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The quasi-localized charge approximation is used to calculate the wave spectrum of the magnetized

three-dimensional strongly coupled one-component plasma at arbitrary angles h between the wave

vector and the magnetic field axis. Three frequency branches are identified whose interplay is

strongly determined by b ¼ xc=xp, the ratio of the cyclotron frequency xc, and the plasma

frequency xp. The frequency dispersion relations for the three principal modes along the magnetic

field cross in the case b < 1, which strongly affects the transition from parallel to perpendicular

wave propagation. For b > 1, the frequencies of the different branches are well separated, and

the long-wavelength dispersion in the intermediate and upper branch changes sign as h is varied

from 0 to p=2. In addition to the frequencies, we also investigate the waves’ polarization properties.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4801522]

I. INTRODUCTION

Recently, there has been a growing interest in the prop-

erties of complex plasmas1–3 in strong external magnetic

fields. The available field strengths of a few Tesla are suffi-

cient to magnetize the weakly coupled electrons and ions,

leading to considerably modified plasma behavior. Strong

magnetic fields have been shown to alter the discharge con-

ditions4 as well as the effective dust-dust interaction in the

presence of streaming ions.5

Here, we are concerned with strongly coupled plasmas,

e.g., the dust component in a complex plasma. They are

characterized by a Coulomb coupling parameter

C ¼ Q2

4p�0 a

1

kBT
> 1; (1)

where Q denotes the particles’ charge, T is the temperature,

and a ¼ ð3=4pnÞ1=3
is the Wigner-Seitz radius (density n). In

the limit 1� C < Cm, where Cm is the coupling parameter

at which a phase transition towards a crystal occurs,6 the

plasma behavior is dominated by the so-called caging

effect.7 The strong interactions create local potential minima

that trap particles for a sufficiently long time such that they

can perform several small-amplitude oscillations within their

local caging environment.

If an external magnetic field B ¼ Bêz is applied, the con-

stituents of the plasma are affected by the Lorentz force. In

order to observe magnetization effects in the strongly corre-

lated plasmas discussed above,8,9 it is necessary to increase

b ¼ jxcj
xp

¼ jBj
ffiffiffiffiffiffiffi
�0

m n

r
; (2)

the ratio of the cyclotron frequency xc ¼ QB=m and the

plasma frequency xp ¼ ðQ2n=�0mÞ1=2
(particle mass m), to

values b � 0:5. Systems with strong magnetization include

cold ions in Penning traps10 and the plasmas in the envelopes

of neutron stars.11 On the other hand, considering the high

mass of micron-sized dust particles, strong magnetization is

very difficult to achieve in a complex plasma unless smaller

(i.e., lighter) particles in the nm size range are used. An alterna-

tive approach, where the effect of the Lorentz force is replaced

by the Coriolis force in a rotating reference frame, has recently

been used to study the normal modes of a small dusty plasma

crystal.12 A rotating neutral gas column serves as a reservoir of

angular momentum that is transferred to the dust particles via

the neutral drag force.13 While it may become more challeng-

ing to “magnetize” extended dust layers,14 the dust particles ex-

perience effective magnetic fields that are orders of magnitude

larger than those of superconducting magnets.

A strong magnetic field can significantly alter the dy-

namics of a strongly coupled plasma, e.g., its collective

modes. The wave spectra of solid15–17 and liquid8,17–19 two-

dimensional Yukawa plasmas in magnetic fields have been

investigated theoretically with both simulations and (semi)

analytical approaches. Other studies addressed the closely

related two-dimensional one-component plasma (OCP).20,21

It was found that the Lorentz force couples the longitudinal

and the transverse waves and gives rise to the so-called upper

and lower hybrid modes. In the three-dimensional (Yukawa)

OCP, the strong directional dependence of the Lorentz force

leads to profound differences in the diffusion properties9 par-

allel and perpendicular to the field axis, depending on the

coupling strength. Even though the motion along the field is

not directly influenced, the parallel diffusion coefficient

closely approaches the perpendicular diffusion coefficient in

the strong coupling limit. The properties of lattice22–25 or

plasma26,27 waves are also very sensitive to a magnetic field.

a)Paper GI3 4, Bull. Am. Phys. Soc. 57, 110 (2012).
b)Invited speaker.
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Electromagnetic modes in a magnetized strongly coupled

plasma have been studied as well.28 Genga studied the wave

dispersion in the long-wavelength limit based on the

Singwi-Tosi-Land-Sj€olander theory41 and high-frequency

sum-rules.42 Here, we work in the electrostatic limit and

neglect retardation effects. They become important at very

small wavenumbers, k < xp=c,29 see below.

