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Abstract

A nonperturbative kinetic description of interband tunneling under the action
of a strong electric field (dynamical analogue of the Zener effect) is presented. The
developed approach is based on the similarity to the Sauter-Schwinger effect and its
dynamical analogue in QED. The kinetic equation for electron-hole quasiparticle
excitations is derived on a dynamical basis in the framework of the oscillator rep-
resentation. Numerical estimates are made for some simple cases of external fields.
Detailed comparisons with the method based on the Bloch equations for electron-
hole systems interacting with a time dependent electric field are performed. The
proposed approach is an alternative to the Bloch theory and does not use the dipole
approximation. This leads to predictions which differ from the ones based on the
Bloch equations, in particular, concerning the frequency dependence of the absorp-
tion coefficient.

1 Introduction
Field ionization of atoms and molecules and inter-band transitions in solid state sys-

tems were considered initially as a peculiar tunnel effect [1]. The next important step was
done by Keldysh [2], who showed that a more general approach exists, where the tun-
neling mechanism is realized only in the asymptotic domain of γ ¿ 1 (corresponding to
a high electric field strength E0 and low characteristic frequency ν) where the adiabatic
parameter (Keldysh parameter) is defined as

γ =
ν
√

m∆
|e|E0

. (1)

Here, ∆ is the energy gap in case of a semiconductor (replacing the binding energy in an
atomic system), and m is the effective mass of the carriers. The other asymptotic domain
γ À 1 (rather small field strength and high frequency) corresponds to multi-photon
transitions. In the intermediate region both mechanisms are active. In the following
years, Keldysh’s approach was developed intensively in several different directions, we
mention the Perelomov-Popov-Terentiev model (see review [3]), the Keldysh-Faisal-Reiss
approximation [4], the strong field approximation [5] and so on. The general feature of
these approaches is the employment of a nonperturbative energy spectrum of the system
(atom, molecule or crystal) with a treatment of the interaction with an electromagnetic
field in the dipole approximation on the basis of given electron Bloch wave functions, see
e.g. [16, 17]. That leads to the necessity of introduction of various kinds of corrections in
the basic structure of the theory (e.g. the dynamic Stark effect).
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On the other hand, at the same time, the tunneling theory of vacuum electron-positron
pair creation under action of a constant electric field was constructed [6] in the frame-
work of QED and the Dirac model of physical vacuum. The solution of this problem
was obtained in Schwinger’s work [7]. The transition to fast alternating fields required
more refined methods based on time-dependent Bogoliubov transformations [8, 9] or its
modifications (e.g., the method based on the holomorphic representation [10]). Thus,
one can speak about a dynamical analogue of the Schwinger mechanism. In the case of
a harmonic electric field, one can introduce here a corresponding adiabatic parameter.
Its limiting values as before correspond to different mechanisms of vacuum pair creation
dominated by tunneling or multiphoton effects.

The fundamental analogy between the Zener mechanism of interband tunneling [11]
and Schwinger’s mechanism of vacuum electron-positron pair creation in a strong electric
field has been mentioned repeatedly, see, e.g., [12]. This similarity has been used recently
for the investigation of the transport properties of strongly correlated quantum many-
body systems [13, 14, 15].

In this work, we develop a nonperturbative kinetic theory of interband electron-
hole (e - h) excitations in dielectrics under the action of a strong electric laser field
using the direct analogy to the QED formalism of vacuum pair creation. The proposed
method allows us to take into account on a nonperturbative basis both, tunnel and multi-
photon processes, accompanying excitation by an arbitrary time-dependent electric field.
Conditionally, one can speak about the dynamical Zener effect by analogy with the
dynamical Schwinger effect in QED.

