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The effective potential U of a classical ion in a weakly correlated quantum plasma in thermodynamic

equilibrium at finite temperature is well described by the random phase approximation screened

Coulomb potential. Additionally, collision effects can be included via a relaxation time ansatz

(Mermin dielectric function). These potentials are used to study the quality of various statically

screened potentials that were recently proposed by Shukla and Eliasson (SE) [Phys. Rev. Lett. 108,

165007 (2012)], Akbari-Moghanjoughi (AM) [Phys. Plasmas 22, 022103 (2015)], and Stanton and

Murillo (SM) [Phys. Rev. E 91, 033104 (2015)] starting from quantum hydrodynamic (QHD) theory.

Our analysis reveals that the SE potential is qualitatively different from the full potential, whereas

the SM potential (at any temperature) and the AM potential (at zero temperature) are significantly

more accurate. This confirms the correctness of the recently derived [Michta et al., Contrib. Plasma

Phys. 55, 437 (2015)] pre-factor 1/9 in front of the Bohm term of QHD for fermions. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4932051]

I. INTRODUCTION

Dense plasmas have recently gained growing interest

due to their relevance for the interior of giant planets as

well as for laser interaction with matter and inertial confine-

ment fusion scenarios. Examples of recent experimental

studies include the ultrafast thermalization of laser plas-

mas1 or free electron laser excited plasmas,2 inertial con-

finement fusion experiments at the National Ignition

Facility,3 and magnetized Z-pinch experiments at Sandia.4

Questions of fundamental theoretical importance are the

conductivity and heat conduction, the free energy loss of

energetic particles (stopping power) in such a plasma, e.g.,

Ref. 5, or the temperature equilibration of the electronic

and ionic components.2

Despite recent advances in modeling and computer

simulations, a fully self-consistent treatment of these, in

general, highly nonequilibrium electron-ion plasmas has

not been possible so far due to the requirement of the si-

multaneous account of electronic quantum and spin

effects together with the (possibly) strong ionic correla-

tions. The main problem here are the vastly different

time scales of electrons and ions resulting from their dif-

ferent masses. A possible solution of this dilemma is a

multi-scale approach that has been proposed by Ludwig

et al. in Ref. 6. It takes advantage of the weak electron-

ion coupling that allows for a linear response treatment

of the electrons. This idea has been used by Graziani

et al. to decouple the electron kinetic equation using a

STLS (Singwi-Tosi-Land-Sj€olander) scheme7 or a

recently derived extension.8

The key of this multiscale approach is to absorb the fast

electron kinetics into an effective screened potential U of the

heavy ions with charge Q where the screening is provided by

the electrons via a proper dielectric function (DF) �, e.g.,

Ref. 6

U rð Þ ¼
ð

d3k

2p2

Q

k2� k;x ¼ 0ð Þ e
ik�r; (1)

taken in the static limit. We note that also the effect of

streaming electrons maybe important in warm dense matter.

Then the frequency argument becomes x¼ku which leads

to wake effects that are well investigated theoretically and

experimentally for dusty plasmas, e.g., Refs. 9–11 and quan-

tum plasmas, e.g., Ref. 12 and references therein. However,

this is beyond the scope of this paper.

A similar but even simpler approach is based on a quan-

tum hydrodynamic (QHD) model and replaces the linear

response potential of the ions by a simplified expression that

is derived from linearized QHD (LQHD), U ! ULQHD. The

first expression for ULQHD was derived by Shukla and

Eliasson (SE) who predicted an attractive interaction between

ions, even in the absence of streaming, ue¼ 0.13 Comparisons

with density functional theory revealed that this is incorrect.14

This also underlined the limitations of QHD models to

weakly correlated dense plasmas.15,16 A recent overview and

more references can be found in Ref. 17.

Recently, modified expressions for ULQHD were derived

by Akbari-Moghanjoughi (AM)18 and Stanton and Murillo

(SM).19 The latter is particularly interesting because it is also

applicable to finite temperatures, in contrast to the SE and

AM potentials that neglect thermal effects. The question

arises whether the AM and SM potentials are more accurate

than the SE potential and whether they allow for an exten-

sion of the applicability limits of QHD.

It is the goal of the present paper to perform such an

analysis. To quantify the accuracy of these three potentials,
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we use, as a basis, the standard static potentials of weakly

correlated electrons that can be derived from quantum ki-

netic theory20 by linearization in the external perturbation.

This directly leads to the static potential (1) involving the

random phase approximation (RPA) for the dielectric func-

tion and the Mermin dielectric function, respectively. Both

include kinetic effects, finite temperature and, in the latter

case, also collisions. Being rooted in a kinetic approach, the

corresponding static potentials are, by construction, more

accurate than the potentials ULQHD and, thus, allow for a rig-

orous test of the validity of the latter.

The main conclusions of our analysis are as follows: (1)

the SE potential is qualitatively different from the kinetic

results, (2) the SM potential exhibits very good agreement

with the RPA, (3) the AM potential is in agreement with the

SM potential, at T¼ 0, differing only in the notation, and (4)

the SM potential is in good agreement with the RPA result

even at elevated temperature. This confirms the correctness

of the recently reported21 correction factor of 1/9 that has to

be included in front of the Bohm term of the QHD equations

for fermions.

