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Systems consisting of cold interacting bosons show interesting collective phenomena such as

Bose–Einstein condensation or superfluidity and are currently studied in condensed matter and atomic

physics. Of particular interest are nonideal bosons which exhibit strong correlation and spatial

localisation effects. Here we analyse the ground-state of a two-dimensional Bose system with a

Hartree–Fock type approximation that was first introduced by Romanovsky et al. [Phys. Rev. Lett. 93

(2004) 230405]. We apply this method to a one-dimensional system of charged bosons and analyse the

behaviour at strong coupling.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

With the first experimental realisation of a Bose–Einstein
condensate in 1995 [1], the theory of ultracold bosonic systems
became a field of exceptional interest. In the first experiments, the
atoms were weakly interacting, and for such systems the
Gross–Pitaevskii (GP) mean field approximation is an adequate
approach for the analysis of the condensate [2]. However, recent
experiments succeeded in strongly increasing the interaction
strengths of the investigated atomic systems [3]. With this tuning
of the coupling, it was possible, to produce a phase transition from
the superfluid to the Mott insulator phase [4]. Also, for charged
bosons in traps crystallisation and inhomogeneous distribution of
the superfluid density has been predicted [5]. For a theoretical
description of these effects an approximation beyond GP is
required [6–8]. In this paper we analyse an approximation method
for bosonic systems which is based on a Hartree–Fock type
factorisation and is expected to be valid for a wide range of
interaction strengths.

In the many-body theory, Hartree–Fock is a standard method
to analyse systems of few to many fermions. The related equations
can be derived in several different ways. One is obtained by
expanding the reduced two-particle density matrix in terms of
one-particle density matrices in order to obtain an effective
single-particle Hamiltonian. The resulting solutions to this
approach are many-particle states consisting of one single anti-
symmetrised product-state. Another common way proceeds in the
opposite direction by the assumption, that the many-particle state
is given by a single anti-symmetrised product state (Slater
ll rights reserved.

itz).
determinant). By applying the Ritz principle to this Ansatz, one
obtains the Hartree–Fock equations.

In contrast to Fermi systems, for bosonic particles the two
approaches lead to different systems of equations. Even the
Ansatz assuming a single Slater permanent can be implemented
in various ways differing in the choice of supplementary
conditions [6,7].

The best known approximation for an ultracold nonideal dilute
Bose gas is the Gross–Pitaevskii approximation in which it is
assumed that all particles remain in the same one-particle orbital.
Thus the GP equation describes only the condensate fraction of
the system without any interaction with the remaining gas. By
definition the GP approximation cannot describe phenomena such
as condensate depletion and fragmentation or Mott-insulator
phase transitions of cold atomic gases on a lattice. The results
become even worse if the interactions increase or if systems with
small particle numbers are considered. As we will see later, this
approximation cannot describe a number of fundamental proper-
ties, such as the localisation of the particles at high coupling
strengths.

Another common numerical method to deal with interacting
systems is the configuration interaction (CI) in which no
approximation, except the limitation of the chosen basis set,
is made, e.g. [9]. With nowadays computers and highly
optimised programs CI can be applied to systems with up to
10 particles.

In this paper we want to analyse an approximation with
substantially less numerical effort than CI, that provides high
quality numerical results for strongly correlated bosons in traps.
This approximation, the unrestricted bosonic Hartree–Fock meth-
od (UBHF), was first introduced by Romanovsky et al. [10,7,11] and
is less restricted than the related Ansatz proposed by Cederbaum
[6]. While Romanovsky et al. used an explicit analytical Ansatz for
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the single-particle orbitals (displaced Gaussians) we develop a
completely general scheme without any such restriction. This has
the advantage that our method is applicable to any interacting
Bose system.

