#1 JOURNAL IN 2014 GOOGLE SCHOLAR METRICS

AI P Ph_‘/SiCS of FOR THE PLASMA & FUSION CATEGORY
Plasmas “

Viscosity of confined two-dimensional Yukawa liquids: A nonequilibrium method
S. Landmann, H. Kahlert, H. Thomsen, and M. Bonitz

Citation: Physics of Plasmas 22, 093703 (2015); doi: 10.1063/1.4930546

View online: http://dx.doi.org/10.1063/1.4930546

View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/22/9?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Anomalous eddy viscosity for two-dimensional turbulence
Phys. Fluids 27, 045104 (2015); 10.1063/1.4916956

The effect of surface shear viscosity on the damping of oscillations in millimetric liquid bridges
Phys. Fluids 23, 082102 (2011); 10.1063/1.3623425

Wave spectra of two-dimensional Yukawa solids and liquids in the presence of a magnetic field
Phys. Plasmas 16, 073704 (2009); 10.1063/1.3184575

Effect of charge fluctuation on two dimensional dust clusters in elliptical confinement
Phys. Plasmas 16, 033705 (2009); 10.1063/1.3096709

Calculation of two-dimensional plasma sheath with application to radial dust oscillations
J. Appl. Phys. 98, 023302 (2005); 10.1063/1.1957127

HIGH-VOLTAGE AMPLIFIERS AND
ELECTROSTATIC VOLTMETERS

ENABLING RESEARCH AND
INNOVATION IN DIELECTRICS,
MICROFLUIDICS,
MATERIALS, PLASMAS AND PIEZOS

www.trekinc.com

&



http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/267792869/x01/AIP-PT/Trek_PoPArticleDL_090915/Trek-AIP-PoP-BMF-downloads-FINAL-fall2015.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=S.+Landmann&option1=author
http://scitation.aip.org/search?value1=H.+K�hlert&option1=author
http://scitation.aip.org/search?value1=H.+Thomsen&option1=author
http://scitation.aip.org/search?value1=M.+Bonitz&option1=author
http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://dx.doi.org/10.1063/1.4930546
http://scitation.aip.org/content/aip/journal/pop/22/9?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/27/4/10.1063/1.4916956?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/23/8/10.1063/1.3623425?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/16/7/10.1063/1.3184575?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/16/3/10.1063/1.3096709?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/98/2/10.1063/1.1957127?ver=pdfcov

PHYSICS OF PLASMAS 22, 093703 (2015)

@CrossMark

Viscosity of confined two-dimensional Yukawa liquids: A nonequilibrium
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We present a nonequilibrium method that allows one to determine the viscosity of two-dimensional
dust clusters in an isotropic confinement. By applying a tangential external force to the outer parts
of the cluster (e.g., with lasers), a sheared velocity profile is created. The decay of the angular ve-
locity towards the center of the confinement potential is determined by a balance between internal
(viscosity) and external friction (neutral gas damping). The viscosity can then be calculated from a
fit of the measured velocity profile to a solution of the Navier-Stokes equation. Langevin dynamics
simulations are used to demonstrate the feasibility of the method. We find good agreement of the

measured viscosity with previous results

for macroscopic Yukawa plasmas.

© 2015

AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4930546]

I. INTRODUCTION

Dusty plasmas contain, in addition to the usual plasma
components (electrons, ions, and neutral particles), small
dust particles with a size on the order of a few micrometers.'
Negatively charged by the influx of electrons on their sur-
face, the dust particles interact with each other through
electrostatic forces that are screened by the plasma environ-
ment.” For typical experimental parameters, the charges on
the dust particles are on the order of a few thousand. As a
result, the interactions become dominant, and the dust sub-
system can be considered a strongly coupled plasma. Dusty
plasmas can form ordered structures such as dust lattices,’
and shell or ring structures,” depending on the experimental
geometry. In addition to their ability to crystallize, also the
liquid state is of high interest since many liquid properties
can be investigated by studying the movement of individual
particles. This includes diffusion processes,® heat transport,’
or wave propagation.®