The present work is organized as follows. The definition of the mixed e-h states is
an essential distinctive element of our approach. We are employing the rich experience
of relativistic QED in describing the vacuum particle creation under the action of some
external quasi-classical field (the Schwinger mechanism [7, 8, 9]) and also use some naive
analogy between the Dirac picture of electron-positron vacuum and some concepts of
solid state band theory as a foundation of our approach. In the framework of the two-
band model this leads to a second-order (with respect to time) equation of motion for
the single wave function describing both (electron and hole) states (Sect. 2). For sim-
plicity, electron and hole dispersions are assumed to be the same. For a non-interacting
e-h system we construct the Lagrange and Hamilton formalisms and define relevant de-
compositions of the field functions and canonical momentum with respect to the plane
waves corresponding to electron and hole. Thus the formalism represents a special form
of e-h representation as a coherent e-h pair state. The interaction with an external quasi-
classical time-dependent homogeneous electric field is introduced in Sect. 3 as the result
of the standard substitution p → P = p − eA(t). It is well known that the introduc-
tion of the external electromagnetic field in QED leads to a non-diagonal form of the
commutative operators corresponding to physical observables, what makes the physical
interpretation of the formalism difficult [8]. The transition to a quasiparticle (QP) rep-
resentation is achieved by diagonalization of all commutative operators relevant to the
complete QP characteristics of the system (e.g., energy, spin, charge). In practice, only
the Hamiltonian diagonalization is often employed. Usually, the transition to the QP
representation is done by a time-dependent Bogoliubov transformation (e.g., [8]). The
holomorphic (oscillator) representation developed during recent years [10] is a more ef-
fective tool for this goal compared to the Bogoliubov technique because it easily allows to
obtain the diagonal Hamiltonian and to derive the Heisenberg-like equations of motion
for creation and annihilation operators, where it also takes into account the mixing of
the states with positive and negative energies. These equations provide the basis for a
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nonperturbative derivation of the kinetic equation (KE) describing the e-h pair creation
and annihilation in the presence of an external electric field (Sect. 4). Excitation of e-h
currents leads to generation of an internal electric field, which takes part, in its turn, in
the e-h creation process. The corresponding Maxwell equation jointly with the KE put
together the complete equation system of the back reaction problem. The mathematical
structure of this KE is similar to the corresponding KE in QED [8, 18], on the one hand,
and the Bloch equations in the solid state physics [19, 16, 17], on the other. The lines of
similarity and distinction are discussed in detail in Sect. 5. The suggested formalism is
alternative to the Bloch approach and is not based on the dipole model of an electron
interaction with an electromagnetic field. Some features of this process and dependence
on different characteristics of the non-stationary electric field are investigated on the
basis of the obtained KE in Sect. 6. We show here in particular, that the e-h excitations
in the case of rather strong external field acquire a behavior characteristic for the Zen-
er breakthrough. Sect. 7 is dealing with the linear response of the electron-hole system
(optical absorption spectrum and conductivity) to a weak external electric field. Here we
observe certain differences with the results from the Bloch theory. The Sect. 8 contains
a short summary.

The developed formalism reveals a close similarity to the corresponding QED kinetics
of vacuum electron-positron plasma created under the action of a strong electromagnetic
field [18]. The experimental prove of this effect is however difficult [20]. Therefore the
study of similar effects in the solid state plasma could be useful for simulation and
prediction of the corresponding effects in strong laser fields. We limit ourselves below
to the collisionless approximation and neglect the interaction between different charge
carriers.

We use the units ~ = c = 1 throughout the paper.

2 Description of electron-hole pair states
Let us consider a two-band system with a completely filled lower band and the mir-

rored electron states in the v- and c-zones and dispersions, εc = ∆/2 + ε(p), εv =
−∆/2− ε(p). It is assumed that the energy gap ∆ is space homogeneous and stationary.
The dispersion law ε(p) is fixed on the phenomenological level. We disregard all Coulomb
effects and treat electrons and holes as quasi-free particles. Two Schrödinger equations
can be associated with these dispersions:

(Ê − Ĥ)ψ = 0, (2)

where Ê = i∂/∂t and

ψ =
∥∥∥∥
ψe

ψh

∥∥∥∥ , Ĥ =
∥∥∥∥
∆/2 + ε(p̂) 0

0 −∆/2− ε(p̂)

∥∥∥∥ (3)

with p̂ = −i∇. In general case for arbitrary dispersions, this leads to independent descrip-
tion of electron and holes. This more complicated case is in need of separate analysis.
In this section it is assumed that the external electromagnetic fields and interparticle
interaction are absent.

On the other hand, we can consider a hole as an antiparticle to the electron. Their
states are correlated and allow for a joint description in analogy with QED. This results
in the second order dispersion

(E − εe)(E − εh) = [E −∆/2− ε(p)][E + ∆/2 + ε(p)] = 0 (4)
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(the analogous determinant equation is used in the theory of the stationary Zener effect
[21]). The corresponding equation of motion for the total wave function which is second
order with respect to time,

{Ê2 − [∆/2 + ε(p̂)]2}Ψ = 0, (5)

where Ψ(x, t) is now the one-component wave function. Transition from Eq.(2) to Eq.(5)
is very important for our aim.