In the following, we extend our previous studies of col-

lective modes in the strongly coupled magnetized three-

dimensional OCP26,27 and concentrate on the transition from

perpendicular to parallel wave propagation. In particular, we

investigate how the principal modes connect as the angle

between the magnetic field and the wave vector is varied.

We use the quasi-localized charge approximation (QLCA),30

which has been successfully applied to a variety of strongly

correlated systems.31 Its theoretical foundation rests on the

aforementioned caging effect. As a fundamental model sys-

tem, the OCP can serve as a reference to study the combined

effects of strong coupling and magnetization. Thus, besides

being of theoretical interest, our results for the magnetized

OCP are relevant for a variety of systems including ions in

Penning traps,10 the Coulomb liquids and solids in the enve-

lope of neutron stars,11 rotating dusty plasmas, or magne-

tized “nano-dust.” In particular, the collective modes directly

determine their linear response behavior.

This paper is organized as follows. The QLCA theory and

the principal modes of the magnetized OCP for wave propaga-

tion along and across the magnetic field are reviewed in Sec. II.

The transition between these two special cases is investigated in

detail in Sec. III. We focus on the frequencies and the polariza-

tion properties. We conclude with a brief summary in Sec. IV.

II. REVIEW OF QLCA AND PRINCIPAL MODES

A. QLCA for the OCP in a magnetic field

In the QLCA,31 the collective modes of a strongly

coupled plasma subject to a magnetic field B ¼ Bêz are the

non-trivial solutions to27

x2dab þ ixxcrab � DabðkÞ �
kakb

k2
x2

p

� �
qk;bðxÞ ¼ 0; (3)

where qk;b is the particle displacement, ryx ¼ �rxy ¼ 1 and

rab ¼ 0 otherwise.

The dynamical matrix of the QLCA31 can be written as

DabðkÞ ¼ dab �
kakb

k2

� �
DTðkÞ þ

kakb

k2
DLðkÞ; (4)

where DLðkÞ and DTðkÞ denote its longitudinal and trans-

verse components, respectively. They account for the corre-

lation corrections to the dispersion relation and are functions

of the equilibrium pair correlation function h(r). In the 3D

OCP, they are given by29

DTðkÞ ¼ x2
p

ð1
0

dr
hðrÞ

r

sinðkrÞ
kr

þ 3
cosðkrÞ
ðkrÞ2

� 3
sinðkrÞ
ðkrÞ3

" #
;

(5)

and DLðkÞ ¼ �2DTðkÞ. The pair correlation function is

obtained from MD simulations.

If we choose the wave vector in the xz–plane, we have

k ¼ kðsin h; 0; cos hÞ with h denoting the angle between the

magnetic field and k. It is convenient to express the displace-

ment vector in a local basis according to

qk ¼ qkêk þ iq/ê/ þ qhêh ¼
sin h 0 cos h

0 i 0

cos h 0 � sin h

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼UðhÞ

qk

q/

qh

0
@

1
A;

(6)

where êk; ê/, and êh are the usual unit vectors in spherical

coordinates in the xz-plane (/ ¼ 0).

Multiplying Eq. (3) from the left by U†ðhÞ and using

Eq. (6), we obtain

x2 � x2
PðkÞ xxc sin h 0

xxc sin h x2 � x2
OSðkÞ xxc cos h

0 xxc cos h x2 � x2
OSðkÞ

0
@

1
A qk

q/

qh

0
@

1
A ¼ 0;

(7)

where the frequencies of the plasmon (P) and the ordinary

shear (OS) mode are given by

xPðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

p þ DLðkÞ
q

; (8)

xOSðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
DTðkÞ

p
; (9)

respectively. They correspond to the principal modes of the

QLCA in the unmagnetized OCP.29 The eigenfrequencies in

the magnetized system are the roots of

x2x2
cf½x2 � x2

PðkÞ�cos2hþ ½x2 � x2
OSðkÞ�sin2hg

¼ ½x2 � x2
PðkÞ�½x2 � x2

OSðkÞ�
2: (10)

The wave properties, i.e., their longitudinal and trans-

verse components and polarizations, are determined by the

components of the displacement vector qk. It leads to the fol-

lowing particle motion

qðr; tÞ � <½qkðxÞ eiðk�r�xtÞ�
¼ qk êk cosðk � r � xtÞ
� q/ ê/ sinðk � r � xtÞ þ qh êhcosðk � r � xtÞ;

(11)

where qk; q/; and qh are real numbers with q2
k þ q2

h þ q2
/ ¼ 1.