We concentrate here on two-dimensional systems,
where the particles are located at the same height above the
lower electrode in a rf discharge and form a layer, i.e., the
vertical confinement is much stronger than the horizontal
confinement. The interactions between the dust particles can
then be modeled by a simple Yukawa potential

2
¢
r

o(r) = ey
where 1 is the (effective) screening length, Q the particle
charge, and r their horizontal separation. The out-of-plane
interactions between particles at different heights can be signif-
icantly modified by ion flows towards the lower electrode,
which lead to oscillatory dust potentials in the streaming direc-
tion. However, the in-plane interactions are well described by
the Yukawa potential with an effective screening length that is
determined by the plasma parameters (ion flow speed, ion-
neutral damping, etc.).” Since it can describe a variety of
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different situations, the Yukawa potential is not only widely
used to study the properties of two-dimensional dust ensembles
but also highly relevant for colloidal systems.'’

The transport properties of two- and three-dimensional
Yukawa liquzdsn’l2 such as diffusion,‘s’13 heat conductiv-
ity,"*'3 or viscosity'® are accessible via molecular dynam-
ics (MD) simulations and often allow for a direct
comparison with experiments. The Green-Kubo relations can
be exploited to calculate the viscosity # with equilibrium
MD simulations. In contrast, nonequilibrium MD simula-
tions often impose certain velocity profiles to determine #,
see Ref. 26 for an overview. Experimentally, laser beams
can be used to create a sheared flow of dust particles, which
carries information about the viscosity.***’ ¢

In this work, we use a nonequilibrium method to deter-
mine the viscosity of isotropically confined two-dimensional
dust clusters, extending previous simulations for the heat trans-
port.'* The method requires an external force to manipulate the
dust particles, which can be realized experimentally with
lasers, as was already demonstrated.>'* The force is directed
in the tangential direction and sets the outer part of the cluster
into rotation. Due to the interaction between the particles, some
of the angular momentum is transported to the inner part of the
cluster, which therefore also starts to rotate. However, at the
same time, friction with the neutral gas removes angular mo-
mentum. The result is a stationary nonequilibrium state with a
tangential velocity profile that is determined by a balance
between internal and external friction. The viscosity can be
inferred from a fit of experimental or, in the present case, simu-
lation data for the velocity profile to an analytical solution of
the Navier-Stokes equation, similar to previous work.”>*"*
We compare our Langevin dynamics simulation results for
confined Yukawa systems with simulations for extended 2D
Yukawa plasmas'®? and find good agreement.

This paper is organized as follows. In Sec. II, we present
the details of our MD simulation method and the analytical
solution of the Navier-Stokes equation. The viscosity is

© 2015 AIP Publishing LLC
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calculated from a fit of the simulation data to the theoretical
velocity profile in Sec. III. The results are compared with
previous simulation data for 2D Yukawa plasmas.
Limitations of the model are discussed in Sec. IV. We con-
clude with a summary of the results in Sec. V.

Il. METHODS

Our method for determining the viscosity is based on fit-
ting the results of MD simulations to a solution of the Navier-
Stokes equations. In the following, we first describe the simu-
lation technique and, in a second step, a practical way of
obtaining a fit function from the Navier-Stokes equations.

A. Molecular dynamics simulations

The simulations are performed for a medium-size cluster
with N=149 particles. As was mentioned in the
Introduction, the particles interact via the Yukawa potential,
Eq. (1). The confinement potential is modeled as an isotropic
harmonic trap, V(r) = mw3r?/2, where wy is the trap fre-
quency and m the dust particle mass. This model was suc-
cessfully applied to describe the structure and dynamics of
dust clusters in experiments, e.g., Refs. 34 and 35. Neutral
gas damping is accounted for by including a friction and a
random force in the equation of motion (Langevin dynamics)

mv; = =V;V(r;) = V; E G(|ri —1j) —mvv; +f; + F,
pr
2)

where v is the friction coefficient, f; the random force with
(1)) = 2muksTo;6"5(t — ') (a, p = x,), and Fy an
external driving force. The temperature of the neutral gas is
denoted by T. For the integration of the system, we use the
Symplectic Low-Order scheme by Mannella.*® The friction
coefficient is chosen to be v = 1.1 wq throughout all simula-
tions, corresponding to intermediate damping.

