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Several sum rules and other exact relations are employed to determine both the

static and the dynamic properties of strongly coupled, partially and completely

degenerate one-component plasmas. Emphasis is placed on the electron gas, both at

zero and finite temperatures. The procedure is based on the self-consistent method

of moments, recently developed in Phys. Rev. Lett., 2017, 119, 045001, that pro-

vides a neat expression for the loss function valid at strong couplings. An input

value of the method in its classical version is the static structure factor, whose

accuracy is shown to insignificantly affect the resulting numerical data. Starting

from the Cauchy-Bunyakovsky-Schwarz inequality, a criterion is proposed to ver-

ify the quality of various approaches to the evaluation of the static characteristics of

one-component, strongly coupled plasmas.
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1 INTRODUCTION

One of the great challenges of modern plasma physics is the analytical and numerical description of the transition from

collision-less to collision-dominated regimes in different Coulomb systems as well as of the crossover from classical to Fermi

liquid behaviour of dense plasmas.[1,2] This is especially true for warm and hot dense matter or strongly coupled plasmas char-

acterized by a wide range of variation of temperature T ∈ (104–107) K and the mass density 𝜌 ∈ (10−2 to 104) g/cm3, thereby

spanning a few orders of magnitude variation. Within such a broad range of physical conditions, various effects compete with

one another at different scales and impede the construction of bridging gap theories capable of predicting static and dynamic

properties of systems under investigation. The above-stated domain of plasma parameters is, of course, of high relevance to

inertial fusion devices,[3] but it is, nowadays, over-reached by other advanced laboratory studies as evidenced, for instance, in

research on ultracold plasmas.[4]

The focus of the present consideration is a one-component plasma that consists of a single particle species, say electrons, with

the electric charge e, the mass m, and the number density n. The standard procedure is to introduce the following coupling and

degeneracy parameters, respectively, as: Γ= 𝛽e2/a and D= 𝜃−1 = 𝛽EF, where 𝛽 = (kBT)−1 denotes the inverse temperature in

energy units, a= (4𝜋n/3)−1/3 stands for the Wigner-Seitz radius, and EF =ℏ2(3𝜋2n)2/3/2m designates the Fermi energy. Another

dimensionless quantity appropriate for the description of one-component plasma is the Brueckner parameter, defined as follows:

Contrib. Plasma Phys. 2018;n/a www.cpp-journal.org © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1



2 ARKHIPOV ET AL.

rs = a/aB, where aB =ℏ2/me2 signifies the first Bohr radius. Note that, for the domain of temperature and mass density mentioned

above, the introduced dimensionless parameters vary in the following ranges: the coupling parameter Γ∈ (4.9× 10−3, 490), the

degeneracy parameter D∈ (1.4× 10−3, 1.4× 104), and the Brueckner parameter rs ∈ (6.5× 10−2, 6.5).

On the one hand, the static and dynamic characteristics of strongly coupled plasmas are regularly simulated using

first-principle physical approaches; see, for example.[2,5] On the other hand, the properties of weakly or even moderately cou-

pled plasmas have been theoretically studied very well in the literature. In order to describe the transition from the ideal gas-

to solid state-like behaviour of the system, it seems unavoidable to engage the fitting over a broader range of variation of Γ
and/or D using few adjustable parameters.[6] In this case, however, some numerical data, for instance, the dynamic local-field

correction, still remain unexplained theoretically.[7]

It is very well known that first-principle physical approaches are entirely based on equations of motion, classical or quan-

tum mechanical, of particular physical systems that are finally reducible either to the set of Hamiltonian equations or to the

many-body Schrödinger equation plus symmetrization. The quality and accuracy of the data obtained can be strictly verified by

the so-called sum rules (e.g., for the dynamic structure factor [DSF]), which might be considered complementary conservation

laws. To exactly satisfy them, it sometimes appears necessary to apply some additional adjustments, for example, by selecting

a specific (Gaussian) memory function[8] in the Zwanzig-Mori time-propagator dynamic framework[9] or by partially ignoring

them as is the case in the random-phase approximation (RPA), including its local-field and other corrected versions[10]; see

ref. [11] for details. As is demonstrated below in this paper, another option is to use ab initio Monte Carlo simulation results on

static characteristics of strongly coupled Coulomb systems[12] combined with the method of moments.