The paper is organized as follows: We first recall the

RPA and Mermin dielectric functions in Sec. II and discuss

their basic properties such as the reproduction of Friedel

oscillations. After this, we recall the SE, AM, and SM poten-

tials in Sec. III and present numerical results that compare

them to the potential U computed from the RPA and Mermin

dielectric functions. The paper concludes with a brief discus-

sion of the physical origin of the factor 1/9. The main steps

of its derivation are outlined in an Appendix.

II. EFFECTIVE ION POTENTIALS SCREENED BY THE
RPA AND MERMIN DIELECTRIC FUNCTIONS

The mean-field result for the electron dielectric function is

given by the random phase (RPA or Hartree or quantum

Vlasov) approximation, �RPA (k, x), where correlation effects

are neglected, and damping of collective oscillations is entirely

due to Landau damping. Temperature effects are straightfor-

wardly included by using the corresponding Fermi function.

For an overview on the final expression, see the Appendix of

Ref. 12. The effective ion potential (1) computed from the

RPA dielectric function in the zero temperature limit is shown

in Figs. 1 and 2 for different densities. The zero temperature

RPA potential reproduces the Friedel oscillations, as is illus-

trated in Fig. 2 by comparison with the large r asymptotics,

cosð2kFrÞ=r3, (red dashed line). While the oscillations are

very shallow and hardly of relevance for the thermodynamics

and transport properties in warm dense matter, the reproduc-

tion of the correct periodicity is a useful consistency and accu-

racy test of the Fourier transformation in Eq. (1).

For later reference, we also provide the static long wave-

length limit of the effective ion potential, which is nothing

but the Yukawa potential (1)

UY r; n; Tð Þ ¼ Q

r
e�kY r; (2)

with the familiar inverse Yukawa screening length, kY, which

interpolates between the Debye and Thomas-Fermi expres-

sions, in the non-degenerate and zero temperature limits,

respectively,

k2
Y n; Tð Þ ¼ 1

2
k2

TFh1=2I�1=2 blð Þ: (3)

Here, kTF ¼
ffiffiffi
3
p

xp=vF is the Thomas-Fermi wave number,

and I�1=2 is the Fermi integral of order �1/2. Note

that the potential (2) depends—via kY—on density and

temperature.

In the warm dense matter regime, we expect the elec-

trons to be weakly to moderately coupled so that correlation

effects are, in general, not negligible. The simplest quantum

DF, which takes collisions into account in a conserving fash-

ion via a relaxation time approximation, is the Mermin DF22

FIG. 1. Effective ion potential computed from the RPA dielectric function

for four densities and T¼H¼ 0. Inset shows an enlargement of the potential

around its zero values to resolve the Friedel oscillations.

FIG. 2. Effective ion potential computed from the RPA dielectric function for

two densities corresponding to rs¼ 2.53 (top) and 0.25 (bottom) and T¼ h
¼ 0. The zoom into the small potential values confirms the correct oscillation

frequency at large distances that is expected for Friedel oscillations, as seen

from the comparison with the (red) dashed curve. Here, r0 corresponds to the

distance indicated by a vertical dashed line. The grey box shows that the oscil-

lation period of the full potential agrees with the known asymptotics.
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�M k;xð Þ ¼ 1þ xþ i�ð Þ �RPA k;xþ i�ð Þ � 1½ �
xþ i� �RPA k;xþ i�ð Þ � 1½ �= �RPA k;0ð Þ � 1½ � ;

(4)

which involves the finite temperature RPA DF and the elec-

tron collision frequency �. In Ref. 12, various choices for the

collision frequency were studied, so here we will just use a

typical set of values to highlight the main trends.

III. TESTING STATICALLY SCREENED ION
POTENTIALS DERIVED FROM QHD

A. The SE potential

The Shukla-Eliasson potential has been derived from

linearized QHD, below we reproduce its most recent

variant.13 It involves the electron plasma frequency

xpe ¼ ð4pn0e2=�m�Þ1=2
, [m* is the effective electron mass],

and the electron Fermi speed v� ¼ �hð3p2Þ1=3=m�r0, where r0

¼ n
�1=3
0 is proportional to the Wigner-Seitz radius. The term

vex ¼ ð0:328e2=m��r0Þ1=2 � ½1 þ 0:62=ð1 þ 18:36aBn
1=3
0 Þ�

1=2

can be regarded as (optional) correction that is supposed to

account for exchange-correlation effects. [It was proposed in

Ref. 23 based on the exchange-correlation potential of den-

sity functional theory.] Since the other potentials do not

include such a correction and it does not qualitatively alter

the potential, in the comparisons below, we will use vex¼ 0.

The SE potential, for aSE> 0.25, is given by13

/SE> r; nð Þ ¼
Q

r
cos k0�r
� �

þ b0 sin k0�r
� �� �

e�k0þr; (5)

with the parameter b0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aSE � 1
p

. The wave vectors are

given by24 k06 ¼ ksð
ffiffiffiffiffiffiffiffiffi
4aSE
p

61Þ1=2=
ffiffiffiffiffiffiffiffiffi
4aSE
p

, where ks ¼ xpe=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
�=3þ v2

ex

p
is similar (but not identical) to the inverse

Thomas-Fermi screening length kY, Eq. (3).

The SE potential for the second parameter range,

aSE< 0.25, is given by

/SE< r; nð Þ ¼
Q

2r
1þ bð Þ e�kþr þ 1� bð Þ e�k�r

� �
; (6)

with the definitions k6 ¼ ksð17
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4aSE
p

Þ1=2=
ffiffiffiffiffiffiffiffiffi
2aSE
p

and

b ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4aSE
p

.