The simulations are performed in the following way.
After an initial equilibration phase without external driving
force, at wot = 30, a Gaussian-shaped force

FL(I') =A JQ\z//z"'_?(;

centered at r =R, with (dimensionless) amplitude A and var-
iance g, acts on the outer part of the cluster. We have also intro-
duced the characteristic length scale o = (20?/ mco(z))l/ 3. The
force is directed in the tangential direction and forces the outer
part of the cluster to perform a rotation. Angular momentum is
also transferred to the inner parts of the cluster, and a stationary
velocity profile develops. The measurement of the angular ve-
locity profile begins at wot = 36. Figure 1 depicts a cluster in
the stationary case for a screening parameter 7o//4 = 3 and a
temperature 7 = T /Ty = 0.04, where Ty = Q> /(ro kg).

exp[—(r — R.)*/26%]ey, 3)

B. Analytical model

To extract the viscosity from the velocity profile, we
compare the simulation results with the solution of the
Navier-Stokes equations for our system. We obtain an
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FIG. 1. A cluster of 149 particles for ro// = 3 and T = 0.04. The gray area

illustrates the region in which the tangential force acts. The arrows exem-
plify the direction of the force.

analytical fit function, where the ratio of the external (neutral
gas) and internal friction (viscosity) determines the decrease
of the tangential velocity from the boundary towards the cen-
ter of the cluster, see Refs. 22 and 27 for a closely related
method with a different geometry. The viscosity can be
determined from a fit to the simulation data.

The momentum equation for the dust fluid [described
by a density profile n(r,7) and velocity field v(r,7)] is
given by”’

mn {@ + (v- V)v] = —Vp — ngV® — nVV

ot
+ nAv — mvnv + nFp. 4)

Here, p denotes the pressure, ®@ the electrostatic potential,
and 5 the shear viscosity. We only require the stationary
limit of Eq. (4) with dv/0t = 0, which describes the fluid af-
ter the relaxation phase, i.e., in the limit # — co. Due to the
symmetry of the trapping potential and the tangential driving
force, the resulting velocity profile is of the form
v(r) = vg(r) e4, where e is the unit vector in the tangential
direction. This implies V - v = 0, which has already been
accounted for in Eq. (4).

We can now separate Eq. (4) into the radial and tangen-
tial components, which yields two coupled equations for the
density profile n(r) and the tangential velocity. While it
would, in principle, be possible to solve these equations self-
consistently with a given equation of state for the pressure,
Poisson’s equation for the potential, and the viscosity as a
free parameter, we chose a different method.

The tangential equation follows from Eq. (4) as

—|————r—2>17—m1/nv¢ =0. 5)

(82U¢

orr r or

We have thereby exploited the symmetry of the problem,
namely, that the pressure, electrostatic potential, and the
confinement potential have only a radial dependence,
and, hence, give no contribution. The laser driving force

will be replaced by a suitable boundary condition at r =R,
v4(R) = vg. A very simple way to obtain an analytical

1 3U¢ U¢
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solution for vy (r) is to approximate the inhomogeneous clus-
ter with a constant density, i.e., we neglect the radial equa-
tion for n(r) and use the assumption n(r) = ny = const. to
solve Eq. (5) for vg(r). Although this procedure is not fully
consistent, it yields a surprisingly accurate fit for the velocity
profile measured in the simulation, see Sec. III.