Furthermore, our goal is to compare the UBHF results with CI
results to obtain a quantitative conclusion about the accuracy of
this method. To this end we perform UBHF and CI calculations for
N ¼ 2; . . . ;6 particles in a harmonic trap using the same basis sets
for both cases. Our comparisons concentrates on systems with a
coupling parameter in the range from 0 to 5 and shows the
excellent quality of this approximation.
2. Unrestricted bosonic Hartree–Fock Ansatz

The UBHF method is derived from the following Ansatz for the
many-particle state:

jFS ¼ j12 . . .NS :¼
1ffiffiffiffiffi
N!
p

X
p2SN

#
N

s¼1
jpðsÞS; ð1Þ

which means that every particle remains in a certain orbital and
the underlying many-particle state is a symmetrised product-
state. Depending on the imposed additional restrictions, this
Ansatz contains, as limiting cases, well-known approximations. In
particular, the GP approximation is obtained by the additional
restriction, that all orbitals are identical [8], thus the many-
particle state is assumed to be totally Bose condensed. A more
general approximation would be obtained by the assumption that
two orbitals are either equal or orthogonal to each other. This kind
of Ansatz has been introduced and analysed extensively by
Cederbaum et al. [6,12–14].

In contrast, the UBHF approximation is the most general case
of this Ansatz where no further restriction to the underlying one-
particle orbitals j1S; . . . ; jNS is imposed. We only require the
many-particle state to be normalised, so the total energy is given
by

E ¼ /FjĤjFS: ð2Þ

Thus minimising E leads to the functional

Eðj1S; . . . ; jNS;EÞ ¼ /FjĤjFS�Eð/FjFS� 1Þ; ð3Þ

where E is a Lagrange multiplier for the normalisation of jFS.
The needed equations to determine the one-particle orbitals are
obtained by applying the Ritz principle to this Ansatz via the
searched orbitals. This Ansatz has been proposed and imple-
mented for the first time by Romanovsky et al. [11,10], however,
they used the additional assumption that every orbital is a
displaced Gaussian. In the present paper, this restriction will be
dropped.

The expectation value of the energy of a normalised single
permanent many particle state with interacting particles is given
by [15]

/FjĤjFS ¼
1ffiffiffiffiffi
N!
p

X
p2SN

XN

l¼1

Y
sal

/sjpðsÞS/ljĥjpðlÞS
 

þ
1

2

X
kal

Y
sak;l

/sjpðsÞSwkl;pðkÞ pðlÞ

!
: ð4Þ

The norm of such a product state is proportional to the permanent
of the Gramian matrix of the orbitals j1S; . . . ; jNS:

JFJ2
¼

1ffiffiffiffiffi
N!
p

X
p2SN

YN
s¼1

/sjpðsÞS: ð5Þ

It is advantageous to stay in the abstract representation of the
orbitals to perform the variational derivative. By applying the
rules given in Appendix A one obtains the following equation, by
differentiating Eq. (3):

X
p2SN

PnĥjpðnÞSþ
X
lan

PnlljĥjpðlÞjpðnÞSþ
X
lan

Pnl Ĵ lpðlÞjpðnÞS
(

þ
1

2

X
k;lan
kal

Pnlkwkl;pðkÞpðlÞjpðnÞS

9=
; ¼ E

X
p2SN

PnjpðnÞS for all n; ð6Þ

where we introduced the subscripted entity with a variational
number of subscripts

Pi1 ...in ¼ PðpÞi1 ...in ¼
Y

sai1 ...in

/sjpðsÞS ð7Þ

and the doubly subscripted Hartree operator

Ĵ ij ¼

Z
dx dyj�i ðxÞwðx; yÞjjðxÞjyS/yj: ð8Þ

By multiplying Eq. (6) from the right with /nj, one obtains a
closed expression for the Lagrange multiplier

E ¼
/FjĤjFS
/FjFS

; ð9Þ

i.e. E is the total energy of the system. The key equation (6) can be
solved with a multidimensional minimisation routine without
making any assumption on the explicit analytical form of the
orbitals.
3. Numerical results

We applied the UBHF approximation to few interacting bosons
in a one-dimensional harmonic trap described by the Hamiltonian

Ĥ ¼
X

i

1

2
x2

i �
@2

@x2
i

 !
þ
X
ioj

lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ

2
þ k2

q ; ð10Þ

which has been made dimensionless by using standard oscillator
length and energy scales: the spatial variable x is given in
oscillator units x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ =mo

p
, and l is the ratio of the Coulomb

and confinement energy

l ¼
q2

4pex0‘o
: ð11Þ

Thus l ¼ 0 corresponds to an ideal system. The shielding
parameter k is needed in 1D to make the two-particle integrals
convergent. For the limit k�!0 the system becomes fermionised
[16]. For all calculations in this paper, we choose k ¼ 0:1. As basis
for the single-particle orbitals we chose the eigenfunctions of the
ideal system with a total number of basis states of nb ¼ 15. We
will compare the results with the exact solution obtained with CI
[9]. The CI calculations are done in exactly the same basis, thus
the differences in the results arise exclusively from the UBHF
Ansatz.