Our next goal is to develop the Lagrange and Hamilton formalisms for this equation
Eq.(5).

For simplicity, we use here and below the quadratic isotropic dispersion law, ε(p̂) =
p̂2/2m. We obtain then (Ψ,k = ∂Ψ/∂xk, k = 1, 2, 3)

L[Ψ] = α

{
Ψ̇∗Ψ̇− ∆

2m
Ψ∗, kΨ, k − 1

4m2
Ψ∗, klΨ, kl − ∆2

4
Ψ∗Ψ

}
, (6)

where the dimensional constant α will be determined below. Let us take advantage of
the standard definitions of the canonical momentum

π =
∂L[Ψ]
∂Ψ̇

, π∗ =
∂L[Ψ]
∂Ψ̇∗

(7)

and the Hamiltonian density

H = πΨ̇ + π∗Ψ̇∗ − L[Ψ]. (8)

Using Eq. (6), we obtain π = α Ψ̇∗ and

H =
1
α

ππ∗ +
α

4
∆2Ψ∗Ψ + α

[
∆
2m

Ψ∗,kΨ,k +
1

4m2
Ψ∗,klΨ,kl

]
, (9)

so that the Hamiltonian density contains also higher-order space derivatives.
As in QFT, the wave function Ψ now loses the meaning of the state amplitude. The

corresponding charge and current densities are (k=1,2,3)

ρ = iαe(Ψ∗Ψ̇− Ψ̇∗Ψ) = ie(Ψ∗π∗ − πΨ), (10)

jk = ieα

{
∆
2m

[
(Ψ∗, kΨ−Ψ∗Ψ, k

]
− 1

4m2

[
(Ψ∗Ψ, kll −Ψ∗, kllΨ + Ψ∗, klΨ, l −Ψ∗, lΨ, kl

]}
,

(11)

where e is the electron charge. On this stage, parameter α can be fixed as α = ∆−1

proceeding from the specific correspondence principle: at ∆ → ∞ the derived relations
must turn into the ordinary quantum mechanical analogies (the parameter ∆/2 plays
the role of the rest mass in the Einstein relation for energy and momentum; in order
to neglect the state with negative energy, one can use the wave function transformation
Ψ = Φe−i∆t/2.

The transition to the momentum representation can be done in analogy with QFT.
Let us carry out the decomposition of wave function Ψ(x, t) into a plane wave basis
(below p is quasi-momentum, pn = (2π/L)nk, nk = 0, 1, 2, ..., vector p belongs to the
first Brilluin zone, the crystal volume is V = L3)

Ψ(x, t) =
1√
V

∑
p

∫
dE Ψ̃(E,p)e−iEt+ipx, (12)
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and take into account the dispersion equation (4) in order to select the two energy bands

Ψ̃(E,p) = δ{[E − ε(p)−∆/2][E + ε(p) + ∆/2]}ψ(E,p). (13)

Using the textbook relation

δ[φ(x)] =
∑

i

{|φ′(xi)|}−1δ(x− xi), φ(xi) = 0 (14)

the decomposition (12) can be written in the form typical for a two-band model (the
electron state is a superposition of c and v band contributions)

Ψ(x, t) =
1√
V

∑
p

√
∆

∆ + 2ε(p)

{
ac(p)e−i[∆/2+ε(p)]t + av(−p)ei[∆/2+ε(p)]t

}
eipx, (15)

where ac(p) and av(−p) are the electron and hole amplitudes in momentum represen-
tation. In Eq.(15) we redefined the amplitudes [∆(∆ + 2ε)]−1/2ac,v → ac,v in order to
guarantee the correct physical interpretation of the observable quantities. The canonical
momentum in the same representation (15) has the form

π(x, t) =
i

2
1√
V

∑
p

√
∆ + 2ε(p)

∆

{
a†c(p)ei[∆/2+ε(p)]t − a†v(−p)e−i[∆/2+ε(p)]t

}
e−ipx.