The solution of Eq. (5) for a constant density and the
boundary conditions vg(R) = vg and v4(0) = 0 is given by

11 muvny ,
n
vg(r) = vr m— , TI'<R, (6)
I OR
n

where /) (z) is a modified Bessel function of the first kind.?’
The parameters of this function are known (input parame-
ters) or can be measured in the simulation, except for #. This
makes it possible to use Eq. (6) as a fit function for the deter-
mination of the viscosity. We use the velocity vg at r=R as
a fit parameter to allow the fit to match best with the simula-
tion data. The average particle density is estimated as
no = N/(nR?), where R, is the radius of the cluster. The ra-
dius is determined as the distance from the center at which
the particle density drops to 5% of its maximum value. In
general, we then have R, # R, # R.

In experiments, a precise determination of the friction
coefficient v is important because the fit only yields the ratio
v/n. The friction coefficient can be estimated with the
Epstein formula®® based on the neutral gas pressure, see also
Ref. 27. A more direct measurement is possible, e.g., with a
phase-resolved resonance method,39 which could be used to
predetermine v for a single dust grain. It yields results that
are in good agreement with the Epstein relation.*’ If the size
distribution of the dust particles is sufficiently narrow, the
obtained damping constant could also be employed for the
experiment with many particles.

lll. DETERMINATION OF VISCOSITY

We will now present the results from the MD simula-
tions and use the measured velocity profile to calculate the
viscosity coefficient.

A. Velocity, density, and temperature profiles

Figure 2 shows typical simulation results for ro/A =3
and different temperatures. Also shown is the tangential driv-
ing force. The density profile shows a shell structure for the
outer parts of the cluster.*'** The angular velocity,
(r) = vy (r)/r, attains its maximum where the force is max-
imal and decreases in the direction of the cluster center. For
the lowest temperature, T = 0.04, the influence of the shell
structure on the angular velocity profile becomes apparent.
Similar to the density profile, it also exhibits some minor
modulations. The noisy part of the velocity profile for
r/ro > 3 is caused by particles leaving the cluster for short
times during which they can attain high velocities. As only
the inner part of the cluster is relevant for the calculations,
this does not pose a problem.

Phys. Plasmas 22, 093703 (2015)
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FIG. 2. Angular velocity profile w(r) of a cluster with a screening parameter
ro/A = 3 and various temperatures (as indicated by the arrows). The particle
density is shown for the case 7 = 0.06. The dotted line represents the tan-
gential force.

Since strong shear flows can lead to shear heating in
regions with high velocity gradients,** which may affect our
results, we investigated the radial temperature profile T(r) of
the cluster. The temperature profile was determined by meas-
uring the average variance of the velocity of the dust par-
ticles in dependence of the radial distance from the center of
the cluster. Figure 3 shows the temperature profile for three
different neutral gas temperatures and a screening parameter
ro/A = 2 for the stationary, rotating case. We observe con-
stant temperatures for T = 0.7 and T = 0.1, even in the
region with maximum shear (vertical dotted line). At
T = 0.04, the radially resolved temperature deviates only
slightly from the neutral gas temperature close to the loca-
tion of maximum shear. Thus, for the chosen simulation pa-
rameters, we observe no significant shear heating.

B. Fitting the data

Figure 4 shows a fit of Eq. (6) for three different temper-
atures and a screening parameter ro/4 = 2. The section close
to the origin is omitted because the numerical data are very
noisy. The good agreement of the fits with the numerically
obtained velocity profiles shows that the analytical model is
a good approximation for the system. The fit for 7 = 0.2
[Fig. 4(b)] matches the numerical data best. The deviations
for T =0.04 are caused by the inhomogeneous density

1 1 1 1 1 1 1
R T R R U A U W R VT U VY G VR VR G GV GRY RV VG UR VRV G GV SRy Vg VR VR R G Sgu g ey ety 3
S s e e e
- 7=0.1
£ + T=0.04
-
~—
FO 1 ©0-.0.8-0- 0000006000000 00000000000000000
00000 $-0-9-0-00-000000800
0:0-0-60-0-0-600-6600660-666660660-¢ 66009000401
L9900 9000085-0000090-04 400004
T T T T T T

r/ro

FIG. 3. Temperature profile T(r) /Ty for ro// = 2 and three different neutral
gas temperatures 7. The vertical dotted line marks the region of maximum
shear.