The magnitude of the longitudinal component is deter-

mined by jqkj, i.e., jqkj ¼ 1 for a purely longitudinal wave

and jqkj ¼ 0 for a transverse wave. The remaining elliptical

motion in the /� h plane can be characterized by the modi-

fied eccentricity27

� ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

r
; (12)

where a ¼ maxðjq/j; jqhjÞ; b ¼ minðjq/j; jqhjÞ, and c ¼ 1 if

jqhj > jq/j and �1 otherwise. We get � ¼ 1 for a wave that

057301-2 K€ahlert et al. Phys. Plasmas 20, 057301 (2013)

Downloaded 17 Apr 2013 to 134.245.67.147. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions



is linearly polarized along êh; � ¼ �1 for linear polarization

along ê/, and � ¼ 0 for circular polarization. Note that the

definition of � is based on different axes than in Ref. 27.

B. Principal waves: k k B and k?B

The three modes for h ¼ 0 are the plasmon [Eq. (8)] and

the upper shear (US) and lower shear (LS) modes with27

xUS;LSðkÞ ¼
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c þ 4x2
OSðkÞ

q
6jxcj

�
: (13)

While the plasmon is a longitudinal mode (jqkj ¼ 1) and

unaffected by the Lorentz force, the upper and lower shear

modes are transverse excitations (jqkj ¼ 0). They originate

from the two degenerate shear modes in the unmagnetized

limit and are circularly polarized (� ¼ 0). Their frequencies

are separated by the cyclotron frequency.

For wave vectors at an angle h ¼ p=2 with respect to B,

the excitation spectrum consists of the ordinary shear mode

[Eq. (9)] and the upper (UH) and lower (LH) hybrid modes27

x2
UH;LHðkÞ ¼

1

2
½x2

c þ x2
PðkÞ þ x2

OSðkÞ

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½x2

PðkÞ � x2
OSðkÞ þ x2

c �
2 þ 4x2

cx
2
OSðkÞ

q
�:

(14)

The OS mode is acoustic with29,32

lim
k!0

xOSðkÞ
k
¼ cOSðCÞ ¼

ffiffiffiffiffiffiffiffiffiffi
aðCÞ

p
xp a; (15)

where cOSðCÞ is the associated acoustic speed, aðCÞ ¼ � 2
45EcðCÞ=C

kBT , and EcðCÞ the (negative) correlation energy per parti-

cle of the OCP.33 The QLCA yields the acoustic speed of the

LH mode as

cLHðC; bÞ ¼
cOSðCÞ
ð1þ b2Þ1=2

: (16)

One must keep in mind, however, that it does not include the

diffusive motion of the particles and the associated slow

change of the potential landscape, which causes the damping

of the shear mode in a real liquid at long wavelengths and

low frequencies.31,34,35 Indeed, our simulations have shown

that the OS, LS, and LH modes exist only beyond a critical

wave vector.27

Just like the plasmon at h ¼ 0, the OS mode is inde-

pendent of the magnetic field. It is linearly polarized

(jqkj ¼ 0; � ¼ 1) with particle displacements along B. The

upper and lower hybrid modes, on the other hand, exhibit el-

liptical polarizations (� ¼ �1; jqkj � 0), where the particle

displacements are within the xy–plane, see Ref. 27 for more

details.

III. WAVE PROPAGATION AT OBLIQUE ANGLES

We now extend the discussion of the excitation spec-

trum to arbitrary directions of the wave vector.