Note that the Shukla-Eliasson potential is a zero-

temperature approximation, and the potential depends only

on density. Numerical results are included in Fig. 3.

B. The AM potential

Here, we reproduce the electrostatic potential derived by

Akbari-Moghanjoughi (we use the most recent corrected ver-

sion, Ref. 18). This potential has the same mathematical

form as the SE potential /SE>, for aAM> 0.25

/AM> r; nð Þ ¼
Q

r
cos k0�r
� �

þ b0 sin k0�r
� �� �

e�k0þr: (7)

The difference lies in the definition of the parameter aAM

¼ �h2x2
pe=36m2

�ðv2
�=3Þ2 and of the wave numbers24 k06

¼ kTFð
ffiffiffiffiffiffiffiffiffiffi
4aAM
p

61Þ1=2=
ffiffiffiffiffiffiffiffiffiffi
4aAM
p

, where kTF ¼ xpe=
ffiffiffiffiffiffiffiffiffi
v2
�=3

p
is

the inverse Thomas-Fermi screening length. These formulas

are connected to the SE versions by vex¼ 0 and an additional

factor of 1/9 in the definition of aSE.

The potential for aAM< 0.25 is not given in Ref. 18.

Assuming the same relation to the SE result, it has the

form

/AM< r; nð Þ ¼
Q

2r
1þ bð Þ e�kþr þ 1� bð Þ e�k�r

� �
; (8)

with b¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4aAM
p

and k6¼ kTFð17
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4aAM
p

Þ1=2=ffiffiffiffiffiffiffiffiffiffi
2aAM
p

.

As the SE potential, this is a zero-temperature result

which, therefore, depends only on the density. Numerical

results are included in Fig. 3.

FIG. 3. Comparison of the Shukla-Eliasson (SE, blue dashes) and

Stanton-Murillo (SM, red dots) [it coincides to AM for T¼ 0] potentials

to the zero-temperature full RPA potential (full black line) for three

densities. Top: rs¼ 25.27, center: rs¼ 2.3, bottom: rs¼ 0.25. The SM

potential shows increasing deviations from the RPA potential U for

decreasing density (cf. top and middle figures). At high density (bottom

figure), the SM potential exhibits very good agreement with the RPA

potential. The SE potential exhibits large deviations from the RPA at

all densities. Insets show the behavior for large distances and confirm

that all models (except for the RPA) are unable to describe the Friedel

oscillations correctly.
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C. The SM potential

Here, we reproduce the screened potential of Stanton

and Murillo following the latest corrected version.19 Again,

there are two cases. For aSM> 1, the potential is given by25

/SM> r; n; Tð Þ ¼ Q

r
cos k0�r
� �

þ b0 sin k0�r
� �� �

e�k0þr; (9)

with aSM ¼ 3
ffiffiffiffiffiffi
8b
p

kI0 �1=2ðg0Þ=p; k¼ 1=9; b0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aSM � 1
p

,

and k06¼ kTFð
ffiffiffiffiffiffiffiffi
aSM
p

61Þ1=2=
ffiffiffiffiffiffiffiffi
aSM
p

. IpðgÞ¼
Ð1

0
dxxp=ð1þex�gÞ

denotes the Fermi integral and I0pðgÞ is its derivative with

respect to g. g0 is determined by the normalization, n0

¼
ffiffiffi
2
p

I1=2ðg0Þ=p2b3=2 with the inverse temperature b. The

inverse Thomas-Fermi screening length for finite temperatures

is given as kTF¼ð4I�1=2ðg0Þ=p
ffiffiffiffiffiffi
2b
p
Þ1=2

.

A second version of the potential follows for the case

aSM< 1:

/SM< r; n; Tð Þ ¼ Q

2r
1þ bð Þ e�kþr þ 1� bð Þ e�k�r

� �
; (10)

where b ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aSM
p

and k6 ¼ kTFð17
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aSM
p

Þ1=2=ffiffiffiffiffiffiffiffiffiffiffiffi
aSM=2

p
.

We note that the SM expressions are identical to the

AM version in the limit T¼ 0, if aAM is rescaled by a factor

of 4, aSM¼ 4aSM (T¼ 0). Numerical results are included in

Figs. 3 and 4.

D. Numerical test of the potentials ULQHD from
linearized QHD

We now present a numerical comparison of the three

LQHD potentials to the RPA potential (1). In the following,

all results are given in Hartree atomic units. Since the AM

potential coincides with the SM potential taken at T¼ 0 we

will, in the following, not distinguish both potentials. We use

the shortcut “SM” for both cases.

1. Zero temperature

To begin the analysis, we recall that the SE, SM [and

AM] ion potentials are all derived by applying the long-

wavelength limit to the full potential. Correspondingly, in

Fourier space, one should expect accurate results only for

small wave numbers, k� 2kF, where kF¼ (3p2n) is the

Fermi wavenumber.

For a comprehensive comparison, we consider a broad

density range, covering 6 orders of magnitude with the three

values of the Brueckner parameter, rS¼ 25.27, 2.3, and 0.25

(similar values were studied in Ref. 18). The first observa-

tion, cf. Fig. 3, is that all four potentials show the same over-

all behavior with the deviations growing when the density is

reduced. The next observation is that the SM potential coin-

cides with the RPA potential at large distances: for r/aB

� 12, 1.2, and 0.9 and for the rs¼ 25.57, 2.3, and 0.25,

respectively. However, a closer inspection of the large dis-

tance behavior shows that substantial deviations remain:

none of the three approximate potentials reproduces the

Friedel oscillations of the RPA potential (see also Figs. 1

and 2). Nevertheless, the SM potential provides a good fit to

the RPA potential if one discards the (small) Fourier compo-

nent with k¼ 2kF.

