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We present a quantum kinetic approach for the time-resolved description of many-effects in

photoionization processes in atoms. The method is based on the non-equilibrium Green functions

formalism and solves the Keldysh/Kadanoff–Baym equations in second Born approximation. An

approximation scheme is introduced and discussed, which provides a complete single-particle

description of the continuum, while the atom is treated fully correlated.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

With the development of ultrashort, high-harmonic generated
vacuum, and extreme ultraviolet (vuv/xuv) laser pulses the path
towards time-resolved observation of electronic dynamics in
plasmas [1,2], atoms and condensed matter has been paved, for an
overview see e.g. Ref. [3]. Recent experiments allow for the
investigation of electronic motion and relaxation processes on the
attosecond (as) time scale [4]. Using as pump-probe techniques by
combination of an intense femtosecond infrared (IR) and an
ultrashort attosecond xuv pulse it became possible to directly probe
electronic relaxation processes in multielectron atoms [5] and xuv-
induced electron shake-up processes in the time domain by means
of time-resolved strong field tunneling measurements [6].

Both experimental scenarios demand for a time-resolved
theory of photoionization (PI) in a many-framework. In previous
theoretical investigations, powerful tools have been used, such as
non-adiabatic tunneling theory and single-active electron
approaches by means of solving the time-dependent Schrödinger
equation [7,8]. In a recent paper, these processes were analytically
studied in detail [9]. However, all these approaches neglect the
electron–electron interaction, which may have non-negligible
effects, especially in the presence of strong laser fields [6].
A promising concept to address these question is multiconfigura-
tion Hartree–Fock, see e.g. Ref. [10]. In this work, we develop an
alternative time-dependent many-approach to atomic PI includ-
ing electronic correlations which is based on non-equilibrium
Green functions.
ll rights reserved.
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2. Theory

We aim at describing atomic systems which are initially in
equilibrium, i.e. ĤðtÞ � Ĥ0 for trt0, and are disturbed by a time-
dependent external potential for t4t0. The equilibrium hamilto-
nian of N electrons in the atom is given by (we use atomic units)

Ĥ0 ¼
XN

i¼1

�
r

2
i

2
þ vðriÞ

( )
þ

1

2

XN

iaj

wðri � rjÞ � mN̂ ; ð1Þ

where the potential of the nucleus, vðriÞ, as well as the two-
particle Coulomb interaction wðri � rjÞ ¼ jri � rjj

�1 are assumed to
be spin-independent. As we will work in the grand-canonical
ensemble, the chemical potential contribution (which appears in
the density operator) is subtracted for convenience (last term in
Eq. (1)). For times t4t0, the atom is disturbed by a time-
dependent external field, and the hamiltonian is modified as

ĤðtÞ ¼ Ĥ0 þ
XN

i¼1

vextðri; tÞ ¼
XN

i¼1

hðri; tÞ þ
1

2

XN

iaj

wðri � rjÞ � mN̂ : ð2Þ

With the last equation we defined the total single particle
hamiltonian, h ¼ h0 þ vext, which will be used below. In this
paper we consider the perturbation by an electromagnetic wave in
dipole approximation, i.e. the field is assumed homogeneous on
the scale of the atom, vextðr; tÞ ¼ �e EðtÞ � r. The electric field
envelope EðtÞ is assumed to have a Gaussian shape

EðtÞ ¼ E0cos½oðt � tmidÞ�exp �
ðt � tmidÞ

2

2t2

" #
; ð3Þ

with a pulse duration t.
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Fig. 1. The Schwinger/Keldysh contour C running from t0 to t, back to t0 and to

t0 � ib in the complex time plane. ‘‘þ’’ ð�Þmarks the (anti-)chronological real-time

branch and ðjÞ the imaginary branch.
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2.1. Contour Green functions

In the Keldysh/Kadanoff–Baym approach, the central quantity
is the one-particle nonequilibrium Green function G, which is the
time-ordered expectation value of the product of two field
operators:

Gð1;2Þ ¼ �i/TC½ĈHð1ÞĈ
y

Hð2Þ�S; ð4Þ

where the variable 1 ¼ ðr1;s1; t1Þ comprises position, spin projec-
tion and time, and the field operators are considered in
Heisenberg representation. In the following we denote
x1 ¼ ðr1;s1Þ. The ensemble average in Eq. (4) is performed in
the grand-canonical ensemble, i.e. with the trace over the
unperturbed grand canonical density operator Z�1e�bĤ 0. The
Green function is defined on the Schwinger/Keldysh time contour
C, see Fig. 1, which allows for an extension of the groundstate and
equilibrium formalism and the diagram technique, to non-
equilibrium [11], for an overview see Refs. [12,13]. The contour
runs from the initial time t0 to the current time t, back to t0 and,
finally to t0 � ib in the complex plane where b ¼ 1=kBT . The time-
ordering operator TC in Eq. (4) arranges operators with time
arguments ‘‘later’’ on the contour to the left. The propagation
along the complex branch corresponds to the Matsubara
formalism, in which the equilibrium density operator is
expressed by a time-evolution operator in complex time,
e�bĤ0 ¼ Û ðt0 � ib; t0Þ. With this, the Green function (4) takes the
explicit form

Gð1;2Þ ¼
TrfÛ ðt0 � ib; t0ÞTC½ĈHð1ÞĈ

y

Hð2Þ�g

TrfÛ ðt0 � ib; t0Þg
; ð5Þ

in which the time-arguments t1 and t2 each lie on one of the three
branches of the contour C. It is now convenient to introduce a set
of subordinated Green functions, which depend on the location of
the two time-arguments on the contour. Accordingly, the Green
function becomes a 3� 3 matrix,

Gc Go Ge

G4 Ga Ge

Gd Gd GM

0
B@

1
CA :¼

Gþþ Gþ� Gþj

G�þ G�� G�j

Gjþ Gj� Gjj

0
B@

1
CA; ð6Þ

where fþ ,-, jg mark the position of the respective time-
argument on the branches, where the left (right) symbol
corresponds to the first (second) time argument. For the
notation in the right part of Eq. (6), see Fig. 1. The notations in
the left part of Eq. (6) show the relation to the standard
definitions, where G_ denote the correlation functions with two
real-time arguments and Gd ½Ge� denotes the correlation function
in which the first [second] argument lies on the imaginary branch
and the second [first] on one of the real branches. Finally, GM

denotes the Matsubara (imaginary time) Green function of
equilibrium theory. The matrix notation allows one to eliminate
the time contour C and to consider, in the following, only
functions of real time arguments.

Of the four real-time functions fGc;Go;Ga;G4g, only two are
linearly independent, which is why we consider in the following
only the correlation functions Go and G4. The mixed Green
functions Gd and Ge account for the evolution of the initial
equilibrium state, which itself is determined by the Matsubara
Green function GM . As the equilibrium Green function only depends
on the difference of two complex time-arguments, we consider the
real function GMðx1;x2; t1 � t2Þ :¼ �iGðx1 � it1;x2 � it2Þ, which is
defined in the interval ½�b;b� and obeys the symmetry
GMðx1;x2; tÞ ¼ �GMðx1;x2; t� bÞ. It is, therefore, sufficient to
determine GM in the range ½�b;0�.

2.2. Keldysh/Kadanoff–Baym equations

To compute the time evolution of a multielectron atom, we
need to solve the equations of motion of the Green function G. The
equations for the Keldysh matrix function are the Keldysh/
Kadanoff–Baym equations (KKBE) defined on the contour C [14]

fi@t1
� hð1ÞgGð1;2Þ ¼ dCð1� 2Þ þ

Z
C

d3S½G�ð1;3ÞGð3;2Þ; ð7Þ

which is to be supplemented by the corresponding adjoint
equation. S½G� denotes the irreducible self-energy which is also
a 3� 3 matrix containing mean field (Hartree–Fock) and correla-
tion effects. We will discuss approximations to the self-energy in
Section 2.3.

