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An analytical expression for the quantum breathing frequency !b of harmonically trapped quantum

particles with inverse power-law repulsion is derived. It is verified by ab initio numerical calculations for

electrons confined in a lateral (2D) quantum dot. We show how this relation can be used to express the

ground state properties of harmonically trapped quantum particles as functions of the breathing frequency

by presenting analytical results for the kinetic, trap, and repulsive energy and for the linear entropy.

Measurement of !b together with these analytical relations represents a tool to characterize the state of

harmonically trapped interacting particles—from the Fermi gas to the Wigner crystal regime.
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Physics is replete with quantum systems of harmonically
trapped interacting particles. In addition to a multitude of
interesting applications in nanoscience [1–7] and in the
area of ultracold gases [8–11], these systems are important
from a fundamental perspective of many-body physics.
By changing the size of the harmonic trap, a multiparticle
system can be investigated over a wide range of states
characterized by the coupling parameter � (described
below). The states range from a weakly correlated, quan-
tum gas (� � 1), to metallic systems (� � 1), to the
highly correlated, classical limit of Wigner crystallization
(� � 1) [12].

Collective modes are an important aspect of the dynam-
ics of harmonically trapped quantum systems. In terms of
multipoles, the first two modes are the breathing (mono-
pole) and Kohn (dipole) mode [13]. Because of its strong
interaction with laser radiation, the dipole mode has
received the most attention so far; an analytical theory
exists [13], and it has found important applications in
nanoscience [14,15]. The dipole mode has also been shown
to dominantly contribute to transport properties of trapped
gases and therewith to spectroscopic methods, such as
the Coulomb blockade measurements [16].

Comparatively little research has been done involving
(non-center-of-mass) breathing and higher-order modes
[17–20]; for an animation of the quantum breathing mode
(QBM) see Ref. [21]. There exists no comprehensive ana-
lytical approach and only recently have practical applica-
tions appeared in the field of cold quantum gases [22,23].
In this Letter we analytically and numerically investigate the
QBM and show that it can be used as a powerful tool to
experimentally and theoretically characterize quantum par-
ticles in harmonic traps. Our analysis reveals two main
results.

First, an analytical theory of the QBM is developed that
is valid for harmonically trapped fermionic and bosonic
systems of any particle number and arbitrary dimension,
with inverse power-law repulsion between particles.

Our theory is tested by comparing it to ab initio numerical
calculations for the special case of electrons confined in a
lateral (2D) quantum dot (QD) [24–26]. Our numerical
analysis is based on multiconfiguration time-dependent
Hartree-Fock (MCTDHF) calculations, as outlined in
Ref. [27]; calculations of the QBM are performed for
N ¼ 2, 3, 4, and 6 electrons in their ground state. Good
agreement between numerical and analytical results is
found in the whole range between an ideal quantum gas
and Wigner crystallization. We would like to stress that,
although numerical verification is done for a lateral QD,
our theory applies to trapped gases in general [3–11].
In the second part of the Letter the relation for the QBM

is used to show that all properties associated with the
ground state can be approximately expressed as analytical
functions of the breathing frequency; this enables the
QBM to be used as a novel diagnostic tool which is
important for electrons in QDs and for dipolar quantum
gases. Measurement of the QBM frequency [28], together
with these analytical relations, is sufficient to characterize
all eigenstate properties of harmonically trapped particles.
Experimentally, there exists no other method to measure
most of these quantities. This opens a new avenue to
investigate fundamental properties of many-body systems
as a function of interaction strength—from the weakly to
the highly correlated limit.
Some analytical relations, such as the kinetic, trap and