This paper particularly deals with an alternative mathematical approach capable of taking all the sum rules into account

automatically. Distinguishing features of the physical system under investigation are then hidden in the sum rules that can be

found independently and rigorously using the standard methods of quantum statistics within the Kubo linear response the-

ory. This approach was first applied to strongly coupled plasmas more than 30 years ago[13,14] and was developed further in a

series of works,[11,15–18] which were based on the classical monographs.[19,20] Final expressions essentially rely on Nevanlinna’s

solution[21] to the truncated Hamburger moment problem, consisting of the reconstruction of a non-negative continuous distri-

bution density by its power moments. An infinite set of solutions of this problem is parameterized by the Nevanlinna parameter

function (NPF), which has no particular physical meaning. Thus, the NPF is not a measurable quantity, and the quality of the

whole approximation in the framework of the method of moments can be controlled by comparison with experimental results

and numerical simulation data. It is important that the moment approach in general is equivalent to the continued fraction

method.[22]

A new self-consistent version of the method of moments was recently proposed in ref. [23], where it was successfully applied

to the direct determination of dynamic properties of one-component classical strongly coupled plasmas, and its validity was

verified against available simulation data. The method itself contained no adjustable parameters, and its robustness was con-

firmed by applying several schemes to calculate the static structure factor (SSF), which was the input value and was shown to

have minor influence on the dynamic properties themselves.

The aim of the present paper is twofold: (a) to check the possibility of extending the above-mentioned approach to partially

or even completely degenerate one-component, strongly coupled plasmas (OCSCPs), for example, the paramagnetic uniform

electron gas (PUEG),[24] and (b) to develop a criterion of validity of the SSF starting from the Cauchy-Bunyakovsky-Schwarz

inequality.[11,25] It is worth mentioning that generalizations to other situations of physical interest, like magnetized and

non-equilibrium plasmas, can be carried out within the matrix method of moments.[18,26]

The rest of the paper is organized in the following way. In Section 2, we first develop the self-consistent method of moments

for the PUEG at zero and finite temperatures and, then, determine the DSF and the characteristics of the collective modes in

order to verify them against the available theoretical predictions.[27] Section 3 is devoted to the Cauchy-Bunyakovsky-Schwarz

inequality with the purpose of establishing a criterion on the validity of various schemes for calculating the SSF. Numerical

results are presented in Section 4, and main inferences are summarized in the concluding Section 5.

2 LOSS FUNCTION AND DSF

The keystone of the present version of the moment approach is the inverse plasma dielectric function, 𝜀−1(𝜔, q), which is the

genuine response function for any dimensionless wavenumber q= ka that yields the following positive even loss function of the

frequency:

ℒ (x = 𝜔2, q) = −Im 𝜀−1(𝜔, q)∕𝜔.
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It has to be admitted that only classical one-component systems were the focus of ref. [23], which means that the properties

of the loss function and the DSF were actually equivalent in view of the fluctuation-dissipation theorem (FDT). However, it is

not the case for the present consideration as partially and completely degenerate one-component plasmas are under scrutiny.

The fundamental blocks of the present approach are the so-called sum rules that constitute the loss function frequency

moments defined as1:

C𝜈(q) =
1

𝜋 ∫
∞

−∞
𝜔𝜈ℒ (𝜔2, q)𝑑𝜔 , 𝜈 = 0, 2, 4, (1)

and supplemented by the semi-empirical observation that the loss function should have, for an arbitrary q, an extremum at

x=𝜔2 = 0, such that:
dℒ (x, q)

𝑑𝑥

||||x=𝜔2=0

= 0. (2)

Note that the Ansatz (2) for the loss function was thoroughly tested in ref. [11] for quite a broad range of plasma parameters

and various inter-particle interaction models, and its implication on the long-time behaviour of the density correlator in the (r,t)
space will be discussed elsewhere. It has to be stressed that the odd-order moments completely vanish in definition (1) as the

loss function retains its evenness as a function of the frequency 𝜔.

