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The energy-autocorrelation function is calculated for a screened Coulomb system in equilibrium and the con-
tributions of different energy transport channels to the total heat conductivity are explored for magnetized and
unmagnetized systems. A special focus is on the time scales of the energy-autocorrelation function which con-
tribute to the field-parallel enhancement of heat conduction in strongly coupled plasmas. The investigation is
based on first-principle molecular dynamics simulations.
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1 Introduction

Strongly coupled plasmas (SCPs)—in which the interaction energy of neighboring particles is larger than the
thermal energy—are abound in nature and experiments. Experimental realizations include dusty plasmas [1, 2],
ultracold plasmas [3], and trapped ions [4]. Studies of these systems promise insight into naturally occurring
SCPs such as white dwarf stars [5], the neutron star atmosphere [5, 6] or other, less accessible experiments such
as laser-generated warm dense matter [7] or the strongly coupled liner remnants in Magnetized Liner Inertial
Fusion (MagLif) experiments [8].

In many of these SCPs, strong magnetic fields influence the dynamics of the particles. Such scenarios occur,
e.g., in magnetic neutron stars [9, 10], MagLif experiments, or in laser fusion setups via self-generated strong
magnetic fields [11]. The magnetization of dusty plasmas is an ongoing challenge [12] which is supplemented
by efforts to imprint an effective magnetic field on the dust particle dynamics by setting the dusty plasma into
rotation [13–15].

Consequently, magnetized SCPs have drawn much attention in the past and have been investigated, e.g.,
through numerical simulations [16–24], analytical modelling [25–27], and kinetic theory [28–31]. The present
authors have recently presented a study of the thermal conductivity of magnetized SCPs through equilibrium sim-
ulations [32], supplementing similar simulations of unmagnetized SCPs [33–38] and studies of weakly coupled
magnetized plasmas, e.g., Refs. [39, 40].

In this article, we make use of the microscopic data obtained from equilibrium simulations to investigate the
energy-autocorrelation function (EACF) [36,41]. The EACF is related to the thermal conductivity via the Green-
Kubo formula (see Eq. (3) below), i.e., the time-integral over the EACF converges to the thermal conductivity
coefficient. By considering the EACF and its dependence on the magnetic field, one obtains additional insight into
the microscopic processes responsible for the (macroscopic) response of the plasma to a temperature gradient.
The remainder of this paper is organized as follows: In Sec. 2 we introduce the EACF and its calculation from
molecular dynamics (MD) simulation. Section 3 contains details of the model used for the calculation and the MD
simulation itself. Section 4 presents results for the EACF of unmagnetized and magnetized SCPs and identifies
the main processes responsible for the heat transport. We conclude in Sec. 5.
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2 Energy Autocorrelation Function

The microscopic energy flux in a plasma is given by the the Irving-Kirkwood formula [41, 42],
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which comprises a kinetic, a potential, and a collision contribution (first, second, and last term, respectively).
The first two contributions represent the transport of energy associated with the bodily movement of particles,
while the collision term represents the transfer of momentum and energy mediated by the mutual interaction of
the particles.

The energy flux (1) is a collective property of the whole plasma and is, in itself, of little interest, since it
is a rapidly fluctuating quantity. The autocorrelation function of the energy flux (the EACF), however, provides
insight into the time scales of heat transfer in the system. By means of the decomposition (2), one can, in addition,
ascertain the dominant mode of energy transfer, e.g., as a function of the temperature or the magnetic field.

The integral over the EACF is related to the heat conductivity of the plasma via the well-known Green-Kubo
formula [41], i.e.,

λμν =
1

V kBT 2

∫ ∞

0

Cμν(t)dt, Cμν = 〈jμ(t)jν(0)〉 (3)

where V is the total volume of the system and T its temperature. Although the integral in Eq. (3) extends to
infinity, it is, in practice, truncated at a finite time after convergence has been observed.

In a magnetized system, the heat conductivity tensor λμν and, accordingly, the EACF tensor Cμν=〈jμ(t)jν(0)〉
consist of three independent components, e.g., C⊥ = Cxx = Cyy , C‖ = Czz , and C× = Cxy = −Cyx, assuming
�B ‖ �̂ez . Here, we consider only the diagonal components of the EACF tensor, that is, the field-parallel (C‖) and
the cross-field (C⊥) heat transfer. These two components are further decomposed into six contributions, e.g.,

C⊥ = Ckk
⊥ + Cpp

⊥ + Ccc
⊥ + 2Ckp

⊥ + 2Ckc
⊥ + 2Cpc

⊥ ,

which are the direct and cross-correlation terms resulting from insertion of Eq. (2) into Eq. (3), i.e., kinetic-
kinetic, potential-potential, and so forth.