The matrix equation (7) is equivalent to a coupled system of
equations for the subordinated Green functions which are derived
applying Langreth’s rules to the right hand side of Eq. (7), see e.g.
Ref. [12], and have the form (for compactness we suppress space
and spin variables)

f@t1
� h0gG

Mðt1 � t2Þ ¼ IMðt1 � t2Þ; ð8Þ

fi@t1
� hðt1ÞgG

4ðt1; t2Þ ¼ I4ðt1; t2Þ; ð9Þ

f�i@t2
� hðt2ÞgG

oðt1; t2Þ ¼ Ioðt1; t2Þ; ð10Þ

fi@t1
� hðt1ÞgG

eðt1; t2Þ ¼ Ieðt1; t2Þ; ð11Þ

f�i@t2
� hðt2ÞgG

dðt1; t2Þ ¼ Idðt1; t2Þ: ð12Þ

Complex time arguments are indicated by t and the system has to
be supplemented by the adjoint equations. The collision integrals
are given by (without loss of generality, from now on we use
t0 ¼ 0)

IMðt1 � t2Þ ¼ dðt1 � t2Þ þ

Z b

0
dt SM

ðt1 � tÞGMðt � t2Þ; ð13Þ

I4ðt1; t2Þ ¼

Z t1

0
dt ½SR

ðt1; tÞG
4ðt ; t2Þ þ S4

ðt1; tÞG
Aðt ; t2Þ�

�i

Z b

0
dt Seðt1; tÞGdðt; t2Þ; ð14Þ

Ioðt1; t2Þ ¼

Z t2

0
dt ½GRðt1; tÞSo

ðt ; t2Þ þ Goðt1; tÞSA
ðt ; t2Þ�

�i

Z b

0
dt Geðt1; tÞSdðt; t2Þ; ð15Þ

Ieðt1; t2Þ ¼

Z t2

t0

dt SR
ðt1; tÞG

eðt ; t2Þ

þ

Z b

0
dt Seðt1; tÞGMðt � t2Þ ð16Þ

and Idðt1; t2Þ ¼ Ieðt1; t2 þ bÞ. The last terms in Eqs. (14)–(16)
account for the evolution of initial correlations. To shorten the
notation, here we have introduced the retarded (R) and advanced
(A) Green functions which are defined according to
GR=Aðt1; t2Þ ¼7Y½7ðt1 � t2Þ�½G

4ðt1; t2Þ � Goðt1; t2Þ� and analo-
gously for the self-energies.
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Fig. 2. Used approximation for the self-energy, from left to right: Hartree and Fock

term, second Born, and second order exchange contributions.
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The equations of motion have to be supplemented by initial
conditions. In this paper we start from the correlated equilibrium
state of the electrons in the atom which is determined by the
Matsubara Green function GM—the solution of the equilibrium
Dyson equation, (8). For a convenient numerical treatment, it is
transformed into the integral form [15] (we use t ¼ t1 � t2):

GMðtÞ ¼ G0ðtÞ þ
Z

dt dt G0ðt� tÞ ~S½GM �ðt � t ÞGMðt Þ: ð17Þ

G0 is a reference Green function—in our case given by the
Hartree–Fock Green function—and ~SðtÞ ¼ SM

ðtÞ � dðtÞS0, where
S0 is the reference self-energy evaluated with G0. The boundary
conditions for the Dyson equation (17) are given by the
Kubo–Martin–Schwinger condition, GMðtÞ ¼ GMðt� ibÞ.

2.3. Self-energy approximations

The equations of motion for the Green functions are formally
exact if the self-energy would be known. Here we use a
conserving approximation [16] for S which includes Hartree–Fock
contributions and correlations in the second Born approximation
with exchange. The corresponding Feynman diagrams are shown
in Fig. 2 and correspond to the explicit expressions (defined on the
time contour)

SHF
ð1;2Þ ¼ iGð1;2Þwð1;2Þ � idCð1� 2Þ

Z
C

d3 wð1;3ÞGoð3;3Þ; ð18Þ

S2B
ð1;2Þ ¼ i2

Z
C

d3 d4 Gð1;3Þwð1;4ÞGð3;4ÞGð4;2Þwð3;2Þ

�i2

Z
C

d3 d4 Gð1;2Þwð1;3Þwð2;4ÞGð4;3ÞGð3;4Þ; ð19Þ

where we denoted wð1;2Þ � dCð1� 2Þwðr1 � r2Þ. Obviously, the
Hartree–Fock self-energy is time local.