repulsive energies, are obtained directly from the QBM
relation; these relations are shown to be valid over the range
of � investigated here by comparison withMCTDHF. For all
other quantities, the QBM relation is first utilized to replace
the exact Hamiltonian with an effective Hamiltonian with
quadratic interaction for which an analytical solution of the
ground state [29–31] exists. As a result, through the effective
Hamiltonian all properties associated with the ground state
can be expressed as functions of the QBM frequency. We
outline the derivation for general �; however, analytical
results are obtained here with the help of perturbation theory
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in �. The quadratic Hamiltonian has been used in many
different contexts including quantum chemistry [32,33],
black hole physics [34,35], and the quantum Hall effect
[29,36]. However, so far the coupling constant in the qua-
dratic repulsion term had to be chosen qualitatively. By
virtue of the QBM relation, an analytical expression for
the optimum coupling constant can be obtained for which
the eigenstate of the quadratic Hamiltonian is as close as
possible to the real eigenstate. The closeness is measured
through the expectation values of the potential, kinetic, and
total energy operators. This is not a unique measure, but it is
shown that other measures, such as the entropy discussed
below, lead only to small changes in the coupling constant.

The quadratic Hamiltonian is used here to determine the
linear entropy, the knowledge of which is key to determine
correlation and entanglement of a quantum many-body
system. This is not only important for quantum information
science, but recently the notion of entanglement has been
successfully employed in the field of condensed matter
[37–39] for the analysis of model systems such as spin
chains [40], harmonic chains [34,35,41], and has also been
proven useful in the description of quantum phase transitions
[42–44]. Comparison with MCTDHF results for N � 6
shows reasonable agreement; qualitatively the numerical
results arewell reproduced; quantitatively, there is a constant
factor of & 2 between the numerical and analytical results,

corresponding to a factor
ffiffiffi

2
p

in the coupling constant.
Our analysis starts with the derivation of an analytical

expression for the breathing frequency. For N particles in a
harmonic trap of frequency �, an analytical expression
for the QBM can be obtained from the Heisenberg equation
of motion. The Hamiltonian for this system is given by

Ĥ ¼ T̂ þ Ûþ �V̂, where T̂, Û, and �V̂ represent the total
kinetic energy, total harmonic trap, and inverse power-law
particle interaction potential energy respectively. Here,

V̂ ¼ P

N
i<jðx̂2

ij þ �2Þ��=2, where x̂ij ¼ x̂i � x̂j and the

shielding parameter � accounts for the fact that, in 2D
QDs, integration over the wave function of the third (trans-
verse) dimension results in an effective shielding of the
Coulomb singularity [1]. Units of energy, length, and time

are given by @�, l0, and ��1, respectively, where l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@=m�
p

is the oscillator length with m being the mass of
the trapped particles; the transformation of the time-
dependent Schrödinger equation (TDSE) in SI units to
this new system of units is shown in Ref. [21]. These units
are used throughout unless otherwise indicated.

We first express the Hamiltonian in terms of center-of-

mass (c.m.) and relative coordinates as Ĥ ¼ Ĥc:m: þ Ĥrl,

where Ĥc:m: ¼ T̂c:m: þ Ûc:m: and Ĥrl ¼ T̂rl þ Ûrl þ �V̂.
Then, starting from the Heisenberg equation of motion

for the operator Ŝ ¼ 1=2
P

iðp̂i � x̂i þ x̂i � p̂iÞ that performs
a radial displacement of each coordinate, we obtain an
inhomogeneous second-order differential equation in

time for Ûrl, similar to that in Ref. [45],

d2

dt2
ÛrlðtÞ ¼ �4ÛrlðtÞ � ð2� �Þ�V̂ðtÞ

þX

N

i<j

���2

ðx̂2
ijðtÞ þ �2Þ�=2þ1

: (1)