3.1. Total energy

In Fig. 1 the energies obtained by both methods are compared.
Interestingly, the difference between the exact method and the
UBHF approximation becomes a constant shift for high interaction
values, l\2. This shift still depends on the considered particle
numbers N. As one can see in Fig. 1, the shift grows with N. Note
that for GP the energy diverges rapidly from the exact result
already for l40:5. Thus Fig. 1 is a convincing evidence for the
good quality of the UBHF approximation.
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Fig. 1. Comparison of the energies obtained with UBHF, GP and CI for different

coupling parameters l and for 2–4 particles.
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Fig. 2. Particle density of a system with N ¼ 2 and l ¼ 0:9 for the three different

approximation methods. The two orbitals obtained with UBHF are also given.
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Fig. 3. Same as Fig. 2, but for l ¼ 1:5.
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Fig. 4. Connection of the obtained orbitals (upper two figures) and the resulting

total particle density of a system with N ¼ 6 particles and l ¼ 0:5 and 1.0.

M. Heimsoth, M. Bonitz / Physica E 42 (2010) 420–424422
3.2. Localisation of the orbitals for lb1

The UBHF approximation scheme offers the possibility to
analyse the delocalisation of the interacting particles in a special
way. As can be seen in Figs. 2–4, the overlap of the orbitals
vanishes with increasing l. It is crucial to notice that the density
from UBHF shows a localisation of the particles which, by
definition, is missing in the GP model. Finally, the other two
curves in Figs. 2 and 3 which resemble Gaussians are the two
orbitals obtained by UBHF. It is interesting to see that the
localisation of the particles emerges already in each of the
orbitals. This can be understood as a precursor of the classical
strongly correlated limit of the system where the particles form a
fully localised crystal-like arrangement [17,18].

This trend is typical for the present system of Coulomb
interacting trapped bosons. As another example, in Fig. 4 we
show the density of six bosons for two values of the coupling
parameter. Again, with increasing l the overlap of the orbitals
decreases and the system, as a whole expands.
3.3. Delocalisation and nonorthogonality of the orbitals for small l

There are several possibilities to analyse the overlap of orbitals
in a quantitative way. One that works for all particle numbers is to
consider the Gramian determinant of the given set of orbitals

Gðj1S; . . . ; jNSÞ ¼
X
p2SN

signðpÞ
YN
s¼1

/sjpðsÞS

¼

/1j1S /1j2S . . . /1jNS

/2j1S /2j2S . . . /2jNS

^ ^ & ^

/Nj1S /Nj2S . . . /NjNS

���������

���������
: ð12Þ

This entity is always positive and approaches the value 1, if the
orbitals form an orthonormal set (this is most easily seen for the
case of two orbitals). Geometrically, the Gramian determinant is
the square of the volume of the parallelepiped spanned by the
vectors j1S; . . . ; jNS [21]. In Fig. 5 the l-dependency of G is shown.
Obviously, in the limit of large l the orbitals become pairwise
orthogonal. With increasing particle number this limit is reached
for larger values of the coupling parameter.
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Let us now consider the opposite limit of small coupling. As
Fig. 5 shows, for all N, the determinant G monotonically decreases
when l is reduced. Since G is a determinant it is obvious that it
vanishes, if one or more orbitals are collinear. In the present case,
also the opposite is true: vanishing of G is an indication of the
orbitals becoming collinear. This is observed for l-0. Due to the
symmetry of the system not only two orbitals but all orbitals are
becoming collinear, i.e. they are identical. But this is just the limit
of an ideal Bose gas where we expect that all particles Bose
condense in the ground state. It is a remarkable property of the
present UBHF Ansatz which does not impose any restrictions on
the orbitals that it yields the correct BEC limit of identical
Hartree–Fock orbitals for all particles.
4. Discussion