Consider now the case rs¼ 2.3, cf. middle part of Fig. 3.

Here, one clearly recognizes the difference between the SM

(and AM) potentials, compared to the SE potential. While

the SE potential exhibits strong deviations from the RPA

potential, the SM potential is very close to the RPA result.

At the highest density, rs¼ 0.25, bottom figure, the devia-

tions between SM and SE are very small. But this is not sur-

prising as, in this case, the Bohm term in the QHD equations

is negligible, so the influence of the different prefactors of

this term (1 for SE versus 1/9 for SM) is insignificant.

Finally, at the lowest density, rs¼ 25.27, top figure, all three

potentials show substantial deviations from the RPA for

small distances below 10aB, although the deviations of the

SE potential are significantly larger, in particular, for larger

distances. However, at these low densities, the plasma is

strongly correlated and the RPA potential itself is not

applicable.

Thus, from the zero-temperature behavior, we conclude

that the SM (and AM) potential shows a substantial improve-

ment over the SE potential, confirming the correctness and

importance of the prefactor 1/9 in front of the Bohm term.21

In fact, we will show in Sec. IV that this coefficient is not

a free parameter but, for the description of the long-

wavelength properties of the plasma (such as the statically

screened potential), the value 1/9 follows rigorously.

2. Finite temperature

Quantum hydrodynamics, as used in the plasma physics

community, is a zero-temperature theory, so the results of

SE13 for the effective ion potential and the recent correction

FIG. 4. Comparison of the Stanton-Murillo potential to the RPA potential

for various temperatures at a fixed density. Top: rs¼ 0.5 and bottom:

rs¼ 2.3. As it is seen, the SM potential accurately describes the screening

effect at high temperatures and densities.
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by Akbari-Moghanjoughi18 are restricted to the ground state.

At the same time, for relevant applications to dense plasmas,

warm dense matter, or laser plasmas, finite temperature

effects are usually non-negligible. It was shown in Refs. 19

and 21 that the QHD equations are directly linked to the

Thomas-Fermi theory, which allows for a straightforward

incorporation of finite-temperature effects. This link was

exploited in Ref. 19 to derive a statically screened potential

for arbitrary temperatures.

It is now interesting to compare the corresponding

finite-temperature SM potential to the RPA potential at the

same temperature. This is done in Fig. 4 for different values

of the degeneracy parameter h¼ kBT/EF at constant density.

The figure shows that, for high density, rs¼ 0.5, the agree-

ment is excellent, for all temperatures. This is not surprising,

since at these densities gradient corrections (the Bohm term

of QHD) are small, as noted above. Here, the temperature

dependence is governed by the one of the ideal Fermi gas

(Fermi pressure). More interesting is the comparison at lower

density, rs¼ 2.3, bottom part of Fig. 4 where correlation

effects (and the Bohm contribution) are significant. Here, the

agreement between SM and RPA potentials is slightly worse

and improves with increasing temperature. This is due to

smoothening of the Friedel oscillations with increased

temperature.

Overall, we conclude that the agreement between the

SM potential and the RPA, even at finite temperature, is very

impressive. This confirms again that the SM potential cor-

rectly captures the long-wavelength properties of the static

RPA potential (1).

Finally, let us analyze the effect of collisions (correla-

tions) on the dielectric function. It is well known that these

effects become increasingly important outside the weak-

coupling limit, i.e., for rs � 1. Yet it is not clear, a priori,
how important these effects are for the static ion potential.

We, therefore, computed the static potential (1) with the

Mermin dielectric function for a broad range of tempera-

tures, densities and collision frequencies. A typical result is

shown in Fig. 5 where the RPA potential is compared to

the Mermin dielectric function with the collision frequency

�¼ 0.5xpl, at zero temperature. The differences are

extremely small, and the same behavior is observed at other

densities and elevated temperatures. The explanation is, of

course, that correlation effects are particularly relevant at

short distances where the Coulomb potential is large anyway.

We note that the situation is very different in streaming plas-

mas that are out of equilibrium. Here, scattering effects have

an important impact on the effective ion potential.26

IV. SUMMARY AND DISCUSSION

A. Accuracy of the LQHD screened potentials

We have presented an analysis of three recently pro-

posed static ion potentials in quantum plasmas and compared

them to the static limit of the RPA potential (1). The first of

these potentials (SE) was the one derived by Shukla and

Eliasson13 who predicted an attractive minimum of the

potential [cf. middle part of Fig. 3] that would be responsible

for ordering of ions in dense plasmas. Our analysis reveals

that no such minimum exists in the RPA potential, so this

minimum should be regarded an artefact of the used LQHD

model.14

The comparison with the two other potentials, the ones

of SM19 and of AM18 which do not exhibit a comparable

minimum, reveals the origin of this discrepancy (see below).

The SM (and AM) potential exhibits very good agreement

with the RPA potential at T¼ 0 indicating that it correctly

captures the long-wavelength properties of the RPA, in con-

trast to the SE potential.