It is the power of the method of moments, together with the crucial assumption (2), that concisely reduces the description of

all versatile dynamic properties of various types of plasmas to the knowledge of only two characteristic frequencies:

𝜔1(q) =
√

C2(q)∕C0(q), 𝜔2(q) =
√

C4(q)∕C2(q), (3)

defined via the loss function frequency moments {C0(q), C2(q), C4(q)} that are still to be independently determined.

Due to the Kramers–Kronig relations, the zeroth moment is determined by the static dielectric function 𝜀(0, q), whereas the

second moment simply represents the so-called f -sum rule. Thus, the square of the first characteristic frequency is found to be:

𝜔2
1
(q) = 𝜔2

p[1 − 𝜀−1(0, q)]−1 (4)

with 𝜔2
p = 3e2∕𝑚𝑎3 being the plasma frequency squared.

It has been established—through the Kubo linear-response theory[28] and the second-quantization technique[14,18]—that, in a

one-component Coulomb system of interest herein, the square of the second characteristic frequency reads as:

𝜔2
2
(q) = 𝜔2

p[1 + K(q) + U(q)], (5)

to include the kinetic K(q) and the coupling U(q) contributions in the following form:

K(q) =
q2

Γ
I3∕2(𝜂)
D3∕2

+
q4

12rs

,

U(q) = 1

6𝜋 ∫
∞

0

p2(S(p) − 1)
(

5

3
−

p2

q2
+

(p2 − q2)2

2𝑝𝑞3
ln
||||p + q
p − q

||||
)
𝑑𝑝. (6)

Here, S(q) denotes the SSF, and the 𝜇-order Fermi integral is defined as:

I𝜇(𝜂) = ∫
∞

0

x𝜇
exp(x − 𝜂) + 1

𝑑𝑥

with 𝜂 being the dimensionless chemical potential of the electronic system determined by the normalization condition

I1/2(𝜂)= 2D3/2/3. It is therefore straightforward to infer that the moments of the loss function can be independently evaluated

with an accuracy for which the SSF is known; for details, see refs [23] and [29].

It is rather interesting to stress that the following expansion holds in the hydrodynamic limit:

𝜔2
2
(q → 0) ≃ 𝜔2

p

[
1 +

q2

Γ

(F3∕2(𝜂)
D3∕2

+ 4u(Γ, rs)
45

)
+ O(q4)

]
, (7)

where u(Γ, rs) stands for the reduced correlation energy[30] so that, at very large wavenumbers, the single-particle behaviour is

exactly recovered as:

𝜔2
2
(q → ∞) ≃

𝜔2
pq4

12rs

. (8)

The original mathematical background of the present approach is called the truncated classical Hamburger problem of

moments,[18,19] which is formulated as follows: reconstruct a positive function that is at least continuous on the whole real

1Note that C𝜈(q) = ∫ ∞
0

x
𝜈−1

2 ℒ (x, q)𝑑𝑥 are effectively Stieltjes fractional power moments.[19]
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axis and whose first power moments are independently known. The function to be reconstructed hereafter is the loss function

ℒ (𝜔, q), whose power frequency moments are strictly written out above. The subset of the infinite (except for some very par-

ticular specific cases[16]) set of solutions of the Hamburger problem, which is continuous on the real axis of frequency 𝜔, is

unilaterally parameterized by the NPF R(𝜔, q) via the Nevanlinna theorem[19,20] and the Nevanlinna formula (cf. Equation (59)

in ref. [11]), wherefrom the loss function can be restored using the Sochocki–Plemelj–Dirac formula as:

ℒ (𝜔2, q) =
𝜔2

p(𝜔2
2
(q) − 𝜔2

1
(q))Im R(𝜔, q)|𝜔(𝜔2 − 𝜔2

2
(q)) + R(𝜔, q)(𝜔2 − 𝜔2

1
(q))|2 . (9)

Like any response function, the NPF R(𝜔, q) must be analytical and possess a non-negative imaginary part in the upper

half-plane Im 𝜔> 0, being at least continuous on its closure Im 𝜔= 0. In addition, the NPF R(𝜔, q) must obey the limiting

condition:

lim
𝜔→∞

R(𝜔, q)
𝜔

= 0, (10)

uniformly within any angle 𝜗≤ arg (𝜔)≤𝜋 − 𝜗, 0<𝜗<𝜋, which ensures that all of the involved sum rules are automatically

satisfied.