In this paper we have studied a Hartree–Fock approximation
for interacting bosons in a trap which has proposed by
Romanovsky et al. In contrast to their work we have not used
any assumption on the explicit form of the orbitals but obtained
them self-consistently. We have tested the UBHF scheme in detail
by comparing the resulting energies and densities with the ones
obtained with CI. Due to the identical choice of the basis set for
both approximations, the differences in the results arise exclu-
sively due to the approximation made in UBHF. The comparison
shows that this is a very accurate model. In contrast, it is
confirmed that the GP approximation is not applicable to nonideal
charged bosons in traps when the dimensionless interaction
strengths l exceeds 0.5. For its resulting energies are substantially
higher than the exact ones and it cannot reproduce important
qualitative features of the system such as the localisation of the
total particle density. In the limit of vanishing l the UBHF
approximation yields single particle orbitals which are colli-
near—in other words, we automatically recover the GP model.

We mention that the computer time required to solve Eq. (6),
within our current implementation, has an unfavourable depen-
dence on the particle number N scaling as N � N!. This arises from
performing the sum over all permutations in Eq. (6). However, it is
possible to reduce the calculation of the entities that turn up in
this equation to the calculation of permanents. By using the Ryser
algorithm, the N-dependency of the complexity becomes of order
N � 2N [19]. This is still a rapidly growing calculation time, but it is
much better than the first version. The calculation time also
depends on the size of the chosen basis set nb. For both
implementations it is of order n4
b. This arises from the calculation

of the two-particle-integrals in each step [20].
Presently we are working on further optimising the implementa-

tion of this Ansatz in order to extend it to systems with higher
particle numbers and higher dimensions. Furthermore, the devel-
opment of an extension to the time dependent regime is in progress.
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Appendix A. Variational differentiation of abstract Hilbert
space vectors

In order to obtain the key equations for the UBHF approximation,
one has to perform a variational derivative with respect to all N

orbitals. In this appendix we derive some differentiation rules that
are needed to deduce Eq. (6). In the following the wavefunction of the
n-th orbital will be denoted jnðxÞ. Let us now consider the variational
derivative of the matrix element of an arbitrary operator Ô:

d
dj�nðxÞ

/ijÔjjS ¼
d

dj�nðxÞ

Z
j�i ðzÞOðx; yÞjjðyÞdxdy

¼ din

Z
Oðx; yÞjjðyÞdy ¼ din/xjÔjjS

¼ /xj
d

d/nj
/ijÔjjS

� �
; ðA:1Þ

where the latter transformation can be regarded as the definition
of the derivative with respect to an abstract Hilbert space vector:

d
d/nj

/ijÔjjS :¼ dinÔjjS: ðA:2Þ

To verify that this definition makes sense we consider the same

derivative but in an arbitrary representation. Therefore, we
differentiate the given matrix element with respect to c�ng—the
g-th expansion coefficient of the n-th orbital

@

@c�ng
/jijÔjjjS ¼

@

@c�ng

X
ab

c�iaOabcjb ¼
X
ab

@c�ia
@c�ng|{z}
¼dindag

Oabcjb

¼ din

X
b

Ogbcjb ¼ din/gjÔjjS

¼ /gj d
d/nj

/ijÔjjS
� �

: ðA:3Þ

For the differentiation of the two-particle integrals, we can use the
same ideas to derive the following equation:

d
d/nj

ðijjŵjklÞ ¼ din Ĵ jljkSþ djn Ĵ ikjlS ¼ dinK̂ jkjlSþ djnK̂ iljkS: ðA:4Þ

Thus we have some freedom to define the remaining operator. The
first one that appears in this equation is defined in Eq. (8) whereas
the exchange operator K̂ jk is given by

K̂ jk ¼

Z
dx dyj�j ðxÞwðx; yÞjkðyÞjyS/xj: ðA:5Þ

With these rules for the functional derivative of matrix elements,
together with the product rule,

d
d/nj

ðF1½. . . ;/nj; . . .� � F2½. . . ;/nj; . . .�Þ

¼
dF1

d/nj

� �
� F2 þ F1 �

dF2

d/nj

� �
; ðA:6Þ

one derives Eq. (6) by differentiating the functional (3).
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