B. Implications for the Bohm potential for quantum
plasmas

Since the only difference between the SE potential (5)

and the SM (and AM) potential (9) is the different prefactors

of the Bohm term in the underlying QHD equations, the

good accuracy of the latter indicates that the choice of the

prefactor 1/9 is the correct one. In fact, this question is easily

answered by recalling the one-to-one correspondence

between QHD and Thomas-Fermi theory with gradient cor-

rections.19,21 In Thomas-Fermi theory and, more generally,

in density functional theory, it is well known that an expan-

sion of the (non-interacting) kinetic energy (together with

exchange contributions) in a power series in terms of density

gradients converges to the full Hartree-Fock free energy.27

In the present case, we start from the statically screened

potential (1) in RPA, so we should expect agreement from a

gradient expansion of the Thomas-Fermi kinetic energy T[n]

without exchange and correlation corrections. Since the

Bohm term of QHD corresponds just to the first non-

vanishing gradient correction, T2 (quadratic in density gra-

dients, see Appendix), the pre-factors of both are linked

inseparably via the equation21

dT2 n; c½ �
dn

¼ c
�h2

8m

����rn

n

����
2

� 2
r2n

n

 !
¼ c VMH

B n½ �; (11)

where VMH
B is the Bohm potential for quantum systems with

Bose statistics. For the case of quantum plasmas (fermions),

the same potential (i.e., c¼ 1) was postulated by Manfredi

and Haas.36 However, the correct value for the potential (at

FIG. 5. Ion potential at a fixed density, rs¼ 0.5 and two collision frequencies

(in units of the plasma frequency). The behavior is representative for other

densities and temperatures and indicates that the electron collisions do not

affect the static screened potential, within the relaxation time approximation

(Mermin model).
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T¼ 0) is c¼ 1/9 which is clearly confirmed by the compari-

son of the SE and SM potentials to the RPA in the present

work.

C. Derivation of the first gradient correction to the
kinetic energy for fermions: The coefficient c 5 1/9

Let us briefly discuss the origin and validity of the

prefactor 1/9. This, coefficient was first obtained by

Kompaneets28 and Kirzhnitz,29 almost 60 years ago, who

used a Matsubara Green functions method to obtain the gra-

dient correction to the Thomas-Fermi (non-interacting)

kinetic energy functional. In the same year Golden30 derived

this factor by expanding the density matrix of a many-

electron system. Later Hohenberg and Kohn31 presented a

systematic derivation in terms of a gradient expansion to all

orders, on the basis of the electron polarization function for

zero temperature. Mermin32 extended the Hohenberg and

Kohn method to finite temperature but did not give a deriva-

tion of the gradient correction at finite temperature. This was

done by Kirzhnitz et al.33 and by Perrot34 who minimized

the grand canonical potential using the known form of the

free energy of the electrons (which replaces the kinetic

energy). At last, the Feynman path-integral method was used

by Yang35 to obtain the single-particle Green function and to

prove the factor of 1/9.

Over the recent decades, occasionally additional deriva-

tions have appeared. In particular, the recent analysis of

Akbari-Moghanjoughi18 essentially reproduces earlier deri-

vations based on the calculation of the long-wavelength limit

of the inverse of the Lindhard dielectric function, ��1
RPA at

T¼ 0, whereas the analysis of Stanton and Murillo19 directly

starts from Perrot’s result.34

We also note that there exists a different approach to the

gradient corrections in Thomas-Fermi theory, in particular,

in the context of density functional theory. Here, often the

prefactor of the respective term is used as a fit parameter to

reproduce improved simulations (that go beyond the RPA),

e.g., Ref. 38. Similarly, for the case of electrons bound in

atoms, the prefactor can be optimized to better match the

Hartree-Fock ground state free energy, yielding c¼ 0.2.39,40

For a recent overview on DFT applications, see Ref. 47.

Finally, it was shown by Jones and Young41 that the correct

short-range limit (which is correct for k � 2kF) of the RPA is

reproduced by the choice c¼ 1. However, in the context of

the screened potential of free charged particles in a plasma,

one has to use the static long-wavelength limit of the inverse

dielectric function, which is exactly given by the RPA, so

there exists no freedom of choice, see Sec. IV D.

D. Wavenumber expansion of the inverse polarization
function and inverse dielectric function: Improved
static ion potential

A key input for the gradient correction of the (non-inter-

acting) kinetic energy [at finite temperature, this is replaced

by the free energy] is the wavenumber expansion of the

inverse of the static density response function, i.e., of the

longitudinal polarization function P(k, x¼ 0). The result is

(for the derivation, see the Appendix44)

~K kð Þ ¼ 1

2P kð Þ
¼ ~a0 þ ~a2k2 þ ~a4k4 þ � � � : (12)

This is a completely general result where the whole microphy-

sics is contained in the value of the expansion coefficients.

From this, we can directly obtain systematic approximations

for the statically screened ion potential (1) without recourse

to the connection between Thomas-Fermi theory and QHD, Eq.