To proceed further, one has to justify the choice of the NPF R(𝜔, q), which has no specific physical meaning. It is apparent

that the simplest mathematical approximation at hand is to replace the frequency-dependent NPF with its static value, how it

was performed, for instance, in ref. [31] and in a series of other publications (see ref. [18] and references therein):

R(𝜔, q) = R(0, q) = 𝑖ℎ(q), h(q) > 0, (11)

which converts (9) into

ℒ (x = 𝜔2, q)
C0(q)

|||||R=𝑖ℎ =
𝜔2

1
(q)(𝜔2

2
(q) − 𝜔2

1
(q))h(q)

𝜔2(𝜔2 − 𝜔2
2
(q))2 + h2(q)(𝜔2 − 𝜔2

1
(q))2

=
𝜔2

1
(q)(𝜔2

2
(q) − 𝜔2

1
(q))h(q)

x(x − 𝜔2
2
(q))2 + h2(q)(x − 𝜔2

1
(q))2

. (12)

Approximation (11) is certainly an imposed restriction on the class of the solutions to the Hamburger problem, and its further

justification is assured by the comparison of the obtained results with those of real experiments and numerical simulations.

In collision-less plasmas that are well described within the RPA and its local field-corrected extensions, approximation (11)

should be modified, but it seems to work quite satisfactorily at least for classical[23] and partially degenerate OCSCPs.

As was earlier shown in ref. [18], the positive parameter h(q) can be related to the static value of the ”charge–charge” (DSF),

S(0, q). In virtue of the additional condition (2), the following explicit expression is readily obtained from (12) for the static

value of the NPF in terms of the characteristic frequencies 𝜔1(q) and 𝜔2(q) [23]:

h(q) = h0(q) =
𝜔2

2
(q)√

2𝜔1(q)
, (13)

thereby resulting in the neat expression for the loss function

ℒ (𝜔2, q)
C0(q)

|||||R=𝑖ℎ0

=

√
2𝜔1(q)𝜔2

2
(q)(𝜔2

2
(q) − 𝜔2

1
(q))

2𝜔6 + 𝜔4(𝜔2
2
(q)∕𝜔2

1
(q))(𝜔2

2
(q) − 4𝜔2

1
(q)) + 𝜔2

1
(q)𝜔4

2
(q)

, (14)

that already contains no free parameters and, probably, represents the simplest theoretical dependence of the loss function on

the frequency 𝜔.

Expression (14) bears the following original sense. As soon as the SSF and the static value of the dielectric function are

somehow known, it becomes possible to evaluate the characteristic frequencies 𝜔1(q) and 𝜔2(q) of the system under study, and

then, formula (14) allows one to predict all the plasma dynamic properties in the strongly coupled regime. It has to be advocated

that expression (14) can be verified for systems of various physical nature in which different effects might play an essential role.

The only restrictions come from the finite number of moments taken into account in the solution of the truncated Hamburger

problem as well as from the imposed behaviour of the loss function at zero frequency (2), finally leading to expression (13) of

the NPF[23].

Equation (14) is the main result of the present research as the DSF, which is the central quantity of collective and dynamic

effects, is determined by the loss function via:

S(𝜔, q) =
q2n
3𝜋Γ

B(𝛽ℏ𝜔)ℒ (𝜔2, q) =
q2n
3𝜋Γ

√
2𝜔1(q)𝜔2

2
(q)𝜔2

p(𝜔2
2
(q) − 𝜔2

1
(q))B(𝛽ℏ𝜔)

2𝜔2
1
(q)𝜔2(𝜔2 − 𝜔2

2
(q))2 + 𝜔4

2
(q)(𝜔2 − 𝜔2

1
(q))2

, (15)
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where B(𝛽ℏ𝜔)= 𝛽ℏ𝜔/[1− exp(−𝛽ℏ𝜔)] refers to the Bose factor. Note that, by virtue of (15), both dynamic functions ℒ (𝜔2, q)

and S(𝜔, q) behave in a similar way at low frequencies.