The advantage of using the method of nonequilibrium Green
functions is that it provides a fully self-consistent approach to
electronic correlations in atoms in equilibrium and nonequili-
brium. Solving the KKBE with the above self-energies one obtains
the time evolution of a many-system, thereby fully preserving
momentum, angular momentum, and total energy. Furthermore,
due to the inclusion of memory effects (time integrations in the
collision terms) no restriction with respect to the times apply,
which is particularly important for ultrafast processes in optically
excited atoms. Finally, the electromagnetic field is included non-
perturbatively which allows to investigate the nonlinear dynamics
of atoms in the presence of a strong excitation.
3. Implementation

3.1. Basis representation

Despite their attractive properties mentioned above, the KKBE
(9)–(12) are very hard to solve numerically. Already for one-
dimensional systems, they constitute a set of four-dimensional
integro-differential equations (not counting spin degrees),
whereas for three-dimensional systems they are even eight-
dimensional. Without further approximations, this is far beyond
today’s numerical possibilities. A first way around this is to
expand all quantities in terms of suitable single-particle basis
functions ffkg with k ¼ 1;2; . . . ;Nb as was demonstrated in
Ref. [17]. For example, the Green function and, likewise any other
single-particle quantity, becomes an Nb � Nb dimensional matrix
with the elements (i; j ¼ 1; . . . ;Nb)

Gijðt1; t2Þ ¼

Z
dx1 dx2 f

�

i ðx1ÞGð1;2Þfjðx2Þ: ð20Þ

In the following we will use for ffkg a set of Nb orthonormal
Hartree–Fock orbitals constructed from atomic orbitals. The
expansion of the two-particle interaction term yields a tensor
with four indices, the two-electron integrals

wijkl ¼

Z
dx1 dx2 f

�

i ðx1Þfjðx1Þwðx1;x2Þf
�

kðx2Þflðx2Þ; ð21Þ

which are time-independent. The main advantage of the expan-
sion is that we have eliminated the coordinate dependencies. In
terms of the basis, all equations considered earlier become
equations for matrices depending on two time arguments.

So far, we have not explicitly specified the single-particle basis,
the results are completely general. Also, the treatment of systems
with different dimension is conceptually greatly simplified since it
requires nothing more than a respective set of electron integrals,
i.e. the matrix representation of the single-particle hamiltonian h0

and its parts hpot;hkin, the overlap matrix Oij ¼
R

dxf�i ðxÞfjðxÞ as
well as the electron repulsion integrals wijkl. Furthermore, for the
laser excitation the dipole matrix d ¼ �er is needed. Up to now,
we have implemented one-dimensional numerical orbitals, three-
dimensional numerical orbitals for central potentials, Slater type
orbitals for atoms, and Gaussian type orbitals for arbitrary
molecules. Within this work we will illustrate the method for a
one-dimensional model atom.

3.2. Solution procedure

We briefly outline the solution procedure. We follow the
techniques developed earlier, see e.g. Refs. [18,19,17] and refer-
ences therein, a detailed description of the algorithm is given in
Refs. [15,20].
1.
 A single-particle basis ffkg is chosen, and the one- and two-
electron integrals (21) are calculated.
2.
 This provides the input for a Roothaan–Hartree–Fock calcula-
tion [21] yielding the HF energies and orbitals.
3.
 The electron integrals are transformed to the HF basis [22], and
the reference Green function is set up on a uniform power
mesh, an adapted imaginary time-grid, as G0

ijðtÞ ¼ dijnie
�ðei�mÞt,

for t 2 ½�b;0�. ni is the occupation number of the HF-orbital i,
which is determined by the Fermi distribution.
4.
 The Dyson equation (8) is solved iteratively, until a self-
consistent solution for the correlated Matsubara Green func-
tion GM is found. Thus the equilibrium problem is solved.
5.
 The function GM determines the initial conditions of the time
propagation given by the KKBE (9)–(12) according to

G4ð0;0Þ ¼ iGM
ð0�Þ; ð22Þ

G4ð0;0Þ ¼ �i GMð�bÞ; ð23Þ

Geð0;�itÞ ¼ iGM
ð�tÞ; ð24Þ

Gdð�it;0Þ ¼ �iGM
ðt� bÞ: ð25Þ
6.
 The KKBE are rewritten in terms of the time-evolution operator
Uðt þ Dt; tÞ ¼ e�ihðtÞDt and are solved in the two-time plane by
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standard techniques for ordinary differential equations. We
have currently implemented a fourth-order Runge–Kutta
scheme [23]. Due to the symmetry G_ðt1; t2Þ ¼ ½G

_ðt2; t1Þ�
y

and the boundary condition G4ðt; tÞ ¼ Goðt; tÞ � i, it is suffi-
cient to propagate the lesser Green function in the upper
triangle t1Zt2 of the real-time plane and the greater Green
function in the lower triangle t1ot2. The mixed Green
functions are both propagated in the whole real-complex
time-plane, though, in the long-time limit the initial correla-
tions decay.