(11). Indeed, what is needed to evaluate Eq. (1) is the inverse

of the dielectric function, which is related to the polarization

function by20

� k; 0ð Þ ¼ 1� 4pe2

k2
P kð Þ: (13)

From this and Eq. (12), we obtain the desired wavenumber

expansion of the inverse static dielectric function [and of the

screened potential (1)]

��1 k; 0ð Þ ¼ 2k2 ~a0 þ ~a2k2 þ ~a4k4 þ � � �ð Þ
2k2 ~a0 þ ~a2k2 þ ~a4k4 þ � � �ð Þ � 4pe2

(14)

Using, as the lowest order approximation, the RPA

polarization, we obtain for the first five non-vanishing coeffi-

cients (see Appendix)

~a0 n; Tð Þ ¼ � 2pe2

j2
Y n; Tð Þ

; (15)

~a2 n; Tð Þ
~a0 n; Tð Þ ¼ �

b1

4k2
F

; (16)

~a4 n; Tð Þ
~a0 n; Tð Þ ¼

b2
1 � b2

16k4
F

; (17)

~a6 n; Tð Þ
~a0 n; Tð Þ ¼

�b3
1 þ 2b1b2 � b3

64k6
F

; (18)

~a8 n; Tð Þ
~a0 n; Tð Þ ¼

b4
1 � 3b2

1b2 þ b2
2 þ 2b1b3 � b4

256k8
F

; (19)

where the bi involve Fermi integrals of different orders [see

Eq. (A20) of the Appendix)]. While the expression for ~a4

was derived in Refs. 45 and 46, the finite-temperature result

for ~a6 and ~a8 is given here for the first time. This result

allows one to systematically derive approximations for the

screened potential by considering the long-wavelength limit,

k! 0 of the inverse dielectric function (14).

1. Lowest order result

The lowest order is given by neglecting all k-dependent

terms in the parentheses of Eq. (14), ~a2 ¼ ~a4 ¼ � � � 0, and we

obtain

��1
0 k; 0ð Þ ¼ k2

k2 þ j2
Y

: (20)

Inserting this into Eq. (1) immediately yields the Yukawa

potential (2).

2. Second order result

The next order is obtained by retaining the terms quad-

ratic in k
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��1
2 k; 0ð Þ ¼

k2 1þ ~a2

~a0

k2

� 	

k2 þ j2
Y þ

~a2

~a0

k4

: (21)

The result for ~a2 is (see Appendix)

~a2 n; Tð Þ ¼
�h2I�3=2 gð Þ

36menH3=2I2
1=2

gð Þ
: (22)

In the ground state, T¼ 0, this coefficient becomes

~a
ð0Þ
2 ðn; TÞ ¼ � 1

9
�h2

8m. Equation (21) is the approximation used

by Stanton and Murillo19 and (for T¼ 0) by AM.18 The

approximation of Shukla and Eliasson is obtained for T¼ 0

by using ~a
ð0Þ
2 without the prefactor c(0)¼ 1/9. This coeffi-

cient yields the ratio of the corresponding results for fer-

mions and bosons (or spinless particles).21 From the

temperature dependence of ~a2, we can extract the tempera-

ture dependence of the coefficient c, which is displayed in

Fig. 6. c increases monotonically from 1/9 to 1/3,33,34 for

temperatures large compared to EF. Evidently, this factor is

crucial for the correct treatment of fermions within Thomas-

Fermi theory or in quantum hydrodynamics.

To compare the first and second approximations to the

static inverse dielectric function, Eqs. (20) and (21), we plot

again the associated static potentials computed according to

Eq. (1). In the top two parts of Fig. 7, we show again the

zero temperature results of SE and SM and, in addition the

Thomas-Fermi screened Yukawa result, Eq. (2). Thus, we

are able to assess the quality of the different orders of the

wavenumber expansion of ��1, in comparison with the full

RPA result. For rs¼ 2.3, we see that the Yukawa potential

(zeroth order of the expansion) provides a good approxima-

tion, but the next correction, proportional to k2, which is con-

tained in Eq. (21) and, thus, in the SM potential constitutes

an improvement. In contrast, the SE potential which contains

the k2 correction with a nine times larger prefactor exhibits a

poor performance and is even significantly less accurate than

the zeroth order correction alone. The same trend is observed at higher density (top figure) where the zeroth and first order

are both indistinguishable from the full result, whereas the

SE potential is substantially less accurate.

The bottom part of Fig. 7 shows the performance of the

zeroth and second order potentials [TF and SM, Eqs. (20)

and (21), respectively] at finite temperature. While at low

temperature, H¼ 0.1, the second order provides a significant

improvement, for higher temperature, H � 1, the expansion

exhibits sign alternating convergence and both approxima-

tions are of comparable quality with a slightly better per-

formance of the SM potential. In other words, for H � 1, the

standard static Yukawa potential provides a fairly accurate

description of the static limit of the RPA.

3. Higher order results: Correlations

It poses no principal problem to extend the above results

for the inverse dielectric function to higher powers of k.

With Eqs. (17)–(19), the next three higher orders are avail-

able, for arbitrary temperature. This should improve the

behavior of the static potential also at shorter distances.

FIG. 6. Prefactor c in front of the Bohm potential VMH
B , cf. Eq. (11), for fer-

mions as a function of temperature. In the zero-temperature limit, c
approaches 1/9, and it increases monotonically to 1/3. 34 In contrast, for

bosons or spinless particles, this factor equals 1 (dashed line), as in the case

of a single quantum particle. 21

FIG. 7. Top two figures: same as middle and bottom parts of Fig. 3 but with

the Yukawa potential, Eq. (2), “TF,” added for comparison of the ground

state behavior. Bottom: temperature dependence of the potentials. Same as

bottom part of Fig. 4 with the Yukawa potential (2) added.
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However, for the short-distance behavior also, other effects

will be important, most noticeably exchange and correla-

tions. One way to include correlations is to use static local

field corrections, as proposed in Ref. 19. A more systematic

and powerful approach is to use many-body theory which

provides dynamic correlation corrections, e.g., Refs. 49

and 20 and the cited references.