A. Wave dispersion

It is possible to make some general statements about the

eigenfrequencies fxig. Just like the frequencies of a crystal-

line lattice,22,24 they satisfy a generalized Kohn sum rule in a

magnetic field

X3

i¼1

x2
i ðkÞ ¼ x2

p þ x2
c : (17)

Likewise,36 one can derive the fourth-order frequency sum

X3

i¼1

x4
i ðkÞ¼x4

PðkÞþ2x4
OSðkÞþx2

cfx2
cþx2

pþx2
OSðkÞ

þ½x2
OSðkÞ�x2

PðkÞ�cosð2hÞg; (18)

which is explicitly k-dependent.

1. Long- and short-wavelength limit

In the long-wavelength limit, k! 0, the longitudinal

and transverse components of the dynamical matrix vanish,

i.e., xPðkÞ ! xp;xOSðkÞ ! 0. This implies that the frequen-

cies in this limit are determined by the mean-field contribu-

tion only. Thus, we obtain x0
1 ¼ 0 and the gap frequencies

x0
2;3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
½x2

c þ x2
p7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4

c þ x4
p � 2x2

cx
2
pcosð2hÞ

q
�

r
; (19)

with x0
1 � x0

2 � x0
3, see also Ref. 37 for a cold ideal plasma

and Ref. 24 for the OCP crystal.

Note that strictly speaking for very long wavelengths,

k < xp=c, the electromagnetic term in the dispersion relation

must be restored, which ensures that the dispersion at k 	 0

is isotropic. The frequencies that are characterized by

ðkc=xÞ2 ¼ 0 are usually known as the cutoff frequencies. In a

cold ideal plasma, the gap frequencies x0
2;3 [Eq. (19)], on the

other hand, correspond to the regime where ðkc=xÞ2 !1
and are referred to as resonances.28,37,38 Their angular depend-

ence is depicted in Fig. 1, together with the angle-independent

cutoff frequency37 xco ¼ 1
2

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c þ 4x2
p

q
� jxcj

i
, which is

relevant for the modes here. A deeper analysis of the wave-

number domain k < xp=c� a�1 is, however, beyond the

scope of this paper, see Refs. 28, 37, and 38 for details.

The small k expansions of the frequencies are affected by

correlations. Using the expansion of the OS mode [Eq. (15)]

and xPðkÞ 
 xp½1� aðCÞ k2a2�,29 we find from Eq. (10)

x1ðk; hÞ 

xp

jcos hj
aðCÞ

b
k2a2; (20)

x2;3ðk;hÞ 
x0
2;3ðhÞ

� 16
aðCÞ

4

4�b2½1þ 3cosð2hÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb4� 2b2 cosð2hÞ

q x2
p

ðx0
2;3Þ

2
k2a2

2
64

3
75:

(21)
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Compared to strictly perpendicular wave propagation

(h 	 p=2), the long-wavelength dispersion of the modes in

the lower and intermediate branch is quadratic for h 6¼ p=2,

which was also observed in the OCP crystal.24 The quadratic

dispersion is reminiscent of a Whistler mode. A more

detailed analysis of the limit h! p=2 is presented in the

Appendix. Equation (21) further shows that for b > 1, the

dispersion of the modes in the intermediate and upper branch

changes sign at the critical angle

hcritðbÞ ¼
1

2
arccos

4� b2

3b2

� �
��!
b!1

0:955ð
 54:7�Þ: (22)

While the k ! 0 frequencies are angle-dependent, the

corresponding frequencies in the limit k!1 are not. Here,

the common frequency limit of the OS and P mode is the

OCP Einstein frequency29,32 xE ¼ xp=
ffiffiffi
3
p

. The magnetic

field dependent asymptotes thus become27

x11;3 ¼
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c þ 4x2
E

q
7jxcj

�
; x12 ¼ xE: (23)

They correspond to oscillations of a particle in a magnetized

harmonic trap with isotropic confinement. The frequencies

x11;2;3 correspond to the three different polarizations of the

oscillations, see Sec. III B 1.

2. Finite wave vectors

The coupling parameter mainly determines the oscilla-

tory behavior of the dispersion curves. We chose a represen-

tative example with C ¼ 100 to discuss their general features

at finite wave vectors and arbitrary angles. The results are

displayed in Fig. 2.

One readily observes that for certain values of k, where

xPðkÞ ¼ xOSðkÞ ¼ xE,29 the frequencies become independ-

ent of the angle h. The frequencies that follow from Eq. (10)

under this constraint are identical to those in the limit

k!1, see Eq. (23).