3 Methods and Simulation Details

Our interest is in the properties of the EACF tensor in a strongly coupled plasma, both in the presence of a
strong magnetic field and in the unmagnetized case. To isolate the most fundamental effects, and because a fully
self-consistent simulation of a strongly coupled plasma is not feasible, we consider the paradigmatic model of a
(screened) one-component plasma (OCP). In this model, N particles with uniform mass m and charge Q interact
via a Debye-Hückel potential

φ(r) = Q2/r × exp (−r/Λ) (4)

with screening length Λ = a/κ, where κ is the dimensionless screening parameter and a is the Wigner-Seitz
radius. To characterize the OCP, it suffices to give the screening parameter κ (we consider κ = 2 throughout this
work) and the coupling parameter Γ = Q2/(kBTa) and to specify the field strength as β = ωc/ωp, in which
ωp = [4πQ2n/m]1/2 is the plasma frequency and ωc = qB/(mc) the cyclotron frequency.

We solve the equations of motion for N = 8192 particles in periodic boundary conditions via molecular
dynamics simulation, incorporating the magnetic field into the integration scheme [43, 44]. All data points are
obtained from simulations spanning ωpt = 1.25× 107, divided into 50 independent runs. The resulting EACF is
calculated from Eq. (1) for each simulation and averaged over all runs.
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Fig. 1 Heat conductivity as a function of the cou-
pling strength in an unmagnetized system (β = 0,
middle curve) and in field-parallel and cross-field di-
rection in a strongly magnetized system (β = 5, up-
per and lower curve, respectively). Data reproduced
from Ref. [32].

4 Results

Before considering the EACF, we recall some main results from our calculation of the heat conductivity in
strongly coupled OCPs [32] for κ = 2, see Fig. 1. The heat conductivity is a non-monotonic function of the
coupling strength in the unmagnetized case, varying over more than one order of magnitude from Γ = 1 to
Γ = 400, close to the crystallization point. The minimum occurs around Γ = 35. As in a weakly coupled
plasma (Γ � 1), a magnetic field strongly reduces the ability of the plasma to transport heat perpendicular to
the field. This reduction can amount to orders of magnitude (see bottom curve of Fig. 1) and is strongest for
small Γ. For field-parallel transport, on the other hand, strong coupling effects massively change the behavior
of the magnetized plasma. While for weakly coupled plasmas (Γ � 1), the heat transport is independent of the
B-field [39], it can be strongly enhanced in the case of strong coupling (see upper curve in Fig. 1).

We have quantified and explained these effects in detail in Ref. [32]. Here, we concentrate on the properties
of the EACF itself, i.e., the integrand of the Green-Kubo formula. This will allow us to identify the time scales
involved in the reduction and enhancement of the heat conductivity as well as the relative contributions according
to Eq. (2).

4.1 Unmagnetized Systems

We begin by considering the unmagnetized system at three representative values for the coupling, Γ = 5, 30, 300,
corresponding to values at the falling and rising flanks and the minimum in λ(Γ) (see Fig. 1). In Fig. 2, the six
components of the EACF and their sum, i.e., the total EACF, are shown. For Γ = 5, all autocorrelation functions
are smoothly decaying functions, with the exception of the kinetic-potential and the kinetic-collisional cross
terms, which only contribute at time delays of more than one plasma cycle ω−1

p . The total EACF is dominated
by the kinetic contribution, whereas collisional and potential contributions are only minor, as is expected for
a comparably weakly coupled system. After a time of 30ω−1

p , the integral of the EACF, i.e., the total thermal
conductivity, converges to its final value (see bottom part of Fig. 2). The contribution of the direct kinetic
correlation term is larger than 80%.

At Γ = 30, the EACF is an oscillatory function due to the increased interparticle coupling. This is mainly
driven by the increase of the relative contribution of the collisional correlation function, which reflects the increas-
ingly caged motion of the particles. In light of the finite integration time required for the Green-Kubo formula (3),
it is especially noteworthy that the oscillation of the EACF extends to negative values around 10ω−1

p . This leads
to the formation of an associated plateau in the integrated EACF which could be misinterpreted as convergence.1

At this intermediate coupling, the contributions of direct kinetic and collisional correlations are of comparable
magnitude, and, in fact, their contrary dependence on Γ is the reason for the formation of a minimum in λ(Γ).

1 A common method for determining the endpoint of the integration in Eq. (3) is to identify it with the first zero crossing of the EACF.
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Fig. 2 Results for three unmagnetized systems at weak to strong coupling. Top: Total (normalized) EACF and its decompo-
sition into six contributions. Bottom: The corresponding running integral of the EACF normalized to converge to unity. Note
the difference in the leading contribution for weak and strong coupling as well as the occurrence of negative portions in the
EACF for Γ = 30 and the corresponding formation of a plateau in the integrated EACF (middle column).
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Fig. 3 The EACF of two unmagnetized systems at
Γ = 30 and Γ = 100, normalized to the EACF for
Γ = 30 at t = 0. The decay of the EACF follows
t−3/2 in both cases, indicating the existence of a long-
time tail.

