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A strongly coupled plasma of quark and gluon quasiparticles is studied by combination of Path integral Monte
Carlo and quantum Wigner dynamics simulations. This method extends previous classical nonrelativistic simu-
lations based on a color Coulomb interaction to the quantum regime. First results for the momentum-momentum
autocorrelation function and diffusion constant are presented.
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1 Introduction

Determining the properties of the quark-gluon plasma (QGP) is one of the main challenges of strong-interaction
physics, both theoretical [1] and experimental [2]. Many features of this matter were experimentally discovered
at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven. The most striking result, obtained from analysis of
these experimental data [3], is that the deconfined quark-gluon matter behaves as almost perfect fluid rather than
as a perfect gas, as it could be expected from the asymptotic freedom.

From the theory side, the most fundamental way to compute properties of strongly interacting matter is pro-
vided by lattice QCD, see Refs. [4, 5]. Interpretation of these very difficult and long computations requires
application of various QCD motivated, albeit schematic, models simulating various aspects of the full theory and
allowing for a deeper physical understanding. In a previous paper [6] we presented first applications of the Path
integral Monte Carlo (PIMC) method to simulations of a nonideal quark-gluon plasma (QGP) which showed
good agreement of the PIMC equation of state with lattice data for the 2+1 flavor case. In this contribution we
extend the analysis to dynamic properties by performing first exploratory quantum molecular dynamics (QMD)
simulations of the QGP. This MD method extends previous classical nonrelativistic simulations [7] based on a
color Coulomb interaction to the quantum regime.
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2 Theoretical model

Our model is based on precisely the same assumptions as those in Ref. [7] which are summarized as follows:

I: All particles (quarks and gluons) are heavy, i.e., m > T , where m is the mass of a particle and T , the
temperature, and therefore they move non-relativistically. This assumption is based on the analysis of lattice
data [8, 9].

II: Since the order of magnitude of quark and gluon masses, deduced from the lattice data [8,9] is the same, we
do not distinguish these masses and put them equal. Moreover, because of the latter we do not distinguish
between quark flavors.

III: The interparticle interaction is dominated by a color-electric Coulomb interaction, see Eq. (2). Magnetic
effects are neglected as sub-leading ones in the nonrelavistic limit.

IV: The color operators ta are substituted by their average values, i.e. by classical color 3D unit vectors,
relying on the fact that the color representations are large. Time evolution of these color vectors is described
by Wong’s dynamics [10].

The quality of these approximations and their limitations were discussed in Ref. [7]. Aiming at a first test of this
model in QMD simulations, we consider the QGP only at zero baryon density. Thus, this model requires the
following quantities as an input:

1. the temperature dependence of the quasiparticle mass, m(T ),

2. the density of particles, n(T ), at a given temperature [Following [7], we assume that the numbers of quarks,
antiquarks and gluons are approximately equal as the number of effective degrees of freedom in thermody-
namical quantities is such that roughly all three species are equally represented.],

3. the coupling constant, g2(T ), at a given temperature, see Eq. (2) [Note that, because of the running coupling
in the QCD, g2 generally depends on T ].

All the input quantities should be deduced from the lattice data or from an appropriate model simulating these
data.

3 Color Wigner dynamics

The basis of our consideration is the Wigner representation of the von Neumann equation – the Wigner-Liouville
equation (WLE). To derive the WLE for the full density matrix of the N-particle system ρ(xN |yN ) we introduce
center of mass and relative coordinates in standard manner, �q ≡ �qN ≡ (�xN + �yN )/2 and �r ≡ �rN ≡ �xN − �yN .
Note that all these quantities are 3N -dimensional vectors. The Wigner distribution function (WF) is defined by
f (�p, �q, t) = 1

(2π�)6N

∫
ρ
(
�q − �r

2 , �q +
�r
2

)
ei �pr/� d�r , so the WLE can be written in the form [11]:

∂f

∂t
+

�p

m

∂f

∂�q
− ∂U(q)

∂�q

∂f

∂�p
=

∫ ∞

−∞
ds f (�p− �s, �q, t)ω (�s, �q) , (1)

where ω (�s, q) = �F (q) dδ(�s)
d�s + 4

(2π�)6N

∫
d�q U (q − �q) sin

(
2�s�q
�

)
, and �F (�q) = −∂U(q)/∂�q is the classical force.

