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This supplement contains additional information on 1. the Landau–Zener dimer model, 2. additional
simulation results that analyze the influenc of reduced hopping rates at the edge of finite honeycomb clusters,
and 3. additional simulation results for the case of long range Coulomb interaction.

1 Time-dependent Landau–Zener model for a dimer interacting with
a projectile

The Landau–Zener (LZ) model [1] has been applied to doublon formation in optical lattices where the lattice
depth or interaction strength were changed adiabatically [2, 3]. Here we extend the model to a different
situation: the interaction of a classical projectile with a strongly correlated dimer. In this case, the external
potential varies non-monotonically (see Fig. 2.a of the main text) reaching its (negative) maximum when the
projectile is in the cluster plane. Therefore, a LZ transition will occur only if the system remains in the upper
state after a two-fold (forward and backward) passage of the avoided level crossing.

As explained in the paper this problem can be solved exactly by diagonalizing the time-dependent hamiltonian.
The four energy eigenvalues of the dimer, E0 ≤ E1 ≤ EU ≤ E2, before the impact are well known and given by
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Furthermore, in the presence of the potential W (t) the solutions become
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where R1 and R2 are the first and second root of the third-order polynomial equation

R3 + (−2U − 3W )R2 + (−4J2 + U2 + 2W 2 + 4UW )R− 2UW 2 + 4J2U + 4J2W − U2W = 0 . (S1)

The four solutions are shown in Figure 2.a of the main text versus W (t). Starting in the triplet ground
state (E0), for t = −∞, the dimer undergoes a transition to the second excited state (EU ) via an avoided
crossing when W (t) is switched on sufficiently fast. Using a reduced two-level Landau–Zener picture, the
probabilities to find the system at maximum field W (t) in states EU and E0 can be approximated by p and
(1− p), respectively, where p denotes the LZ transition probability for a single diabatic passage of the crossing,
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and E = EU − E0. To evaluate Eq. (S2) we use dE
dt = dE

dW
dW
dt = − dE
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tW (t)
τ2 , set t = ±τ [turning points of

W (t)] and obtain
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)
. (S3)

From Fig. 2.b of the main text, we furthermore observe that V and dE/dW are almost independent of U :
2V ≈ 2.826J and |dE/dW | ≈ 0.976, around W (t) = −W0, therefore, the probability p only depends (for fixed
U) on the duration τ of the excitation.
When the projectile is leaving the dimer, the system is then transferred via another avoided level crossing

from E0 at maximum field to EU at zero field with a conditional probability (1−p)p and from EU at maximum
field to EU at zero field with a conditional probability p(1− p). The overall probability that the dimer, for
t = +∞, remains in state EU after the twofold (forward and backward) passage of the avoided level crossing
can therefore be approximated by:

PE0→EU
= 2p(1− p) , (S4)

With insight from the dimer model, we find parameters for particularly efficient doublon formation in the
12-site cluster of Fig. 1 of the main text: (i) the optimal on-site interaction is U∗ ≈ 1

2W
∗, where W ∗ = Z ·10.8J

denotes the maximum induced potential averaged over the sites A and B; thus U∗ = 5.4J for Z = 1 (U∗ = 10.8J
for Z = 2), cf. the thin grey dash-dotted line in Fig. 2.b (2.c). (ii) For U = U∗, the velocity v∗z , that maximizes
d∞av, decreases linearly with Z. This follows from the Landau–Zener condition, d

dτ PE0→EU
(τ) = 0, which is

solved by

(τ∗)−1 =
2π e1/2 V 2

~W0|dE/dt| log(2)
∝ v∗z . (S5)

2 Impact of reduced hopping rates at the cluster edge
In the main text, we considered the intra-cluster hopping to be uniform and isotropic. However, it is well
known that sites at the cluster edges may have a different connectivity or a specific saturation [4], leading
to a modified hopping to neighboring sites. In Fig. S1, we analyze the effect of anisotropy on the doublon
formation mechanism by reducing the hopping parameter between the A sites in the 12-site cluster of Fig. 1
of the main text to a value J ′ < J , according to a larger, spatial separation of the A sites compared to the
distance AB. We find similar results for d∞av as a function of the ion velocity vz for a charge with Z = 1, where
the doublon yield is rather low. On the other hand, for Z = 2, the doublon number appears even larger, as the
reduction of the hopping makes the system more similar to the Hubbard dimer, where a maximum double
occupation of 0.5 can be achieved by our excitation protocol as shown in Fig. 2.c, d.

3 NEGF results for Coulomb interaction. Correlation effects
In the main text, we presented in Fig. 4 results of nonequilibrium Green functions (NEGF) simulations for the
asymptotic mean doublon number as a result of a sequence of excitations with Gaussian time-dependence that
all occurred on one site. While this protocol is the easiest to test in an optical lattice setup, for ion stopping
in a correlated finite condensed matter system the projectile-electron interaction is, of course, Coulombic. To
test what is the effect of the long-range Coulomb interaction on the doublon formation scenario here we repeat
the simulations using the Coulomb potential between ion and the electrons. The quantitative results depend
on a large variety of parameters including the impact point (and its possilble variation) and the timing of the
subsequent impacts. For better comparison with the results in the main text we retain equal time intervals
between impacts and use the same impact point – in the cluster center, as in Fig. 1. The NEGF simulations
used second order Born selfenergies within the generalized Kadanoff-Baym ansatz as described in Refs. [5, 6].
The high accuracy of these simulations was verified by benchmarks against DMRG results in Ref. [7]. The
comparison with the results presented in Fig. 4 reveals that all trends reported in the main text remain valid
also for Coulomb interaction. In fact, the long-range character of the projectile-electron interaction even
enhances doublon production since the projectile interacts simultaneously with many electrons and thereby
deposits more energy.
The figure also contains results of a time-dependent Hartree–Fock calculation (inset of lower figure) that

exhibits completely wrong behavior as it neglects correlation effects that are of crucial importance for the present
dynamics. Already the initial state (half filling) reveals the incorrect mean doublon number, dHF

av (0) = 0.25
because, in Hartree–Fock, dHF

i = 〈n̂i↑〉〈n̂i↓〉, cf. Eq. (2). Thus, dHF
av only follows the one-particle density which
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Figure S1: Ion-impact induced doublon formation in the two-dimensional Hubbard nano-cluster of Fig. 1 of
the main text at U = 10J , where we have reduced the hopping amplitude between the A sites (along
the edges of the 12-site cluster) from J to J ′ = 0.5J (dashed) and J ′ = 0.1J (dotted), respectively.
The red (blue) lines show d∞av as function of the projectile’s velocity vz for a positive charge of
Z = 1 (Z = 2). A reduced hopping at the edges favors doublon excitation in finite clusters, in
particular for high projectile charge, except for very small velocities.

exhibits a completely different time dependence than the correlated doublon number, cf. Fig. 1.a. This
confirms that the present scenario, in particular, the Landau–Zener transition (see above) is a correlation
effect.
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Figure S2: Asymptotic mean double occupation for a charged projectile interacting by a Coulomb potential
with all electrons of the system for U = 4J . a) 1D chains and b) 2D half-filled honeycomb clusters
of different size L. The number of excitations, Nx, which are performed in the cluster center, is
indicated in the figure. All main trends are as for Gaussian-type excitation on a single site (Fig. 4),
but the doublon number is enhanced. Results of NEGF simulations (second order Born selfenergies)
with the HF-GKBA, for details see Refs. [5, 6]. Insets show the time-dependence dav(t), for L = 24
and Nx = 40. The grey curve in the lower picture corresponds to a time-dependent Hartree–Fock
calculation.
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