4. Simulation results

4.1. One-dimensional model atom

To examine the presented formalism, we consider a one-
dimensional model atom defined by a regularized Coulomb
potential, vðxÞ ¼ �Zðx2 þ k2

�Þ
�1=2, where Z is the atomic number.

The screening parameter k� is introduced to avoid the computa-
tional difficulties arising from the singularity at the origin.
Likewise, the two-particle interaction is modified according to
wðx1; x2Þ ¼ ½ðx1 � x2Þ

2
þ k2

þ�
�1=2. This model has been used suc-

cessfully in many studies of atom–laser interaction where also the
influence of the choice of the screening parameters has been
investigated. Here we follow Ref. [24] and use k� ¼ kþ ¼ 1.

We illustrate the method by considering beryllium (N ¼ Z ¼ 4).
A sketch of the confinement and the HF basis functions shifted by
the orbital energies is shown in Fig. 4(a). As can be seen, there are
two bound states at the energies E0 ¼ �1:371 and E1 ¼ �0:312,
each occupied by two electrons. In Fig. 4(b) the density of states
(DOS) is plotted, which is obtained by a modeling the continuum
by a box of width 200 a.u. and after convolution of the delta-peaks
with a Gaussian of FWHM ¼ 0:02. It shows the typical 1=

ffiffiffi
E
p

-
decay.

4.2. Ground state properties

Results for the ground state energies computed in HF and
second Born approximation are presented in Table 1 and
compared to an exact diagonalization (CI) calculation. For the
present comparison it is sufficient to consider a CI calculation
using a basis of size Nb ¼ 15 which is performed sufficiently fast.
For the solution of the Dyson equation, a maximum number of
Nb ¼ 80 basis functions has been used. Together with the scaling
properties, which are barely affected by the particle number but
mostly by the number of basis functions, we are able to go far
beyond the region accessible by sophisticated (full) CI methods
[25]. To obtain the ground state within the finite temperature
formalism, an inverse temperature of b ¼ 100 is used.

As can be seen, already the HF energies are close to the CI
results. The inclusion of correlations on the second Born level
yields a further improvement, accounting for 69% of the correla-
tion energy. This confirms the trend observed for the ground
states of real atoms [20]. In this reference, it is also demonstrated
how to obtain the ionization energies from the Green function
Table 1
Ground state energies of the 1D Be model atom obtained from Hartree–Fock,

second Born and configuration interaction calculations using different basis

dimensions Nb.

Nb HF 2ndBorn CI

15 �6.7390 �6.7694 �6.7831

30 �6.7393 �6.7706

80 �6.7395 �6.7710
using the extended Koopmans theorem. A corresponding calcula-
tion for the one-dimensional beryllium model yields a first
ionization energy of Ip ¼ 0:303, which should be compared to
the Hartree–Fock ionization potential from the (conventional)
Koopmans theorem, Ip ¼ 0:312, which is known to overestimate
the ionization energy.

4.3. Time-dependent ionization dynamics following a short uv pulse

Let us now consider the perturbation of the atom by different
electromagnetic pulses. We use a Gaussian pulse (3) with a fixed
number of cycles (t ¼ 10p=o) and an amplitude E0 ¼ 0:1. We
consider three frequencies: o1 ¼ jE1j=2, o2 ¼ ðjE0j þ jE1jÞ=2 and
o3 ¼ 1:2 � jE0j. A classification of the different laser pulses is given
by the Keldysh parameter [26] g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ip=2Up

p
, where Ip is the

ionization potential, and the ponderomotive potential is given by
Up ¼ E2

0=4o2. The system is propagated to T ¼ 200 in
Hartree–Fock approximation with Nb ¼ 100 HF basis functions.
Fig. 3 shows the time-dependent results for the level populations
during the pulse, as well as the time-dependent expectation
values of the electron coordinate /xS. In the upper pictures
(o1 ¼ jE1j=2 ¼ 0:156) the frequency is too small to allow for PI of
an electron. Nevertheless, strong ionization of the upper electrons
is observed which is due to tunnel ionization (g1 ¼ 1:25). The
expectation value of the electron position, Fig. 3(b), confirms this
interpretation. For the frequency o2 ¼ 0:842 PI of the upper
electrons and, for the case o3 ¼ 1:645, direct PI of electrons from
both levels is possible. In these cases, the Keldysh parameters
belonging to the second orbital is g2 ¼ 6:7 and g3 ¼ 13,
respectively, thus tunneling is not relevant, but multiphoton
ionization occurs.