Obviously, the force term in ω exactly cancels the last term on the lhs of Eq. (1). Retaining these terms allows
us to write the WLE as the classical Liouville equation [lhs of Eq. (1)] plus a quantum correction [all terms on
the rhs of Eq. (1)] which vanish for � → 0. This form allows us to identically transform Eq. (1) into an integral
equation [11], f (�p, �q, t) = f0(p0, q0)+

∫ t

0
dτ

∫∞
−∞ d�s f (pτ − �s, qτ , τ)ω (�s, qτ ) . The first contribution describes

quantum dynamics and is given by the initial WF f0 (p, q) ≡ f (p, q, 0), but taken at arguments p0 ≡ �̄p(0) and
q0 ≡ �̄q(0), being classical trajectories pτ ≡ �̄p(τ) and qτ ≡ �̄q(τ) (solutions of the Hamilton equations associated
to the WLE and connecting points (�p, �q) at time t and points (p0, q0) at time 0):
dp̄τ

dτ = F [q̄τ (τ)] ;
dq̄τ
dτ = p̄τ (τ)

2m , with p̄τ (τ = t; p, q, t) = p ; q̄τ (τ = t; p, q, t) = q.
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Notice that even the first term describes the evolution of a quantum many-body state if the initial WF f0 (p, q)
is chosen appropriately and contains all powers of Planck’s constant. The integral term describes the perturbation
of the classical trajectories due to effects of quantum ([p, q]) uncertainty.

As a next step let us consider the classical dynamics of particles having color dynamic variables Q beside the
normal spatial and momentum coordinates. As a simple example, let us consider Wong’s color dynamics of the
variables Q, which are 3D unit vectors as we mentioned before. For the considered in this paper quark-gluon
plasma media the interaction between particles is described by a color Coulomb potential with the Hamiltonian
written as Ĥ = K̂ + Û c, where we introduced the kinetic and color Coulomb interaction energy operators:

K̂ =
N∑
t=1

p2t
2mt

, Û c =
1

2

N∑
p=1

N∑
t=1

Cptg
2〈Qp|Qt〉

4π|rp − rt| . (2)

Here the constants Cpt = Ctp are products of eigenvalues of the Casimir operator [7], g2 is the coupling constant
g2, and 〈Qp|Qt〉 is scalar product of two vectors Qp and Qt.

As shown before in Ref. [13,14], the solution of the integral equation for f(p, q, t) can be transformed into
an iteration series. Now the first term of the iteration series has additional color variables Q and takes the form
f0 [p, q,Q] ≡ f0 [p(0), q(0), Q(0)]. Here the arguments p0 ≡ �p(0), q0 ≡ �q(0) and Q0 ≡ �Q(0) are the classical
trajectories connecting points (�p, �q, �Q) at time t with points (p0, q0, Q0) at time 0

dp̄τ
dτ

= F (τ) ;
dq̄τ
dτ

=
p̄τ (τ)

2m
;

dQ̄a
k(τ)

dτ
= Ga

k (τ) , (3)

with p̄τ (τ = t) = p ; q̄τ (τ = t) = q ; Q̄τ (τ = t) = Q. Here Ga
k (τ) =

∑N
t=1

∑
b

∑
c f

abc Cktg
2Qb

kQ
c
t

4π|rk−rt| ,
where fabc are structure constants of the color group related to Wong’s dynamics.