093703-4

Landmann et al.

0.08

1.0 L5 2.0 2.5 3.0 35 4.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.06 (C) T=10

0.00 P ST i

1.0 1.5 2.0 2.5 3.0 3.5 4.0
r/ro

FIG. 4. Comparison of the numerical results and the fit for the angular ve-
locity profile for a screening parameter r9/A = 2. The points (red) show the
data from the simulations, the line (blue) is the corresponding fit. The black
dotted lines mark the area that was used for the fit.

profile, which shows a shell structure at this temperature. A
local maximum of the density causes the mismatch from
r/ro =24 to r/ro =2.7. A comparison of the density and
angular velocity of Fig. 2 for T = 0.04 shows the same
effect.

The cluster expands as the temperature is increased. To
make sure that only the outer part of the cluster lies in the
range of the external force, it is necessary to shift the center
of the force further away from the center. This also shifts
the maximum of the velocity profile as can be seen by com-
parison of the graphs for T = 0.04 and T = 1 in Fig. 4. We
further observe a decrease of the maximum of the velocity
profile if the external force is kept constant. As a conse-
quence, the data get too noisy to be evaluated properly for
high temperatures, which makes it necessary to increase the
amplitude of the force. In our simulations, we use a range
A = 0.45...0.75 from low to high temperatures. For the esti-
mation of a realistic error, it is most practicable to fit the
data for several slightly modified ranges and average den-
sities and use the maximum and minimum value as error
range.

Phys. Plasmas 22, 093703 (2015)

C. Comparison with results for macroscopic 2D
Yukawa plasmas

A macroscopic two-dimensional Yukawa plasma with
(areal) density n and temperature T is fully characterized by
the coupling parameter I' and the screening parameter k,
defined by**

Q2

r=—~_
akal’ (7

a
K=-.
A
The Wigner-Seitz radius a follows from the relation
nma®> = 1. To compare our results for the cluster with those
for a macroscopic system, we identify the average trap den-
sity np = N/(nR?) with the density n of the macroscopic sys-
tem. The transformation rules then become

ro / A

)
Vnorg T
VAL KL . @®)
T Vnorg m

The viscosity will be given in units of 1, = mnywya®, where
wp = [20%/(ma®)]"/?, see Ref. 20. We compare our results
to equilibrium'® and nonequilibrium®® molecular dynamics
simulation. For a fixed value of /4, the temperature T is
varied to study the viscosity as a function of the coupling pa-
rameter I'. Since the average particle density is temperature
dependent, x also varies slightly, see Eq. (8). This makes it
somewhat difficult to compare the results for a wide temper-
ature range since the variations in x become too large.

Figure 5 shows the results from the equilibrium molecular
dynamics simulations of Ref. 19 for k = 0.56 and the results
from our simulation®® for r ~ 0.54...0.65. We find good
agreement, especially for the position of the minimum of the
viscosity. As can be seen from the screening parameters given
in Fig. 5, k deviates from the desired value of k = 0.56 as I
approaches low or high values, which is due to variations of
the average density. In addition, the simulations of Ref. 19
have been performed with a Nosé-Hoover thermostat while
we use Langevin dynamics that includes friction with the neu-
tral gas, see Refs. 46-49. In 3D Yukawa liquids, friction was
shown to decrease (increase) the viscosity for low (high) cou-
pling.*’ Figure 6 displays the viscosity obtained from none-
quilibium molecular dynamics simulations®® for k=1

0.5+ :
o -
_ e E-MD, Liu and Goree
K=0.65 m  NE-MD, Present work
0.4 i
K=0.54
o °
£0.34 . {'
[=3
0] . K=~0.57 H i
# .ﬁi ] e =
0.1+ T
j o 100
r

FIG. 5. Comparison of the equilibrium MD simulations of Ref. 19 for
K = 0.56 (black dots) with our simulations results (red squares, ro/4 = 2).
The variation of the screening parameter x in our simulations can be
inferred from the numbers given in the figure.
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FIG. 6. Comparison of the nonequilibrium MD simulations of Ref. 20 for
k=1 (black dots) with our simulations results (red squares, ro/L = 4.7).
The variation of the screening parameter x in our simulations can be inferred
from the numbers given in the figure.