In the high-field limit [Fig. 2(c)], the dispersion curves

show the least complex behavior, and all modes are clearly

separated. At high frequencies, x > xp, we find a set of

modes whose frequencies are bounded by those of the US

and UH mode. Similar behavior is observed for the plasmon

and the OS mode at intermediate, and the LH and LS modes

at low frequencies. These three branches will be referred to

as the high, intermediate, and low frequency branch. Their

FIG. 2. Dispersion relation xðkÞ at a coupling parameter C ¼ 100 for (a) weak, (b) intermediate, and (c) strong magnetic fields and various angles

h ¼ /ðk;BÞ. Note that the case h ¼ p=18 is not shown in panel (a). The horizontal lines show the frequency limits for k!1, Eq. (23).

FIG. 1. Dependence of the gap frequencies x0
2 (solid lines) and x0

3 (dashed

lines) on h [Eq. (19)] for (a) b < 1 and (b) b > 1, see also Ref. 37. Their

limits for h! 0 and h! p=2 are indicated in the figure. The cutoff fre-

quency xco (see text) is shown by the horizontal lines.
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k! 0 and k !1 limiting frequencies are given by Eqs.

(19) and (23), respectively.

The situation becomes more complex as we decrease the

magnetic field strength [Fig. 2(b)], where the US and plas-

mon dispersion curves cross at kcrita 
 2:4. This leads to an

avoided crossing of the modes in the upper and intermediate

branch as h! 0. At small wavenumbers, they are now

bounded from below (above) by xP (xUS). The qualitative

behavior of the lower branch remains unaffected.

This is changed, however, in weak magnetic fields [Fig.

2(a)], where the LS and plasmon frequencies cross. This has

two consequences. First, the frequencies of the modes in the

lower branch are now bounded by those of the LH mode and

the minimum of xP and xLS. Second, the new lower bound

of the intermediate branch in the small wavenumber interval

where xLS > xP is the LS frequency.

B. Wave properties

We now consider the wave properties, which are calculated

from Eq. (7) using the previously obtained eigenfrequencies.

1. Long- and short-wavelength limit

With x0
1 ¼ 0, one can see from Eq. (7) that jq0

k;1j ¼ 0,

i.e., the wave in the lower branch is purely transverse at

k¼ 0. For h 6¼ p=2, we further obtain �1ðkÞ ! 0 as k ! 0,

which corresponds to circular polarization. The exception is

the LH mode, which has �0
1 ¼ �1 for h ¼ p=2.

For the intermediate and upper branch, one finds

�0
2ðh; bÞ ¼ 1�

1þ b2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b4 � 2b2cosð2hÞ

q
2b2cos2h

2
4

3
5

1=2

;

�0
3ðh; bÞ ¼ �

1ffiffiffi
2
p ½1� b2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b4 � 2b2cosð2hÞ

q
�1=2:

(24)

Note that for b > 1 (b < 1), the h 	 0 limit of the intermedi-

ate (upper) branch is the plasmon for which � is not defined.

The above expressions then only apply to angles 0 < h
< p=2. Further, we have �0

2ðh 	 p=2; bÞ ¼ 1 for the OS

mode. The expressions for the longitudinal components are

rather cumbersome. We therefore show the numerical results

in Fig. 3 only, together with the eccentricities [Eq. (24)].

For b < 1, the intermediate mode is purely transverse at

h ¼ 0 (US mode), becomes partially longitudinal for h > 0,

and transforms into the transverse OS mode at h ¼ p=2, see

Fig. 3(a). In the case b > 1, the plasmon is the mode with

the second highest frequency at h ¼ 0. Thus, the intermedi-

ate mode is purely longitudinal instead. The behavior for the

high-frequency mode is very similar [Fig. 3(b)], but the roles

of the P and US modes are exchanged. The h! p=2 limit is

now the UH mode, which has both longitudinal and trans-

verse components, depending on the value of b.

Figures 3(c) and 3(d) show that the elliptical motion in

the /–h plane is stretched along êh (ê/) for the modes in the

intermediate (upper) branch. As noted before, some of the

limiting cases require particular attention. This will be dis-

cussed in more detail in Sec. III B 2.