4 Wigner representation of time correlation functions

According to the Kubo formula the dynamic conductivity or diffusion constant are defined by the real part of
Fourier transform of the current–current correlation function. Our starting point is the general operator expression
for the canonical ensemble-averaged time correlation function [12]: CFA(t) = Z−1Tr

{
F̂ eiĤt∗c/� Â e−iĤtc/�

}
,

where Ĥ is the Hamiltonian of the system expressed as a sum of the kinetic energy operator, K̂, and the po-
tential energy operator, Û c. Time is taken to be a complex quantity, tc = t − i�β/2, where β = 1/kBT

is the inverse temperature with kB denoting the Boltzmann constant. The operators F̂ and Â are quantum
operators of the dynamic quantities under consideration and Z = Tr

{
e−βĤ

}
is the partition function. The

Wigner representation of the time correlation function in a υ–dimensional space can be written as CFA(t) =
(2π�)−2υ

∫ ∫
dμ1dμ2 F (μ1)A(μ2)W (μ1;μ2; t; i�β), where we introduce the short-hand notation for the phase

space point, μi = (pi, qi), (i = 1, 2), and p and q comprise the momenta and coordinates, respectively, of all
particles in the system. W (μ1;μ2; t; i�β) is the spectral density expressed as
W (μ1;μ2; t; i�β) = Z−1

∫ ∫
dξ1dξ2 e

i
p1ξ1

� ei
p2ξ2

� ×
〈
q1 +

ξ1
2

∣∣∣eiĤt∗c/�
∣∣∣ q2 − ξ2

2

〉〈
q2 +

ξ2
2

∣∣∣e−iĤtc/�
∣∣∣ q1 − ξ1

2

〉
,

and A(μ) denotes Weyl’s symbol [11] of operator Â : A(μ) =
∫
dξ e−i pξ

�

〈
q − ξ

2

∣∣∣Â
∣∣∣ q + ξ

2

〉
, and similarly for

the operator F̂ . Hence the problem of the numerical calculation of the canonically averaged time correlation
function is reduced to the computation of the spectral density.

To obtain the integral equation for W let us introduce a pair of dynamic p, q-trajectories {q̄τ (τ ; p1, q1, t),
p̄τ (τ ; p1, q1, t)} and {q̃τ (τ ; p2, q2, t), p̃τ (τ ; p2, q2, t)} starting at τ = t from the initial condition {q1, p1} and
{q2, p2} propagating in ‘negative’ and ‘positive’ time direction, respectively:
dp̄τ

dτ = 1
2F [q̄τ (τ)] ;

dq̄τ
dτ = p̄τ (τ)

2m , with p̄τ (τ = t) = p1 ; q̄τ (τ = t) = q1,
dp̃τ

dτ = − 1
2F [q̃τ (τ)] ;

dq̃τ
dτ = − p̃τ (τ)

2m , with p̃τ (τ = t) = p2 ; q̃τ (τ = t) = q2,

where F (q) ≡ −∇Ũ with Ũ being the total potential, i.e. the sum of all pair interactions Uab. Then, as has been
proven in [13], W obeys the following integral equation: W (μ1;μ2; t; i�β) = W̄ (p̄0, q̄0; p̃0, q̃0; i�β) +

+ 1
2

∫ t

0
dτ

∫
dsW (p̄τ − s, q̄τ ; p̃τ , q̃τ ; τ ; i�β)�(s, q̄τ )− 1

2

∫ t

0
dτ

∫
dsW (p̄τ , q̄τ ; p̃τ − s, q̃τ ; τ ; i�β)�(s, q̃τ ),
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where �(s, q) = 4
(2π�)υ�

∫
dq′ Ũ(q − q′) sin

(
2sq′

�

)
+ F (q)∇δ(s), and δ(s) is the Dirac delta function. This

equation has been supplemented by an initial condition for the spectral density at t = 0: W (μ1;μ2; 0; i�β) =
W̄ (μ1;μ2; i�β)

∣∣
t=0

≡ W̄ . The τ−integrals connect the points p̄τ , q̄τ ; p̃τ , q̃τ at time τ of the mentioned above
dymamic p,q-trajectories with the points p1, q1; p2, q2 at time t whereas in W̄ the trajectories are to be taken
at τ = 0 (denoted by the subscript “0). The function W̄ can be expressed in the form of a finite difference
approximation of the path integral [13–15]:

W̄ (μ1;μ2; i�β) ≈
∫ ∫

dq̃1 . . . dq̃n
∫ ∫

dq′1 . . . dq
′
n Ψ(μ1;μ2; q̃1, . . . , q̃n; q

′
1, . . . , q

′
n; i�β) ,

with Ψ(μ1;μ2; q̃1, ..., q̃n; q
′
1, ..., q

′
ni�β) ≡ 1

Z

〈
q1

∣∣∣e−εK̂
∣∣∣ q̃1

〉
e−εU(q̃1)

〈
q̃1

∣∣∣e−εK̂
∣∣∣ q̃2

〉
e−εU(q̃2) . . . . . .

e−εU(q̃n)
〈
q̃n

∣∣∣e−εK̂
∣∣∣ q2

〉
ϕ (p2; q̃n, q

′
1)×

〈
q2

∣∣∣e−εK̂
∣∣∣ q′1

〉
e−εU(q′1)

〈
q′1

∣∣∣e−εK̂
∣∣∣ q′2

〉
e−εU(q′2) . . . . . .

e−εU(q′n)
〈
q′n

∣∣∣e−εK̂
∣∣∣ q1

〉
ϕ (p1; q

′
n, q̃1) ,

where ϕ (p; q′, q′′) ≡ (
2λ2

)υ/2
exp

[
− 1

2π

〈
pλ
�

+ iπ q′−q′′

λ

∣∣∣∣ pλ
�

+ iπ q′−q′′

λ

〉]
, and 〈x|y〉 denotes the scalar

product of two vectors �x, �y.

The function Ψ has to be generalized to properly account for spin statics effects. This gives rise to an additional
spin part of the density matrix and antisymmetrization of one off-diagonal matrix element.

Inclusion of the color variable in the approximation allowing for the first term of iteration series gives expres-
sions: W (μ1, Q1;μ2, Q2; t; i�β) = W̄ (p̄0, q̄0, Q̄1(0), ; p̃0, q̃0, Q̃2(0); i�β) with equation of motion
dp̄τ

dτ = 1
2F (τ) ; dq̄τ

dτ = p̄τ (τ)
2m ;

dQ̄a
k(τ)
dτ = 1

2G
a
k(τ) with p̄τ (τ = t) = p1 ; q̄τ (τ = t) = q1, Q̄τ (τ = t) = Q1,

dp̃τ

dτ = − 1
2F (τ) ; dq̃τ

dτ = − p̃τ (τ)
2m ,

dQ̃a
k(τ)
dτ = − 1

2G
a
k(τ) with p̄τ (τ = t) = p2 ; q̃τ (τ = t) = q2, Q̃τ (τ = t) = Q2,

where F (q) ≡ −∇Ũ with Ũ being the sum of all pair interactions with the diagonal quantum effective color
Kelbg potential

Φpt(rp, rp, rt, rt, Qp, Qt,Δβ) = Φpt(|rpt|, Qp, Qt,Δβ)

=
Cpt g

2 〈Qp|Qt〉
4πλptxpt

[
1− e−x2

pt +
√
πxpt (1− erf(xpt))

]
, (4)

where xpt = |rp − rt|/λ̄pt. Note that the color Kelbg potential approaches the color Coulomb potential
at distances larger than the De Broglie wavelength. Most importantly, it is finite at zero distance, remov-
ing in a natural way the classical divergences which makes any artificial cut-offs obsolete. Here Ga

k (τ) =∑N
t=1

∑
b

∑
c f

abc Ckt g
2 Qb

k Qc
t

4πλktxkt

[
1− e−x2

kt +
√
πxkt (1− erf(xkt))

]
, where fabc are structure constants of color

group.

The time correlation functions are linear functionals of the spectral density, for them the same series represen-
tation holds, CFA(t) = (2π�)−2υ

∫ ∫
dμ1dQ1dμ2dQ2 φ(μ1;μ2)W (μ1, Q1;μ2, Q2; t; i�β), where φ(μ1;μ2) ≡

F (μ1)A(μ2).