(method 1 in Ref. 20 with N =3960 particles) and the results
from our simulation for x ~ 0.96...1.14. Again, we find fair
agreement between the two methods, in particular, the loca-
tions of the minima differ only slightly. As in the previous
case, the deviations increase for very high or very low I'.

To summarize, the general agreement of our results with
those for a macroscopic Yukawa plasma is surprisingly
good, given the small size of the cluster and the fact that the
trapped cluster is, in many aspects, different from a uniform
plasma. This includes the existence of an outer boundary, the
inhomogeneous density profile, and the confinement
potential.

IV. DISCUSSION

In this section, we discuss some of the limitations of the
model.

A natural restriction is that the dust cluster must be in
the liquid state. This excludes very high coupling strengths
where the particles would eventually crystallize. In this case,
a weak force was found to lead to a rigid rotation of the clus-
ter whereas an isolated rotation of the outer shell is observed
for a strong force. While there are no phase transition in a
small cluster in the thermodynamic sense, it is possible to
identify temperature ranges where the cluster shows proper-
ties of a liquid or more closely resembles a solid.”® Another
restriction arises from the density profile, which shows
strong modulations at high coupling. These shell structures
also appear in the radial velocity profile and restrict the use
of Eq. (6) as a fit function, since the shell structure is not
included in the analytical model. An accurate theoretical
description of the density profile for confined Yukawa sys-
tems must include correlation effects and is a challenging
problem.”’ 52

There is also a restriction for weak coupling. If the cou-
pling parameter is too low, the cluster radius is no longer
well defined, and the density becomes very inhomogeneous.
The analytical model, however, is based on a homogeneous
density profile. While it would be possible to use more real-
istic density profiles in the Navier-Stokes equation, e.g.,
from simulations, this would complicate the analysis and
make it more difficult to compare with the results for a

Phys. Plasmas 22, 093703 (2015)

uniform system. Moreover, the viscosity coefficient in
Eq. (4) is constant, i.e., we assign a single (density independ-
ent) viscosity to the cluster. Considering also the restrictions
at strong coupling, this leads us to the conclusion that the
method is best applied for intermediate values of the cou-
pling parameter.

It was shown that 2D Yukawa plasmas exhibit shear
thinning,”” i.e., a decrease of the viscosity at high shear rates.
We investigated the dependence of the measured viscosity
on the shear rate for ry// = 2 and T = 0.2. Varying the am-
plitude in the range A = 0.4...0.85 revealed no systematic
influence on the results. In addition, the angular velocities
are well below the trap frequency w,, see Fig. 4. We may
thus conclude that the applied shear rates are sufficiently low
to minimize effects related to shear thinning.

V. CONCLUSION

In summary, we have presented a method to determine
the viscosity of confined, two-dimensional dust clusters. An
external force applied to the outer part of the cluster creates
a sheared velocity profile, which is determined by angular
momentum transfer to the inner parts through viscosity and
removal of angular momentum through friction with the neu-
tral gas. The viscosity can be measured by comparing the ve-
locity profile with a solution of the Navier-Stokes equation.
We performed molecular dynamics simulations to demon-
strate the feasibility of the method and found good agree-
ment of our results with previous simulations for
macroscopic 2D Yukawa plasmas.'®?® The simulated setup
could be directly realized experimentally with several laser
beams that act on the outer part of the cluster.>'
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