Equation (1) only contains the relative coordinates x̂ij. In

the following, we outline the key points of the derivation;
for further details see Ref. [21]. We take the expectation
value of Eq. (1) with regard to some radially symmetric,

weak distortion of an eigenstate of Ĥ that results in an
excitation of the breathing mode. The resulting equation
can be re-expressed in a way that the expectation value is
taken with regard to the unperturbed eigenstate jki and in
return the Heisenberg space operators are perturbed from
x̂iðtÞ to x̂iðtÞ þ �x̂iðtÞ. The only term that contributes to
the perturbation to order Oðp̂; x̂2Þ is �x̂iðtÞ ¼ "ðtÞx̂iðtÞ.
Taylor expansion of the expectation value of Eq. (1) results
in a second-order ordinary differential equation for "ðtÞ,
with coefficients given by expectation values of the form of
hkjh½x̂ðtÞ�jki; h represents an arbitrary function. By using

the identity relation e�iĤteiĤt ¼ 1, we find that hh½x̂ðtÞ�i ¼
hh½x̂ðt ¼ 0Þ�i ¼ hhðxÞi. Because of the time independence
of the coefficients, the equation for "ðtÞ has a sinusoidal
solution with frequency

!2
b ¼ 4� hŴi

2hÛrli
; (2)

where

ŴðtÞ ¼ X

N

i<j

�

2� �þ ð�þ 2Þ�2

x2ijðtÞ þ �2

� ��x2ijðtÞ
ðx2ijðtÞ þ �2Þ�=2þ1

: (3)

Note that when � � 1 we have hŴi � �ð2� �Þ�hV̂i. For
our calculations we consider the Coulomb case (� ¼ 1) for
which � ¼ e2=4�@�l0�, where e is the electron charge
and � the permittivity.
The quality of Eq. (2) is assessed by comparison to exact

solutions of the TDSE; here, this is done for a 2D QD. N
electrons, interacting via the Coulomb potential, are con-

fined by a harmonic trap Û with frequency �. For N ¼ 2
it is possible to obtain an exact solution by separating
the TDSE into c.m. and difference coordinates [17]. For
N ¼ 2, 3, 4, and 6 the TDSE is solved by using MCTDHF.
All results are compared to those obtained from Eq. (2).
Details on MCTDHF and the parameters chosen for the
numerical solutions are given in Ref. [21].
The difference between the direct solution of the TDSE

and MCTDHF for N ¼ 2 in Fig. 1 is below the symbol
resolution, validating MCTDHF. Our operator approach is
substantiated by the good agreement of Eq. (2) with
MCTDHF for all values of N and � shown in Fig. 1. The
good agreement for all numerically investigated cases in
combination with the fact that the derivation of Eq. (2) is
not limited to small N, indicates that it will also be valid
for N > 6.
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In the second part of our analysis, we will show that
Eq. (2) has important ramifications for the experimental
characterization and theoretical calculation of many-body
eigenstates and observables of harmonically trapped quan-
tum particles. We start by expressing the kinetic, trap, and
repulsive energies as functions of !b. This is possible by
using Eq. (2) together with the quantum virial theorem

(2hT̂i ¼ 2hÛi � ��hV̂i) and yields

�hV̂i
Erl

¼ 2ð4�!2
bÞ

ð2� �Þð2�þ 4�!2
bÞ

(4a)

hT̂rli
Erl

¼ �ð!2
b � �� 2Þ

ð2� �Þð2�þ 4�!2
bÞ

(4b)

hÛrli
Erl

¼ �

ð2�þ 4�!2
bÞ
; (4c)

where Erl ¼ h0jĤrlj0i with j0i the ground state of Ĥ; all
expectation values in Eq. (4) are taken with respect to j0i.
Equation (4) are valid when � � 1. From the above
expressions together with the analytical solution for the
corresponding c.m. contributions, the total kinetic, poten-
tial trap, and repulsive energies can be obtained. In Fig. 2,
Eq. (4) forN ¼ 6 are compared with the MCTDHF results;
the N ¼ 2� 4 calculations display similar results. Fairly
good agreement is achieved with the small discrepancies
for larger � occurring as a result of neglecting the shielding
parameter in Eq. (2). Thus, experimental measurement of
!b in conjunction with Eq. (4) gives information about the
state of the interacting trapped quantum system and
presents a useful experimental tool. For � ¼ 0 ! 1, the
normalized relative kinetic energy varies in a range

hT̂rli=Erl ¼ 1=2 ! 0; its value is an indicator of the state

of the quantum system. For hT̂rli=Erl � 1=2, 1=4, 0 the
quantum system is weakly interacting, metal-like, or in a
state of Wigner crystallization, respectively. In Fig. 2 we
see that for � � 10 the kinetic energy is frozen out nearly
completely and the system is close to a mesoscopic crystal