We have also performed various correlated simulations of the
PI dynamics using the second Born approximation for the self-
energy. However, they require a propagation of the Greens
functions in the full two-time plane by solving the KKBE, making
the calculation computationally very costly. The upper row of
Fig. 3 also contains correlated results for the dynamics up to
t ¼ 25. During the initial phase the deviations form TDHF are still
small.
5. Approximate treatment of continuum states

The main restriction in the time-dependent description of PI
on the level of the Born approximation is the very large CPU time
and memory requirement, the result shown in Fig. 3 was obtained
using 300 time steps with Nb ¼ 20 basis functions. The calcula-
tions took 48 h on a single CPU and required 4 GB of main
memory. For the first part—the equilibrium calculations—the
basis representation saves a lot of numerical effort compared to a
solution in coordinate representation. HF orbitals turn out to
provide an efficient basis also for the correlated equilibrium Green
function, allowing to restrict the basis to a dimension of the order
Nbr100 since normally only the lowest orbitals give the
dominant occupation. In nonequilibrium, however, it is generally
not possible to truncate the basis since, in principal, every orbital
can be occupied during the excitation process. In particular, PI will
lead to occupation of continuum states, and at high intensities,
the electron energies may become very large [27]. Obviously, a
fully correlated description of the whole continuum is prohibitive.
At the same time, an electron ‘‘born’’ in the continuum with large
kinetic energy will be only very slightly disturbed by correlations
with the other electrons. This naturally suggests to develop an
approximation scheme which is based on a sub-division of the
basis into low and high lying orbitals which are treated with
different levels of accuracy with respect to many-effects. As a
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Fig. 3. Dynamics of the system induced by three different pulses with electric field strength E ¼ 0:1 and three different frequencies in Hartree–Fock (HF) and second Born

(2B) approximation. For HF a basis of dimension Nb ¼ 100 was used. For 2B Nb ¼ 20 and the system was propagated up to T ¼ 25 a.u. (a) Time-dependent occupation

numbers of the occupied Hartree–Fock orbitals, the upper (lower) curve refers to the first (second) orbital. (b) Time-dependent expectation value of position. The insets in

the upper plots show the comparison between HF and 2B more in detail.
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result we may hope that the ionization dynamics of the atom can
be resolved sufficiently well, both in energy and in time, including
electronic correlations with the required accuracy.

Our ansatz is the following: We divide the basis ffkg in three
sub-systems, Nb ¼ Ncorr þ NHF þ Nid. The first sub-system contains
the Ncorr energetically lowest orbitals (for example the lowest
atomic bound states) and is treated fully correlated. The second
contains a number of NHF low lying continuum orbitals which are
treated in Hartree–Fock approximation whereas the third of
dimension Nid is treated without any particle–particle interaction.
In all three sub-systems the single-particle contributions, such as
the external electromagnetic field are included exactly, thus fully
taking into account non-linear effects. For a given Nb, the sub-
division of the basis and the numbers Ncorr;NHF of functions in the
basis parts are arbitrary and can be adapted to the considered
atom and excitation conditions.

Let us now introduce this sub-division into the nonequilibrium
Green functions scheme. All Green functions (all Keldysh
components) and the single particle hamiltonian now become 3�
3 matrices,

G ¼

G11 G12 G13

G21 G22 G23

G31 G32 G33

0
B@

1
CA; ð26Þ

h ¼

h11 h12 h13

h21 h22 h23

h31 h32 h33

0
B@

1
CA: ð27Þ

The self-energy which, in the following, is separated into a time-
diagonal Hartree–Fock and a two-time correlation part, is
intrinsically of the same structure. Following the idea of our
approach, approximations will be introduced by systematically
neglecting certain blocks of the self-energy matrix:

RHF
¼

RHF
11 RHF

12 0

RHF
21 RHF

22 0

0 0 0

0
B@

1
CA; ð28Þ

Rcorr
¼

Rcorr 0 0

0 0 0

0 0 0

0
B@

1
CA; ð29Þ

where S0 denotes the HF self-energy evaluated with uncorrelated
Greens functions. With this, the KKBE attain the form

fi@t1
� hðt1ÞgGðt1; t2Þ

¼ dCð1� 2Þ þ

Z
C

dt3

RcorrG11 RcorrG12 RcorrG13

0 0 0

0 0 0

0
B@

1
CA

2
64

3
75ðt1; t2Þ;

ð30Þ

where the HF self-energy has been included in the mean-field
hamiltonian hðt1Þ :¼ hðt1Þ þ RHF

ðt1Þ on the l.h.s. With these
notations, G11 contains the Green functions of electrons occupying
atomic bound states or undergoing transitions between low lying
bound states whereas the information about ionization processes
is contained in G12 and G13. Electrons in the continuum are
described by G22 and G33. This model is closely related to the Bloch
equations of atomic physics or their generalizations to semicon-
ductor optics, for a formulation using nonequilibrium Green
functions, see e.g. Refs. [12,28]. A similar scheme has recently
been reported in Refs. [29,30], where it was applied to quantum
transport.

If the ionization is weak, as is normally the case with an (x)uv
pulse produced from an optical laser via high harmonics, the
ionization components G12 and G13 will be much smaller than
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contributions from occupied orbitals in G11. We then may expect
that correlation effects in G12 and G13 play a minor role. This
allows us to further simplify the model by setting
RcorrG12 � RcorrG13 � 0 in the right hand side of Eq. (30). This,
obviously, becomes questionable in the case of intense fields, such
as optical or IR probe beams etc., but this question is beyond the
scope of this work and will be considered in a forthcoming
analysis. With this approximation, only the Green function of
system (1) has to be considered correlated and only G11 has to be
evolved on the full two-time plane whereas the other Green
functions are completely determined by the information on the
time-diagonal.

With these approximations we can write down the final
system of equations to be solved as

i@t1
G11ðt1; t2Þ �

X3

j¼1

h1jðt1ÞGj1ðt1; t2Þ

¼ dCðt1; t2Þ �

Z
C

dt3R
corr
ðt1; t3ÞG11ðt3; t2Þ; ð31Þ

i@t1
Gikðt1; t2Þ �

X3

j¼1

h ijðt1ÞGjkðt1; t2Þ ¼ dCðt1; t2Þ

for ði; kÞ 2 fð1;2Þ; ð2;1Þ; ð2;2Þg; ð32Þ

i@t1
Gikðt1; t2Þ �

X3

j¼1

hijðt1ÞGjkðt1; t2Þ ¼ dCðt1; t2Þ for i or k ¼ 3: ð33Þ

We give some further information on the performance of the
approximation. The limiting factor in the formalism is the number
of basis functions. Based on our first tests [31] we expect that our
scheme is capable to treat correlated sub-systems of a size of the
order of Ncorr ¼ 50. This is sufficient to describe the none-
quilibrium ionization dynamics of many atoms and small
molecules. The size of the Hartree–Fock sub-system can be
substantially larger since it depends only on a single time-
argument. There the limiting factor is the computational effort of
the two-electron integrals, which grows as O½ðNHFÞ

4
�. Finally, the

size of the ideal sub-system can, in principle, be chosen nearly as
large as in standard solutions of the single-particle time-
dependent Schrödinger equation.
Fig. 4. (a) Schematic view of the 1D model beryllium atom. Shown is the square of th

density. (b) Density of states (DOS) for Nb ¼ 100 Hartree–Fock basis functions obtained

HF basis functions and additional 200 ideal basis function to better resolve the continu
Here, we present the first equilibrium results of our approx-
imation scheme. One example is seen in Fig. 4b. where, in addition
to the DOS calculated for a pure HF basis with NHF ¼ 100, we
include the results for a basis supplemented by Nid ¼ 200 ideal
basis functions (Ncorr ¼ 0). The figure shows that this allows us to
extend the basis to significantly higher energies and better resolve
the continuum. This opens the way to investigate significantly
higher excitations than before, which is particularly important for
PI with (x)uv photons or for multiphoton ionization processes. The
second example is shown in Fig. 5 where we compute the ground
state energy of the model atom for varying basis subdivisions,
Ncorr and NHF at fixed total basis size Ncorr þ NHF