E. Conclusions

The conclusion from the above comparison of approxi-

mate static ion potentials to the RPA result is that, in fact,

there is no freedom in the choice of the prefactor of the Bohm

term for quantum hydrodynamics for fermions. The QHD

equations follow from the Thomas-Fermi theory by perform-

ing a systematic gradient expansion of the non-interacting ki-

netic energy [or free energy, at finite T] or, equivalently, a

long-wavelength expansion of the inverse polarization func-

tion ~K , Eq. (12). This expansion directly leads to the coeffi-

cient 1/9, at T¼ 0, in front of the Bohm term compared to the

cases of bosons or of a single-particle, whereas for higher tem-

peratures the coefficient increases monotonically to 0.3 (in 1D

and 2D different coefficients apply21). This coefficient is a con-

sequence of the Pauli principle and has important implications

for a hydrodynamic modeling of dense quantum plasmas. For

example, we have shown that a neglect of this coefficient gives

rise to a statically screened ion potential that is far less accurate

than the standard Thomas-Fermi (Yukawa) potential, rather

than an improvement. It also indicates that earlier derivations

of QHD equations are invalid for quantum plasmas and earlier

QHD results that were using the prefactor 1 do neither describe

fermions, in general, nor describe dense plasmas, in particular.
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APPENDIX: FINITE TEMPERATURE GRADIENT
CORRECTIONS OF THE KINETIC ENERGY AND
INVERSE POLARIZATION

Here, we present a systematic derivation of the gradient

correction to the (non-interacting) Thomas Fermi kinetic

energy contribution to the free energy using Mermin’s

approach for finite temperatures. This appears to be the most

systematic and general approach and allows one to derive

higher order corrections as well.

1. Gradient expansion of the kinetic energy

Following Hohenberg and Kohn31 and Mermin,32 the

electron energy is a functional of the density

E n½ � ¼
ð

v rð Þn rð Þ drþ 1

2

ð
n rð Þn r0ð Þ
jr� r0j drdr0 þ T n½ �; (A1)

where the first term is the energy due to external field and

the second is the interaction energy of the electrons in mean

field approximation. T[n] is the non-interacting kinetic

energy (we neglect additional exchange-correlation terms),

which is well known in the local approximation (Thomas-

Fermi theory)

T0½n� ¼
ð

dr t½nðrÞ� nðrÞ; (A2)

where the kinetic energy density is related to the (local)

Fermi free energy, t½n� ¼ 3
5

EF½n�. To obtain corrections to

this local approximation, we expand the kinetic energy in

terms of the density perturbation, ~n ¼ nðrÞ � n0

T½n� ¼ T0½n0� þ
ð

Kðr� r0Þ~nðrÞ~nðr0Þ drdr0

þ
ð

Lðr; r0; r00Þ~nðrÞ~nðr0Þ~nðr00Þ drdr0dr00 þ � � � :;

(A3)

where, in the following, we skip the second integral and

higher terms as they are related to nonlinear response

properties.

We now transform the second term to an expansion in

powers of the density gradient (gradient corrections), by

Fourier expanding the kernel (X is the volume)

K rð Þ ¼ 1

X

X
k

~K kð Þ e�ik�r: (A4)

From Eqs. (A3) and (A4), we have, using the convolution

theorem,

T n½ � ¼ T0 n0½ � þ
1

X

X
k

~K kð Þ~n kð Þ2 þ � � � : (A5)

We are now looking for the long-wavelength limit and

expand

~KðkÞ ¼ ~a0 þ ~a2k2 þ ~a4k4 þ � � � ; (A6)

Since K(r) is real, Eq. (A4) leads to ~Kð�kÞ ¼ ~KðkÞ; there-

fore, the expansion (A6) contains only even powers of k.

From this, we obtain for Kðr� r0Þ, using (A4)

Kðr� r0Þ ¼ ð~a0 � ~a2rr0 þ � � �Þdðr� r0Þ: (A7)

Substituting (A7) into (A3), one obtains

T½n� ¼ T0½n0� þ
X
l¼1

T2l½n�; (A8)

T2l½n� ¼
ð

dr a2l½n�jrlnðrÞj2; (A9)

where we took into account that
Ð

~nðrÞ dr ¼ 0 and identify

a2 ¼ �~a2.

Thus, we have rewritten the non-interacting kinetic

energy in terms of a local term plus gradient corrections. It

was shown in Ref. 21 that this kinetic energy functional

leads directly, via functional differentiation with respect to
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the density profile, to quantum hydrodynamic equations with

the local term yielding the Fermi pressure of an ideal Fermi

gas and the first gradient term giving rise to a Bohm-type

potential

dT2 n; c½ �
dn

¼ c
�h2

8m

����rn

n

����
2

� 2
r2n

n

 !
¼ c VMH

B n½ �; (A10)

where VMH
B is the potential postulated by Manfredi and

Haas.36 What remains is to establish the relation between the

coefficient c and the coefficient a2 of the expansion (A9). In

the following, we prove that, for zero temperature, to lowest

order in the correlation free energy, a2 ¼ �h2

72m, which means

that c¼ 1/9.