Using this approach we can compute averages of arbitrary operators in standard way and obtain any dynamic
macroscopic property of the correlated quantum particles without approximations related to the existence of
different small physical parameters. Naturally, the true particle number N is replaced by a greatly reduced
number Nsim which is of the order 50 − 100 in the MC cell with periodic boundary conditions. The solution
scheme is a combination of Quantum Monte Carlo and classical Molecular Dynamics methods: Quantum MC
is used to generate the correlated initial state, MD generates the p-q-Q trajectories. In this work, we take into
account only the first term of the iteration series , which is related to the propagation of the initial quantum
distribution according to the Hamiltonian equation of motion and classical color dynamics. This term, however,
does not describe pure classical dynamics but accounts for quantum effects as noted above. The remaining terms
of the iteration series, due to the convolution structure, describe momentum jumps which account for higher-order
corrections to the classical dynamics of the quantum distribution , which are expected to be relevant in the limit
of high density. This approach allows us to generate, in a controlled way, various kinds of quantum dynamics
and initial conditions of the many-body system.
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5 Numerical results

Very important aspect of the strongly coupled quark – gluon plasma is the dramatic change in transport properties
in comparison to weakly coupled plasmas. As a first test of the developed method we have calculated the QGP
momentum autocorrelation function and its Fourier transform, presented by Figs. 1 and 2 respectively. The
diffusion constant is proportional to the integral of this function or the Fourier transform at zero frequency. We
used the same parameters as those in ref. [6]: the temperature dependence of the quasiparticle mass was chosen
according to m(T )/Tc = 0.9/(T/Tc−1)+3.45+0.4T/Tc [7,9], where Tc = 175 MeV is the critical temperature
of the phase transition to the QGP, whereas the coupling constant g2(T ) ≈ 6 was taken T -independent. The
calculations were performed at temperature T = 3Tc with the mean interparticle distance rs = 〈r〉/σ = 0.28.
Here time is shown in units t0 = �/kBTc, while the mass unit and the length scale are defined as m0 = kBTc/c

2

and σ = �c/Tc = 1.16 fm. For the preliminary results presented below we used a cubic simulation box with
periodic boundary conditions. The number of particles was equal to N = Nq +Nq̄ +Ng = 40+40+40 = 120,
and the number of high-temperature factors (beads [19,20]), n = 20.

Fig. 1 Momentum-momentum autocorrelation functions

Fig. 2 Real and imaginary parts of the Fourier transform of the momentum-momentum autocorrelation function of Fig. 1.

At zero frequency the Fourier transform of autocorrelation function is proportional to the value of the diffusion
constant. Figs. 1 and 2 show also decaying oscillations of quasiparticles in maniparticle complexes existing at
this conditions. Figs. 2 present spectrum of dynamic oscillation of qusiparticles in many-particle clusters existing
at these conditions and allow to estimate the typical decaying time and typical frequencoes.
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6 Discussion

Experimental data on the quark-gluon plasma and the hadronization transition give rise to numerous challenges
to the theory, see, e.g. [3, 16] and references therein. Of particular interest is the question why the quark-gluon
matter behaves as an almost perfect fluid rather than as a perfect gas, as it could be expected from the asymptotic
freedom. Quantum Monte Carlo simulations [6] and quantum molecular dynamics based on the quasiparticle
picture with color Coulomb interactions help us to answer this question. Our simulation results indicate that the
ratio of the potential to kinetic energy is of the order of 1 . . . 3, depending on the temperature. This certainly
corresponds to a liquid-like rather than a gas-like behavior.

In Ref. [6] we have shown that the PIMC method captures main trends of the equation of state (even near
the critical temperature) and may also yield valuable insight into the internal structure of the QGP, in particu-
lar into the pair correlation functions. However, the PIMC method is not able to yield dynamical and transport
properties of the QGP. One way to achieve this is to develop semiclassical molecular dynamics simulations. In
contrast to previous MD simulations where quantum effects were included phenomenologically via a short range
potential [7] a more systematic approach has been developed for electron-ion plasmas [17–19] where an effec-
tive quantum pair potential has been derived from quantum Monte Carlo data which should also be possible in
application to the QGP. Here, instead we have developed another more rigorous approach to study the dynamical
and transport properties of strongly coupled quark gluon systems which is based on the Wigner formulation of
quantum dynamics and presented first results for the momentum-momentum autocorrelation functions.
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