(16)
The transition to the second quantization representation is based on the standard replace-
ment of the functions a+

c,v(ac,v) by the corresponding creation (annihilation) operators
(below we omit the symbols ˆ everywhere).

The structures of the expansions (15) and (16) are defined by compatibility with the
canonical anti-commutation relations

{ac,v(p), a†c,v(q)} = δp,q (17)

and so on.
Substituting Eqs.(15) and (16) in the Eqs.(9)-(11), we obtain the total Hamiltonian

and charge in the diagonal form (the quasiparticle representation [8])

Htot =
2√
V

∑
p

[ε(p) + ∆/2]
{
a†c(p)ac(p) + a†v(−p)av(−p)

}
, (18)

Q = e
2√
V

∑
p

{
a†c(p)ac(p)− a†v(−p)av(−p)

}
, (19)

where the factor 2 is included here to account for the degeneracy with respect to the
spin degrees of freedom. The present here energy degeneracy of the c-v- states is elimi-
nated in the case εc 6= εv (e.g., me 6= mh). Thus, the decompositions (15), (16) and the
quantization rules (17) lead to the well-known operator structure of macroscopic physical
quantities.

3 Quasiparticle representation in an external electric
field

The presented formalism allows to straightforward include a time- dependent electric
field of arbitrary frequency and amplitude. Interaction with a quasiclassical electromag-
netic field in the original coordinate representation is introduced by the substitution
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∂µ → Dµ = ∂µ + ieAµ (µ=0,1,2,3), where Aex
µ + Ain

µ is 4-potential of external and inter-
nal field and e is the electron charge with its sign. We will restrict ourselves below to the
case of a nonstationary space-homogeneous electric field with 4-potential in the Hamilton
gauge, Aµ = (0, A1(t), A2(t), A3(t)) and then p̂ → P̂ = p̂ + eA. The usual substitution
into the Hamiltonian (9) leads to a non-diagonal form of the decompositions (15), (16) in
the momentum representation. The adequate interpretation of the formalism is achieved
by transition to quasiparticle representation, in which all observable operators have the
diagonal form. Usually, the Bogoliubov method of time-dependent canonical transforma-
tions is used [8, 9]. We will use below an economical method based on the holomorphic
(oscillator) representation [23], that was developed in work [10] for the problem of the
relativistic kinetics of vacuum pair creation in strong electromagnetic field.

In accordance with the method of work [10], it is necessary to make the substitution
p → P in the dispersion law occurring in the decomposition (15) and (16) for the free
field wave function and canonical momentum and also to introduce new time dependent
amplitudes (or operators) ac,v(p, t) by the replacement

ac,v(p) exp [−iε(p)t] → ac,v(p, t) (20)

and so on. The result is the following:

Ψ(x, t) =
1√
V

∑
p

√
∆

∆ + 2ε(P)
{ac(p, t) + av(−p, t)} eipx, (21)

π(x, t) =
i

2
√

V

∑
p

√
∆ + 2ε(P)

∆
{
a†c(p, t)− a†v(−p, t)

}
e−ipx. (22)

Here it is assumed, that the dispersion law ε(p) is not changed under action of the
external field besides the trivial displacement p → P, i.e. the magnitude of the gap and
the band boundaries remain invariable. Let us remark, that the Eqs. (21) and (22) allow
the obvious generalization to the multiband model case. The total Hamiltonian Htot can
be obtained now from the free Hamiltonian (9) by the replacement ∂ → Dk (k=1,2,3).
The subsequent substitution Eqs. (21), (22) leads at once to the diagonal form of the
Hamiltonian in QP representation

Htot(t) =
2√
V

∑
p

[ε(P) + ∆/2]
{
a†c(p, t)ac(p, t) + a†v(−p, t)av(−p, t)

}
. (23)

The new time-dependent amplitudes ae,h(p, t) obey the exact equations of motion,
which can be obtained either from the minimal action principle or using the Hamilton
equations

Ψ̇ =
δHtot

δπ(x, t)
, π̇ = − δHtot

δΨ(x, t)
. (24)

Following [10], let us rewrite the action

S =
∫

dx
{

π(x, t)Ψ̇(x, t) + Ψ̇∗(x, t)π∗(x, t)−Htot(x, t)
}

(25)
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in the QP representation with the decompositions (21), (22)

S =
∫

dt
∑
p

{
i

2
(
[a†c(p, t)− a†v(−p, t)][ȧc(p, t) + ȧv(−p, t)]