¼ Nb ¼ 15 (for
simplicity, Nid ¼ 0). The results are compared with independent
solutions of the Dyson equation and CI calculations for different
basis sizes Nb without applying the approximation scheme. While
the full calculations show fast convergence, with increasing Nb,
the approximation scheme practically remains at the HF level for
Ncorrr10. Only for Ncorr410 the results become better than the
HF ones and eventually approach the correlated values. This
behavior is not a property of the second Born approximation but is
also observed in the CI calculations.

This slow convergence is unexpected, since one would
anticipate a larger HF basis to be more adequate in describing
correlation effects. To analyze the reasons of this behavior we
show in Fig. 5(b) and (c) the DOS for two HF basis dimensions
NHF ¼ 10 and NHF ¼ 15, respectively. As one can see, the larger
basis causes an upshift of the two highest peaks of the DOS and a
strong increase of the central peak around E ¼ 0. While this has
only little effect on the HF ground state energy it strongly
influences the convergence behavior of our approximation
scheme. For illustration, in Fig. 5(c) we also show the DOS for a
calculation with Ncorr ¼ 10 and NHF ¼ 5 (dark area) which is close
to the DOS for a pure HF calculation with NHF ¼ 15. Only when
Ncorr is so large that the correlated orbitals extend beyond the high
peak is the approximation scheme approaching the correlated
calculation. We are presently investigating how to avoid this
unwanted behavior of our scheme in order to achieve a faster
convergence. This will also be the basis for extending this
approximation scheme to nonequilibrium calculations of PI
processes.
e lowest two doubly occupied Hartree–Fock orbitals (HFO) and the ground state

after convolution with a Gaussian of FWHM ¼ 0:02. Gray curve is the result for 100

um, see Section 5.
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Fig. 5. (a) Ground state energies obtained with the approximation scheme (open symbols), full HF (crosses), full CI (filled squares), and full second Born calculations (filled

triangles) versus basis size. For the full calculations the abscissa indicates the number of basis functions. For the approximation scheme the abscissa denotes the number

Ncorr of correlated orbitals, which are extracted from a Hartree–Fock calculation with Nb ¼ 15. (b) DOS for a HF calculation with 10 basis functions. (c) DOS for a HF

calculation with 15 basis function (light gray) and the approximation scheme using Ncorr ¼ 10 and NHF ¼ 5. Dark area show the DOS corresponding to the correlated

orbitals.
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6. Conclusion and outlook

In this paper we applied the nonequilibrium Green functions
approach to atomic photoionization. Due to the large basis size
needed for the description of the continuum, which make fully
correlated calculations unfeasible, we have derived an approxima-
tion scheme. Starting from the exact Keldysh/Kadanoff–Baym
equations for the correlation functions we neglected certain matrix
elements in the basis representation and obtained a scheme which
is expected to be efficient for application to atoms. The idea is to
restrict the computationally costly evaluation of the correlation
self-energy to a subset of the single-particle basis. Thereby only the
lowest lying bound states are treated fully correlated, while the
continuum is approximated by Hartree–Fock and ideal basis
functions. We have performed the first tests on the 1D-beryllium
model atom which provide a framework for further investigations.
Further optimization of the basis subdivision towards improved
convergence and application to nonequilibrium photoionization
dynamics will be presented in a forthcoming work.
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[30] P. Myöhänen, A. Stan, G. Stefanucci, R. van Leeuwen, Europhys. Lett. 84 (2008)

67001.
[31] D. Hochstuhl, Nonequilibrium Greens function approach to ionization

processes, Diploma Thesis, University of Kiel, 2008.


	Nonequilibrium Green function approach to photoionization processes in atoms
	Introduction
	Theory
	Contour Green functions
	Keldysh/Kadanoff-Baym equations
	Self-energy approximations

	Implementation
	Basis representation
	Solution procedure

	Simulation results
	One-dimensional model atom
	Ground state properties
	Time-dependent ionization dynamics following a short uv pulse

	Approximate treatment of continuum states
	Conclusion and outlook
	Acknowledgments
	References