At the other end of the liquid coupling range, at Γ = 300, the collisional mode is dominant since the particles
are arranged in an almost stationary lattice-like configuration. Transport of heat via the direct kinetic channel is
suppressed, but the slowly changing particle landscape is reflected in the contribution of the potential term, which
is comparable to the collisional-potential cross term. Convergence for Γ = 30 and Γ = 300 is considerably slower
than in the more weakly coupled system and is only observed at times larger than 100ω−1

p .

www.cpp-journal.org c© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



250 T. Ott et al.: The energy-autocorrelation function in strongly coupled plasmas

Lastly, we consider the decay rate of the EACF at long time delays, Fig. 3. The form of this decay is of
considerable interest for fundamental questions such as the existence of transport coefficients in lower dimen-
sions [36, 45, 46]. For Γ = 30 and 300, we find evidence for the existence of an algebraic decay proportional
to t−D/2, where D = 3 is the dimensionality of the system, the so-called long-time tail [47–49]. This is in
agreement with earlier simulations for two-dimensional systems [36] which provided evidence for a 1/t-decay
for warm systems, possibly excluding the existence of a heat conductivity coefficient in two dimensions.

4.2 Magnetized Systems

For the magnetized system, we restrict the discussion to the field-parallel component of the EACF tensor, since
the suppression of the cross-field transport, at high enough magnetic field, is very efficient and the energy flux
perpendicular to the field is therefore negligible.
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Fig. 4 A, C: The (normalized) field-parallel EACF at β = 0 and β = 5 for Γ = 5 and Γ = 300. B, D: The corresponding
contributions to the total field-parallel EACF at β = 5. In C and D, the effective contribution of the oscillatory EACF to
the Green-Kubo integral is shown by the strong red line. In B, the dashed grey line shows the direct kinetic EACF of an
unmagnetized system. Note the logarithmic scaling of the time axis and the resulting distortion of area sizes.

First, consider a comparably weakly coupled system (Γ = 5) in which unmagnetized transport is dominated by
the kinetic contribution and, at strong magnetic fields, there is a substantial enhancement of the heat conductivity.
Figure 4A shows the temporal evolution of the total EACF at β = 0 and β = 5. From these data, we conclude
that the increasingly effective field-parallel transport is driven by an enhanced persistence of the heat flux at time
scales between tωp = 10 . . . 200. As Fig. 4B shows, this persistence in turn can be largely attributed to the
formation of a shoulder-like feature in the direct kinetic term of the EACF (the grey dashed line in Fig. 4B shows
the corresponding direct kinetic term at zero magnetic field). Additional contributions arise from the kinetic-
potential and the kinetic-collisional cross terms at early times. We conclude that the magnetic field enhances
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kinetic energy retention in field-parallel direction for surprisingly long times and attribute this to the decreased
mutual interaction with (perpendicularly situated) neighboring particles due to the tightly-wound Larmor radii at
large fields.

We now turn to the opposite extreme of a system with collisionally dominated transport, Γ = 300. Since
the EACF is highly oscillatory at β = 5, we calculate the effective contribution to the Green-Kubo integral
by averaging the upper and lower hull curves. These data are plotted in Fig. 4C and D alongside the actual
EACF. As these data show, the enhancement of field-parallel transport originates primarily from the growth of
the first oscillation in the direct collision EACF contribution and occurs at time scales of tωp = 20 . . . 100. This
indicates that the interaction times of particles undergoing a collision are much prolonged. We attribute this to the
decreased mobility of particles in the field-perpendicular direction which prevents a rapid repulsion of interacting
particles.

5 Conclusion

In summary, we have calculated the energy autocorrelation function (EACF) in a screened one-component
plasma. The present results supplement those of Ref. [32] in characterizing the heat conduction process in
strongly coupled plasmas and the processes leading to the field-parallel enhancement of heat transport by a
magnetic field. They also represent the first detailed study of the composition of the total EACF from its six
constituent parts and their functional forms.

In unmagnetized plasmas, there exist different regimes of Γ, in which either kinetic (small Γ) or collisional
(large Γ) transport channels dominate. At intermediate coupling near the onset of caging (Γ = 30), the EACF
can become negative at intermediate time scales and is dominated in equal parts by the kinetic and collisional
transport channel. For strongly magnetized plasma, we have investigated the surprising result that the field-
parallel heat conductivity is enhanced over the unmagnetized case. By observing the time evolution of the EACF
in a magnetized system, we have identified the dominant channels and the time scales on which the enhanced
heat flux persistence occurs.
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[18] M. Bonitz, Z. Donkó, T. Ott, H. Kählert, and P. Hartmann, Phys. Rev. Lett. 105, 055002 (2010).
[19] T. Ott, M. Bonitz, P. Hartmann, and Z. Donkó, Phys. Rev. E 83, 046403 (2011).
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