The eigenvector for the intermediate frequency branch

in the limit k !1 is strictly along the magnetic field, which

is why the Lorentz force has no effect on the wave’s proper-

ties and its frequency. We get

jq1k;2j ¼ jcos hj; �12 ¼ 1ð0 < h � p=2Þ; (25)

i.e., the wave transforms from a purely longitudinal wave at

h ¼ 0 (the plasmon) into a purely transverse mode polarized

along êh ¼ êz at h ¼ p=2 (the OS mode). For any oblique

angle, it has both a longitudinal and a transverse component

with linear polarization.

For short-wavelength excitations (k !1) in the upper

and lower branch, the eigenvector describes a circular

motion around the magnetic field axis. We get

jq1k;1;3j ¼
jsin hjffiffiffi

2
p ; �11;3 ¼ �sin h; (26)

which corresponds to the cyclotron motion of a particle in a

magnetic field and an isotropic confinement (see Sec.

III A 1). The motion in the upper branch is in agreement with

the usual cyclotron motion, while the trajectory in the lower

branch is in the opposite direction, giving rise to the lower of

the two frequencies. At h ¼ 0, the two modes correspond

to the upper and lower shear modes, which are purely

transverse and circularly polarized. The waves then pick up a

longitudinal component for h > 0. For h ¼ p=2, the êh com-

ponent vanishes, and the waves transform into the upper and

lower hybrid modes. The associated particle displacements

are within the xy-plane, see also Ref. 27.

2. Finite wave vectors

The full wave vector dependence of jqkj and � is dis-

played in Figs. 4 and 5. Consider first the high-field limit,

Fig. 4. Just like the mode frequencies are bounded by the fre-

quencies of the modes in the limits h ¼ 0 and h ¼ p=2, the

FIG. 3. Longitudinal component of the particle displacement, jqkj, and

modified eccentricity, �, in the limit k! 0 as a function of h and various

magnetic field strengths. (a), (c): intermediate branch; (b), (d): upper branch.

The cross in (c) indicates the value for the OS mode at h ¼ p=2.
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longitudinal components and the eccentricities are bounded

by the associated values of jqkj and �. In general, all modes

have both longitudinal and transverse components. Note that

in Fig. 4(e), the eccentricity is not defined for the plasmon at

h ¼ 0 as it is purely longitudinal. For 0 < h < p=2, the ec-

centricity for k! 0 is bounded from below and above by the

h! 0 and h! p=2 limits shown in Fig. 3(c).

Partially different behavior is observed for b ¼ 0:5, see

Fig. 5. Since the frequencies of the lower branch are still

bounded by those of the LS and LH modes, their properties

are very similar to those in the case b ¼ 1:1 [compare Figs.

4(a) and 5(a) and Figs. 4(d) and 5(d)]. In the intermediate

branch, the upper frequency limit for kcrita < 2:4, where

xUSðkcritÞ ¼ xPðkcritÞ, is now the US mode, which is a purely

transverse wave. This is reflected in the longitudinal

component of the wave, which is significantly smaller than

for b ¼ 1:1. As k ! 0, it has a maximum as a function of h
[indicated by the dashed line in Fig. 5(b)], see Fig. 3(a). In

the upper branch, the mode now begins as a longitudinal

wave at h ¼ 0 and at small k (plasmon) compared to the

transverse US mode in the case b ¼ 1:1.

Different behavior is also observed for the eccentricity,

as can be seen in Fig. 5(e). Compared to the case b ¼ 1:1, the

eccentricity of the intermediate branch now approaches 0 as

k! 0 and h ¼ 0, corresponding to the US mode. In the upper

branch, the eccentricity does not exceed a certain value �3ð0Þ
in the limit k! 0, as shown in Figs. 5(f) and 3(d).

IV. CONCLUSIONS

To summarize, we have analyzed the wave spectrum of

the strongly coupled magnetized OCP for arbitrary angles

between the wave vector and the magnetic field. The cross-

over from parallel to perpendicular wave propagation

depends on the magnetization b ¼ xc=xp. In weak magnetic

fields, b < 1, the frequencies of the principal modes parallel

to the field intersect, and the transition behavior is largely

dominated by avoided frequency crossings of the different

wave modes, which is also reflected in their polarizations. In

strong fields (b > 1), on the other hand, the modes are

clearly separated. In this case, there is a critical angle at

which the long-wavelength dispersion in the upper and lower

branch changes sign. Since the collective modes determine

the linear response behavior of the plasma, the results are im-

portant for a variety of transport processes such as diffusion,9

or the plasma response to external fields.