Taking into account the very well-known formula

1

1 − exp(−𝛽ℏ𝜔)
=

𝛽=∞

{
1, 𝜔 ≥ 0

0, 𝜔 < 0
,

it is possible to conclude that

S(𝜔 ≤ 0, q)|𝛽=∞ = 0, (16)

that is, at exactly zero temperature, the DSF should vanish for the non-positive values of the frequency 𝜔.

The DSF spectrum, that is, the zeros of the dispersion equation√
2z[z2 − 𝜔2

2
(q)]𝜔1(q) + i𝜔2

2
(q)[z2 − 𝜔2

1
(q)] = 0 (17)

provide direct information on the system (unshifted) diffusion 𝜔ush(q) and shifted (optical or acoustic-roton) 𝜔sh(q) modes that

can now be analytically found as the exact solution of (17) (see refs [23] and [32]):

𝜔ush(q) = −𝑖𝛾(q) = −v2X(q) − 𝑣𝑌 (q) − 𝑖ℎ0(q)∕3,

𝜔sh(q) = 𝜔(q) − 𝑖𝛿(q) = −𝑣𝑋(q) − v2Y(q) − 𝑖ℎ0(q)∕3, (18)

where the intrinsically positive 𝛾(q) and 𝛿(q) are simply the decrements of the corresponding collective modes, and the fol-

lowing notations are employed for the complex number v= exp(2𝜋i/3) and for the complex functions W(q) = −𝜔2
2
(q)∕3 +

𝜔2
1
(q) + 2h2

0
(q)∕27, Z3(q) =

√
−(𝜔2

2
(q)∕3 − h2

0
(q)∕9)3 − (h0(q)W(q)∕2)2, Y(q) = 3

√
h0(q)W(q)∕2i − Z3(q), and X =

3
√

h0(q)W(q)∕2i + Z3(q).
The latter result can be used to describe the collective mode behaviour in partially and completely degenerate OCSCPs, as

was performed in ref. [23] for the classical OCPs.

3 ON THE VALIDITY OF THE SSF

The frequency moments of the loss function employed above to reconstruct the latter are exact relations to be satisfied, like the

conservation laws. In our approach, the knowledge of the characteristic frequencies depends significantly on the quality of the

static data, that is, in general, the precision of our knowledge of both the static dielectric function and the SSF. Here, we suggest

employing another exact relation, which is effectively the Cauchy–Bunyakovsky–Schwarz inequality, to check the validity of

those static characteristics obtained within some theoretical approaches or fitting procedures. The above inequality in the context

of the frequency moments was demonstrated in Appendix A of ref. [11]; it effectively reduces to the positivity of a function:

b(q) = [𝜔2(q) − 𝜔1(q)]∕𝜔p ≥ 0. (19)

The frequency 𝜔2(q) is directly determined by the SSF, see (5) and (6), and in classical systems, 𝜔1(q) is also related, via the

FDT, to the SSF. Within a specific scheme of calculation of the above static characteristics, inequality (19) can be violated to

clearly indicate their inapplicability to estimating the dynamic properties. We analyse several schemes for the evaluation of the

SSF in dense classical plasmas from the viewpoint of fulfilment of inequality (19); see Section 4.2.

4 NUMERICAL RESULTS

4.1 Paramagnetic uniform electron gas

The purpose of this subsection is to evaluate the DSF (15) of a PUEG and to provide a comparison with the results of the

non-equilibrium Green function simulations that essentially exploit the T-matrix self-energies with the vertex corrections [27].

Another goal is to study the dispersion characteristics (18) of the PUEG under the same conditions.