− [ac(p, t)− av(−p, t)][ȧ†c(p, t) + ȧ†v(−p, t)]

+λ(p, t)[a†v(−p, t)ac(p, t)− a†c(p, t)av(−p, t)]
)−Htot(p, t)

}
, (26)

where Htot(x, t) and Htot(p, t) are the Hamiltonian densities in the x- and p-representations,
λ(p, t) is the amplitude of interband transitions,

λ(p, t) =
ε̇(P)

∆ + 2ε(P)
= − ePE(t)

m[∆ + 2ε(P)]
, (27)

where E(t) = −Ȧ(t) is the electric field strength. Then the operator equations of motion
follow from here after variation with respect to the amplitudes and subsequent transition
to the occupation number representation with the anti-commutation relations

{ac,v(p, t), a†c,v(q, t)} = δpq (28)

(the remaining elementary anti-commutators equal zero). The Heisenberg-like equations
of motion are the following:

ȧc(p, t) = λ(p, t)av(−p, t) + i
[
Htot(t), ac(p, t)

]
,

ȧv(p, t) = λ(p, t)ac(−p, t) + i
[
Htot(t), av(p, t)

]
. (29)

The first terms on r.h.s. of these equations describe the coupling of states related to
different energy bands. Hence, the parameter (27) is the interband transition amplitude.

It is very important, that the Hamiltonian and the total charge operator have the
diagonal form in this representation. Thus, the oscillator representation is simultaneously
a quasiparticle one.

It is assumed that the electric field is switched off in the in - and out-states and the
quasiparticle excitations become "free"and available for direct observation. In addition, it
is also supposed here, that the system is found in the ground state at the initial moment
t0 → −∞ and, hence, the initial state is the vacuum state |0 > of electron and hole
quasiparticles. This state is not equal to the out-state, where some quantity of electrons
and holes can remain after switch off of the electric field.

4 Kinetic equation and observables
The basic object of the kinetic theory in the presence of an external strong field is

the quasiparticle distribution function, which is defined on the in-vacuum state |0 > in
the present situation. In the case of a space-homogeneous system, considered here, the
quasiparticle distribution functions of electrons and holes are:

fc, v(p, t) = < 0|a†c,v(p, t)ac,v(p, t)|0 > . (30)

The general vacuum state here is product of the electron vacuum states of the valence
and conduction bands. Differentiating the functions (30) with respect to time, and using
the equations of motion (29) we obtain:

ḟc, v(p, t) = λ(p, t){fc, v(p, t) + fv, c(p, t)}, (31)
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where the auxiliary correlation functions (the interband polarization functions) are in-
troduced

fcv(p, t) = < 0|a†c(p, t)av(p, t)|0 >,

fvc(p, t) = < 0|a†v(p, t)ac(p, t)|0 > . (32)

The equation of motion for the functions (32) can be obtained by analogy with the
equation (31). We can write it down in the integral form

f (±)
cv (p, t) =

t∫

−∞
dt′λ(p, t′)[1− fe(p, t′)− fh(−p, t′)]e±2iθ(p,t,t′), (33)

where now fc = fe and fv = 1 − fh, fe and fh are the electron and hole distribution
functions. In Eq.(33) the following initial conditions have been introduced,

lim
t→−∞

f (±)
cv (p, t) = 0. (34)

The analogous requirement holds for the distribution functions (30) (absence of electrons
and holes in the initial state). In Eq.(33), the dynamical phase

θ(p, t, t′) =

t∫

t′

dτ [ ε(P(τ) + ∆/2 ] (35)

corresponds to the quantum ’beating’ of the interband transition. In Eq.(33) it was taken
into consideration also, that the system is electro-neutral at each moment, i.e.,

fe(p, t) = fh(p, t) = f(p, t). (36)

According to that, we skip the indexes of the distribution functions below. The condition
(36) leads to transformation of the band-filling factor 1− fe − fh → 1− 2f .