It is important to compare the results of the QLCA with

first-principle MD simulations, which, however, is beyond

the scope of this paper. The mode spectrum presented here

should be helpful for the interpretation of the simulations in

the strong coupling limit. It would further be interesting to

study the transition to moderately and weakly coupled sys-

tems, where the QLCA is not applicable. In particular, the

plasmon dispersion in the unmagnetized OCP becomes posi-

tive for C � 9:5� 10,39 which is expected to have a strong

effect on the mode crossings.
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APPENDIX: EIGENFREQUENCIES IN THE LIMIT
h fi p=2;ka fi 0

Since the dispersion of the modes in the lower and inter-

mediate branch changes from quadratic (h 6¼ p=2) to linear

(h 	 p=2) at small ka, the limit h! p=2 will be inspected in

more detail here. Similar to the expansion in ka for h 6¼ p=2

[Eq. (21)], we can derive an expansion in terms of ðh� p=2Þ
for ka 6¼ 0. From Eq. (10), we get

FIG. 5. Longitudinal component of the particle displacement, jqkj, and

modified eccentricity, �, as a function of k and various angles for the same

parameters as in Fig. 2(b) [C ¼ 100;b ¼ 0:5]—(a), (d): lower frequency

branch; (b), (e): intermediate branch; and (c), (f): upper branch. The dashed

horizontal lines show the respective upper limits as k! 0: (b) h 
 0:67, (e)

h! p=2, and (f) h! 0, see Fig. 3. Note that in (b), both the US and OS

modes have jqkj ¼ 0.

FIG. 4. Longitudinal component of the particle displacement, jqkj, and modi-

fied eccentricity, �, as a function of k and various angles for the same parame-

ters as in Fig. 2(c) [C ¼ 100; b ¼ 1:1]—(a), (d): lower frequency branch; (b),

(e): intermediate branch; and (c), (f): upper branch. The dashed horizontal

lines in (e) show the upper and lower limits for � as k! 0, see Fig. 3(c).
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x1ðk; hÞ 
 xLHðkÞ 1þ x2
cðx2

OS � x2
PÞ ðh� p=2Þ2

½x4
c þ x2

cð2x2
OS þ 2x2

P � DÞ þ ðx2
OS � x2

PÞðx2
OS � x2

P þ DÞ�

" #
; (A1)

where

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

P � x2
OS þ x2

cÞ
2 þ 4x2

cx
2
OS

q
: (A2)

In the long-wavelength limit, the term in brackets can be

roughly approximated by

x1ðk; hÞ 
 xLHðkÞ 1� ðh� p=2Þ2

2k2a2

" #
;


xp

ffiffiffi
a
p

kaffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p 1� ðh� p=2Þ2

2 k2a2

" #
: (A3)

In addition, we used Eq. (16) in the second line for the LH

mode.

An equivalent analysis can be carried out for the inter-

mediate branch. For ka 6¼ 0, an expansion of Eq. (10) in

ðh� p=2Þ leads to

x2ðk; hÞ 
 xOSðkÞ 1þ x2
P

x2
OS

� 1

� �
ðh� p=2Þ2

2

" #


xp

ffiffiffi
a
p

ka 1þ ðh� p=2Þ2

2a k2a2

" #
: (A4)

In the second line, we have expanded the term in brackets

for small ka and used Eq. (15) for the OS mode, similar to

Eq. (A3).

While the modes in the lower and intermediate branch

are strictly quadratic in the long wavelength limit for h 6¼ p=2

[see Eqs. (20) and (21)], there exists a finite wavenumber

interval where the dispersion is almost linear, and Eqs. (A3)

and (A4) become approximately valid. This occurs in the

close vicinity of h 
 p=2 and is illustrated in Fig. 6 for the

lower branch. As h approaches p=2, the range of validity for

the quadratic dispersion becomes smaller, the linear behavior

becomes apparent at finite ka and its range extends to increas-

ingly lower ka, as suggested by the second term in Eq. (A3).

For a similar discussion in the OCP crystal, see Ref. 24.
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