(q, ω) =
a0ω + a1ω

3 + a2ω
5

(b0 + b1ω2)
c , (23)

with ai, bi, and c being free (a-priori unknown) param-
eters. The real part of G(q, ω) is then computed by nu-
merical integration from Eq. (14), and fixing the static
limit to the known value from Eq. (3) (note that the
ω →∞ limit is fulfilled automatically),

ReG(q, 0)
!
= ReG(q,∞) (24)

+
1

π

∫ ∞
−∞

dω
a0 + a1ω

2 + a2ω
4

(b0 + b1ω2)
c ,

determines one free parameter. In practice, Eq. (24) is
solved analytically using SymPy [20] to express a1 in

terms of the other parameters. The remaining five free
parameters are randomly sampled over ten orders of mag-
nitude to generate trial structure factors Strial,i(q, ω),
which, by design, fulfill all listed exact relations of the
LFC. The next step is then to plug the trial solutions into
Eqs. (2) and (4) and only keep those that reproduce both
F (q, τ) (for all τ ∈ [0, β]) and 〈ωk〉 (i ∈ {−1, 0, 1, 3})
within the statistical uncertainty of the PIMC data. Our
final result for S(q, ω) is computed as the average over
M ∼ O

(
103
)

independent random solutions,

Sfinal(q, ω) =
1

M

M∑
i=1

Strial,i(q, ω) , (25)

which also conveniently allows us to estimate the uncer-
tainty of the reconstruction by computing the variance

∆S(q, ω) =

(
1

M

(
Strial,i(q, ω)− Sfinal(q, ω)

)2
)1/2

.(26)
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