2. Finite temperature first order gradient term in RPA

In the following, we extend our discussion to finite temper-

atures. Formally, this means that, in the previous expressions,

the kinetic energy is replaced by the free energy [we will not

consider the entropic contribution to the free energy and retain

the notation T]. To evaluate the coefficient a2 ¼ �~a2, we recall

that the energy associated with a charged particle density fluc-

tuation can be expressed, in linear response, in terms of an

effective potential (external plus induced potential)

T n½ � ¼ T0 n0½ � þ
1

2X

X
k

~n kð Þ ~Ueff kð Þ: (A11)

Recalling the definition of the longitudinal polarization func-

tion, PðkÞ ¼ ~nðkÞ= ~UeffðkÞ, Eqs. (A5) and (A11) allow us to

identify

~K kð Þ ¼ 1

2P kð Þ
; (A12)

and to make use of known results for P below. The lowest

order many-body approximation for P is the RPA which

reads, for an arbitrary temperature37

PRPA k;xð Þ ¼ � k2v2
0

16pe2z3
g uþ zð Þ � g u� zð Þ
� �

; (A13)

where u ¼ x=ðkvFÞ; z ¼ k=ð2kFÞ; v2
0 ¼ 3=16ð�hxp=EFÞ2; kF

¼ ð3p2nÞ1=3; x2
p ¼ 4pne2=me, and

g xð Þ ¼
ð

y dy

exp y2=H� gð Þ þ 1
ln

���� xþ y

x� y

����: (A14)

Here, H ¼ kBT=EF; g ¼ l=kBT is the chemical potential,

and g(x)¼�g(�x) holds. To obtain the long-wavelength

limit of ~K , Eq. (A6), we now expand the inverse of the static

(i.e., x¼ u¼ 0) polarization function in the limit z� 1

~KRPA kð Þ ¼ � pe2

2k2
Fv2

0H1 gð Þ
þ

pe2H2 gð Þ
24k4

Fv2
0H2

1 gð Þ
� k2; (A15)

H1 gð Þ ¼
ffiffiffiffi
H
p

2
I�1=2 gð Þ; H2 gð Þ ¼

1

2
ffiffiffiffi
H
p I�3=2 gð Þ:

The first term in (A15) yields the coefficient ~a0 in Eq. (A6)

which does not contribute to the kinetic energy since the in-

tegral of ~n vanishes, whereas the second term in (A15) yields

the coefficient a2

a0 n½ �;Hð Þ ¼ �
pe2

2k2
Fv2

0H1 gð Þ
; (A16)

a2 n½ �;Hð Þ ¼ �
�h2H2 gð Þ

72menH2
1 gð Þ

: (A17)

In the ground state, H ! 0, we have the limits H1(g) ’ 1

and H2’�1, so H2=H2
1 ’ �1, and (A17) gives a2ð0Þ ! �h2=

ð72mÞ, meaning that the coefficient in front of the Bohm

potential in Eq. (A10) becomes c¼ 1/9. The temperature de-

pendence of this coefficient was displayed in Fig. 6.

We note that c¼ 1/9, which we derived as the long
wavelength limit is, in fact a lower-bound to the full RPA

response function. In contrast, the short wavelength limit of

the RPA is well approximated by the first gradient term with

c¼ 1 [this is an upper-bound for c] as was shown by Jones

and Young.41 However, for the description of ion screening,

the long-wavelength behavior of the electron response is of

relevance, whereas for the short-wavelength behavior, corre-

lation effects should be included, in addition to the RPA.

Finally, substituting a2, from Eq. (A17), into the formula

(A8), we have for the non-interacting kinetic energy contri-

bution to the free energy33,34

T n½ � ¼ T0 n0½ � þ
1

9

�h2

8me
4b3=2

ð
E

3=2
F nð Þ

I0�1=2 gð Þ
I2
�1=2

gð Þ
jrnj2

n
dr;

(A18)

where we eliminated the Fermi integral of order �3/2, using

the formula I�3=2 ¼ �2I0�1=2.

3. Higher order gradient terms in RPA for finite T

Now consider the higher order (l> 1) terms of the gradi-

ent expansion (A8). In the long-wavelength limit, z< 1 the

kernel ~K can be written as

~KRPA kð Þ ¼ � p2�h2H�1=2

mekFI�1=2 1þ
X

i

biz
2i

� 	 ; (A19)

where

bi n½ �;Hð Þ ¼ H�i

2iþ 1

I�i�1=2 gð Þ
I�1=2 gð Þ

: (A20)

Expanding (A19), it is straightforward to obtain the higher

order (even) gradient corrections

T4 n½ � ¼ �h2p2

16me

ð
b2

1 � b2

H n½ �1=2k5
FI�1=2 gð Þ

jr2nj2 dr;

T6 n½ � ¼ �h2p2

64me

ð
b3

1 � 2b1b2 þ b3

H n½ �1=2k7
FI�1=2 gð Þ

jr3nj2 dr;
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T8 n½ � ¼ �h2p2

256me

ð
b4

1 � 3b2
1b2 þ b2

2 þ 2b1b3 � b4

H n½ �1=2k9
FI�1=2 gð Þ

jr4nj2 dr:

In the zero-temperature limit, T4 and T6 were obtained by

Hodges42 and Murphy,43 respectively. For finite temperature,

T4 was derieve in Refs. 45 and 46, whereas T6 and T8 are

given here for the first time. Here, we do not discuss the con-

vergence of this gradient series. Obviously, before using

higher order terms, in particular, for finite wavenumbers, one

should verify that terms of the same order arising from corre-

lations and nonlinear response [third term in (A3)] are

included as well. For a recent discussion of extended gradi-

ent expansions, see Refs. 47 and 48 and references therein.

Finally, we note that the results derived above apply

only to three-dimensional plasmas. Results for 1D and 2D

systems at zero temperature were discussed in Ref. 21.

Extensions of these results to finite temperatures are given in

Ref. 50.
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