[26]. Similar conclusions can also be drawn from �hV̂i=Erl.
Note that the above relations are valid for an arbitrary
number of trapped particles N [18]. We are not aware of
other methods to determine the internal status of the
quantum system of trapped particles, in particular, in the
strongly correlated limit � � 1. Direct experimental mea-
surement is not possible; for systems with larger N, theo-
retical calculation is extremely challenging and often not
feasible.
Another important consequence of Eq. (2) is that it

can be used to derive an approximate Hamiltonian with
quadratic electron repulsion. The resulting Hamiltonian
depends only on !b. As quadratic Hamiltonians can be
solved analytically [29,30], any observable or measure of
harmonically trapped quantum particles can be obtained as
a function of !b.
In what follows we denote the exact, quadratic, and

interaction free Hamiltonians by Ĥ, Ĥq, and Ĥð0Þ ¼
Ĥð� ¼ 0Þ with eigenstates jji, jjqi, and jjð0Þi, and energies
Ej, "j, and Eð0Þ

j , respectively. Our derivation starts from

the quadratic Hamiltonian Ĥq ¼ T̂ þ Ûþ �Ûrl where the

Coulomb repulsion has been replaced by V̂q ¼ �Ûrl, moti-

vated by Eq. (2). The parameter � could be determined by
requiring maximum overlap between ground states of the
exact and quadratic Hamiltonian, h0j0qð� ¼ �mÞi ¼ max.

This is not practical, as the exact ground state is usually

unknown. However, we expect that any observable Ô

approximately fulfills h0jÔj0i ’ h0qð�mÞjÔj0qð�mÞi. As a
result, a reasonable approximation of �m can also be

10−2 10−1 100 101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Coupling Parameter (λ)

E
ne

rg
y 

C
on

tr
ib

ut
io

n 
(E

rl)

Fermi Gas Wigner Crystal

λ〈V〉
〈Trl〉

〈Url〉

FIG. 2 (color online). �hV̂i=Erl (dash), hT̂rli=Erl (dash-dot) and
hÛrli=Erl (solid), calculated for N ¼ 6 from Eqs. (4a)–(4c),
respectively. The markers represent the values determined
from MCTDHF.
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FIG. 1 (color online). Breathing frequency vs electron corre-
lation parameter �, as determined by the (i) difference coordi-
nate solution of the TDSE (filled circle), (ii) Eq. (2) (filled
triangle), and (iii) MCTDHF (opened square) for N ¼ 2, 3, 4,
and 6. For N ¼ 3, 4 and 6 the origin of the curves (� ¼ 0:02)
have been shifted to make the plot clearer.
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extracted from expectation values. We anticipate slight
variations of �m in dependence on the investigated prop-
erties of the wave function, as will be confirmed in

Fig. 3. Here relations (4a)–(4c) for h0jT̂; Û; V̂j0i are used.
The respective expectation values for the quadratic
Hamiltonian can be determined from its analytical solution
[29]; comparison of the two expressions yields �m.