In order to proceed with the DSF (15) and the collective modes (18), only the characteristic frequencies 𝜔1(q) and 𝜔2(q) are

needed. Comparing expression (14) with the loss function in the extended RPA that incorporates the static local field correction

function (LFC) G(0, q), it is straightforward to arrive at the following relation between the frequency 𝜔1(q) and the LFC G(0, q):

𝜔2
1
(q)
𝜔2

p
= 1 +

q2

3ΓΠ0(q)
− G(0, q), (20)
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(a) (b)

FIGURE 1 Dynamic structure factor for the correlated electron gas at 𝜃 = 0.69 and rs = 4 for (a) q= 1.2 and (b) q= 0.6. Dot-dashed line 1: Equation 15 taking

into account the contributions of G(0, q) and U(q) to the frequencies 𝜔1(q) and 𝜔2(q); dashed line 2: Equation 15 but neglecting the contributions from G(0, q)

and U(q) to the frequencies 𝜔1(q) and 𝜔2(q); dotted line 3: the standard RPA; solid line 4: (27). All curves are normalized to their DSF values at the maxima

where Π0(q) is the static polarization operator normalized to 𝛽n.

In the subsequent calculations, the following model is acquired for the LFC[33]:

G(0, q) =
[

1

1 − g(0)
+ w

q2

]−1

(21)

with g(0) being the zero-separation value of the electronic radial distribution function[33], whereas the parameter w is calculated

via the long-wavelength asymptote of the LFC as[33]:

w−1 = 1

3Γ

[
1 − 𝛽

(
𝜕P
𝜕n

)
𝛽

]
(22)

with the isothermal compressibility (𝜕P/𝜕n)𝛽 derived from the Monte Carlo fitting formula for the electron gas equation of

state[34]. Note that Equations [20–22] virtually provide a concise expression for the SSF of the PUEG, which allows one to

evaluate the second characteristic frequency 𝜔2(q) as well.

It has been demonstrated by the numerical calculations at 𝜃 = 0.69 and rs = 4 that the coupling contribution U(q) to the

characteristic frequency 𝜔2(q) is at least an order of magnitude lower than the kinetic contribution K(q). This implies that, under

those conditions, it might be sufficient to apply the quasi-RPA approximation[11] when the coupling contribution U(q) together

with the LFC function G(0, q) are merely dropped out.

Finally, the numerical results for the DSF are presented in Figure 1 in comparison with the data obtained in ref. [27]. Three

different calculation schemes have been applied: (a) Equation (15), taking into account the above stated contributions G(0, q)

and U(q) to the frequencies 𝜔1(q) and 𝜔2(q); (b) the same Equation (15) but neglecting the contributions from G(0, q) and U(q)

to the frequencies 𝜔1(q) and 𝜔2(q), that is, estimating the latter frequencies in the quasi-RPA approximation; and (c) the RPA

formula itself. Just a quick glance proves the robustness of the self-consistent moment approach as the discrepancy between the

peak positions, corresponding to the two mentioned estimates of the characteristic frequencies, remains rather small and lies

within 10% of the accuracy. It should be emphasized that the precision of the fitting formula for the equation of state could have

influenced those results, but not significantly. In addition, the SSF has been employed to evaluate the LFC within the STLS

scheme[30], but the resulting DSF differs substantially from the theoretical prediction of ref. [27].

Furthermore, the dispersion characteristics (18) of the PUEG have been evaluated under the same conditions of 𝜃 = 0.69 and

rs = 4, and the results are shown in Figure 3a. Note that the decrement-to-frequency ratio remains rather small, such that the

plasmon mode is only slightly decaying and, thus, can be observed experimentally.

In an attempt to describe the PUEG at zero temperature, the SSF from ref. [35] and the LFC function model from ref. [36]

have been used, and the results are displayed in Figures 2 and 3b, respectively. Again, a fairly good agreement is found for the

DSF, which vanishes at 𝜔⩽ 0, whereas the plasmon dispersion undergoes no qualitative change in comparison with the non-zero

temperature case.

It should be noted in closing that we have also tried to go beyond approximation [13] by assuming the following model for

the NPF

R(𝜔, q) =
𝑖ℎ0(q)

𝛼 + i(𝛼 − 1)Ξ(𝜔)
, (23)
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(a) (b)

FIGURE 2 Dynamic structure factor for the electron gas at T = 0, rs = 1, (a) q= 0.5, and (b) q= 1.5. Solid line 1: Equation 15 taking into account the

contributions of G(0, q) and U(q) to the frequencies 𝜔1(q) and 𝜔2(q); dashed line 2: Equation 15 but neglecting the contributions from G(0, q) and U(q) to the

frequencies 𝜔1(q) and 𝜔2(q). All curves are normalized to their DSF values at the maxima

(a) (b)

FIGURE 3 Plasmon mode dispersion and the plasmon frequency-to-decrement ratio of Equation 18 at (a) 𝜃 = 0.69, rs = 4 and (b) T = 0, rs = 1. Solid line 1:

Equation 18 taking into account the contributions of G(0, q) and U(q) to the frequencies 𝜔1(q) and 𝜔2(q); dashed line 2: Equation 18 but neglecting the

contributions from G(0, q) and U(q) to the frequencies 𝜔1(q) and 𝜔2(q); dotted line 3: the standard RPA

where the function Ξ(z) is the Cauchy transform of the Fermi–Dirac distribution

Ξ(z) = 1

𝜋 ∫
∞

−∞

(1 + exp(𝜂))𝑑𝑥
(exp(𝐷𝑥2) + exp(𝜂))(x − z)

.

Here, z= (𝜔+ i0+)/kvF with vF =
√

2EF∕m being the Fermi velocity, while the parameter 𝛼 ∈ (0, 1) could be determined by

the maximization of the Shannon entropy. Numerical calculations demonstrate that the best agreement with the data of ref. [27]

is archived for 𝛼 ∼ 0.99, when expression (23) effectively reduces to the assumption (11).

4.2 The Cauchy–Bunyakovsky–Schwarz inequality

In the context of satisfaction of the Cauchy-Bunyakovsky-Schwarz inequality (19), we have checked up to seven different static

schemes of determination of the one-component, strongly coupled classical plasma SSF: the classical hyper-netted chain (HNC)

approximation [37], the bridge function-corrected HNC by Ng [38], two different versions of the variational modified HNC

Scheme,[39,40], and three different fitting procedures[41–43]; see Figure 4. It can be seen that two schemes of SSF calculation vio-

late the Cauchy–Bunyakovsky–Schwarz inequality, which leads to the non-physical results for the DSF under these conditions.

More relevant information can be found in ref. [29].

5 CONCLUSIONS

In this paper, concise analytical expressions for the loss function and the DSF of the PUEG have been derived based on the

self-consistent method of moments that, on the one hand, fulfils all of the exactly known sum rules and, on the other hand,
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(a) (b)

FIGURE 4 Function b(q) 19 for the classical Coulomb OCP at (a) Γ = 20, (b) Γ = 80. The static structure factors are calculated using the following

numerical schemes: 1 - 37, 2 - 38, 3 - 39, 4 - 40, 5 - 41, 6 - 42, 7 - 43

imposes the existence of extremum at zero frequency. The obtained formulas allow one to predict the behaviour of dynamic

properties of the system starting from the static characteristics.

The DSF has been evaluated for zero and finite temperatures to show that it weakly depends on the coupling contribution

that appears in the fourth frequency moment of the loss function. The same inference has been made for the plasmon dispersion

relation, and it has been proven that the decrement-to-frequency ratio remains rather small for not very large wavenumbers.

It is rather curious that the Cauchy–Bunyakovsky–Schwarz inequality yields a simple criterion for validity of the static char-

acteristics. Seven different schemes for evaluating the SSF of strongly coupled, one-component classical plasmas have been

tested using the aforementioned criterion, and some of them have failed to pass.

A plan has been made to proceed with the investigation of dynamic properties of the PUEGs based on the present results and

the data of the quantum Monte Carlo simulations.[44] Different schemes for evaluating the SSF and their influence on the results

of the dynamic characteristics of strongly coupled, one-component plasmas will also be scrutinized.
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