We follow here a simpler but less general argument to
determine �m that relies on perturbation theory in � and is
valid only for � < 1. By using the virial theorem, expec-
tation values of the exact and quadratic Hamiltonian can be

expressed as E0 ¼ h0jĤj0i ¼ h0j2Û� ð2� �Þ�V̂=2j0i
and "0 ¼ h0qjĤqj0qi ¼ h0qj2Ûþ 2�Ûrlj0qi. The ground

state energies to first order in electron repulsion are

given by E0 ¼ Eð0Þ
0 þ ð�=2Þh0ð0Þj�V̂j0ð0Þi and "0 ¼ Eð0Þ

0 þ
h0ð0Þj�Ûrlj0ð0Þi. Inserting the energies in the above expres-
sions and keeping only first-order terms in the electron

repulsion yields 2h0jÛj0i ¼ Eð0Þ
0 þ ð�=2Þh0ð0Þj�V̂j0ð0Þi

and 2h0qjÛj0qi ¼ Eð0Þ
0 � h0ð0Þj�Ûrlj0ð0Þi. After replacing

�V̂ by using relation (2), one finds that equality of these
two expressions is satisfied when

�m ¼ � 4�!2
b

2� �
: (5)

Finally, Û can be replaced by using Ĥ ¼ T̂ þ Ûþ �V̂,

yielding expressions for h0jT̂; V̂j0i and h0qjT̂; V̂j0qi, for
which equality also holds for �m given in Eq. (5).

The final quadratic Hamiltonian Ĥq can be written as

Ĥq ¼ T̂ þ�2
qÛþ V̂q (6)

with�2
q¼1þ�mðN�1Þ=N and V̂q ¼ �ð�m=2NÞPi�jx̂i �

x̂j. Part of the quadratic repulsion term Url contributes to

and therefore has been pulled into the harmonic trap po-

tential. The exact solutions of Ĥq [29] are spinless, and it

is not trivial to derive anticommuting, fermionic solutions
with a given pure spin eigenstate. Therefore, and for con-
sistency with the Oð�Þ validity of Eq. (5), the ground state
j0qi is determined here by first-order perturbation theory.

We then use this ground state to calculate the linear entropy
LN ¼ 1� N

P

i�
2
i of the N-electron system, where the

�i’s are the eigenvalues of the one-body density matrix.
The one-body density matrix can still be obtained analyti-
cally and has to be diagonalized numerically. As a result,
we obtain the simple expression

�LNð�Þ ¼ LNð�Þ � LNð0Þ ’ KNg
2 (7)

with g ¼ �m=2N; in the case of Coulomb interaction,
K2 ¼ 0:25, K3 ¼ 0:22, K4 ¼ 0:14, and K6 ¼ 0:14;
L4ð0Þ ¼ 1=4 and LNð0Þ ¼ 0 for N ¼ 2, 3, 6.
In Fig. 3 the linear entropy is compared to the exact

numerical results as a function of �. Up to � ¼ 0:5, our
analytical relation predicts the correct functional form of
the linear entropy; however, it consistently underestimates
LN by a constant factor ofOð2Þ, meaning that �m is about a

factor
ffiffiffi

2
p

too small. This was expected, as �m was deter-
mined as the best approximation to the kinetic and poten-

tial energy of Ĥ. Nonetheless, our expression for LN

provides a reasonable approximation for the linear entropy
for � & 1. Furthermore, it provides a means by which the
linear entropy can be determined by an experimentally
measurable parameter.
In summary, we have presented analytical and numerical

MCTDHF results for the breathing frequency !bð�Þ of
trapped quantum particles covering the whole range from
weak (Fermi gas) to strong (Wigner crystal) coupling.
Furthermore, we have shown that knowledge of !bð�Þ—
e.g. obtained in an experiment—gives direct access to key
ground state properties of the system, including the mean
kinetic, potential, and interaction energy. Moreover, from
the energy contributions one immediately has access to the
equation of state (via differentiation with respect to �) or
the chemical potential (by considering the total energy for
different particle numbers). As an interesting theoretical
result we demonstrated how to use the breathing frequency
to—approximately—map the complex trapped system
with power-law interaction to an effective harmonically
interacting one which can be solved exactly. While our
numerical simulations were performed for electrons in
quantum dots, all analytical expressions are valid for any
quantum system with a power-law pair interaction; this
includes dipole interacting cold quantum gases.
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