The resulting closed form of the KE now follows from Eqs. (31) and (33)

ḟ(p, t) = 2λ(p, t)

t∫

−∞
dt′λ(p, t′)[1− 2f(p, t′)] cos 2θ(p, t, t′). (37)

This equation is equivalent to an integral equation of the Volterra type. The right-hand
side of the KE (37) represents the source of creation and annihilation of electron-hole pairs
and has the same form as in QED [18] (with an essential difference in construction of the
amplitude λ(p, t)), where the corresponding KE describe vacuum creation of electron-
positron pairs. There is an other essential difference from QED kinetics, where m is
the unique mass parameter: in the present model there are two such parameters, m
and ∆. That leads to some specific behavior of the e-h-system (see Sect. 6). In more
realistic models must become apparent other details of energy spectrums of electrons
and holes. Thus, this non-Markovian KE is a non-perturbative result in the mean-field
approximation (see below Eq.(53)), within a quasiclassical treatment of the external and
internal electric fields. KE (37) can be rewritten in the evident gauge invariant form if
we make the change of variables p → P in the distribution functions f(p, t) → f(P, t).

As can be seen from the structure of KE (37) and amplitude (27), the interband
transitions are caused by carrier acceleration in an electric field on the background of
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the changes of their energy (the denominator in Eq.(27)) and quantum beating with the
alternating phase (35).

The KE (37) can be transformed to a system of ordinary differential equations, which
is convenient for numerical analysis

ḟ = λu, u̇ = 2λ(1− 2f)− (2ε + ∆)v, v̇ = (2ε + ∆)u, (38)

where u+iv = 2f (+) and f (+) is given by Eq. (33). These equations have the first integral

(1− 2f)2 + u2 + v2 = 1, (39)

according to which the phase trajectories are located on an ellipsoid with top coordinates
f = u = v = 0 and f = 1, u = v = 0 . The phase (35) can be represented as the difference
of the integrand at the upper and lower bounds,

2θ(p, t, t′) = Θ(p, t)−Θ(p, t′), (40)

where

Θ(p, t) = (∆ + 2ε0)t +
2e

m

t∫
dτ pA(τ) +

e2

m

t∫
dτA2(τ). (41)

The relation (40) leads to the degenerate kernel in the integral part of (37), i.e.

ḟ(t) = 2λ(t) cos Θ(t)

t∫

t0

dt′λ(t′)[1− 2f(t′)] cos Θ(t′) + (42)

2λ(t) sin Θ(t)

t∫

t0

dt′λ(t′)[1− 2f(t′)] sinΘ(t′).

The equivalent system of ordinary differential equations has the following form:

ḟ(t) = 2λ(t) {u(t) cos Θ(t) + v(t) sinΘ(t)} ,

u̇(t) = λ(t)[1− 2f(t)] cosΘ(t),
v̇(t) = λ(t)[1− 2f(t)] sinΘ(t). (43)

For brevity, the momentum dependencies are omitted here.
In the low density approximation, 2f ¿ 1, the KE (37) has the closed solution

f(p, t) =

∣∣∣∣∣∣

t∫

−∞
dt′λ(p, t′)e2iθ(p,t,t′)

∣∣∣∣∣∣

2

=
1
4

{
u2(p, t) + v2(p, t)

}
. (44)

This result admits a simple generalization for the case of an initial quasiparticle distri-
bution f0(p)

δf(p, t) = [1− 2f0(p)]

∣∣∣∣∣∣

t∫

−∞
dt′λ(p, t′)e2iθ(p,t,t′)

∣∣∣∣∣∣

2

, (45)

where δf is the non-equilibrium correction, i.e. f(p, t) = f0(p) + δf(p, t). In the same
approximation the polarization function is

u(p, t) = 2[1− 2f0(p)]

t∫

−∞
dt′λ(p, t′) cos 2θ(p, t, t′). (46)
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The high density approximation corresponds to rather high field strength when f ∼ 1.
Let us introduce the deviation F (p, t) from the distribution function of a completely filled
state,

f(p, t) = 1− F (p, t), F (p, t) ¿ 1. (47)

The substitution of this relation into KE (37) leads to the new KE for the function
F (p, t), that has the form coinciding with KE (37). As a consequence of this surprising
fact, the formula (44) preserves its view in the high density limit also.

In contrast to the vacuum case [6, 7], the critical field is not uniquely defined in the
considered two- band model [21, 22]. Below we will use the following estimate for the
critical field strength [22]

Ec =
π∆3/2m1/2

2
√

2e
. (48)

After the distribution functions of electron and hole quasiparticles have been obtained,
we can write down the densities of observables by averaging of the Hamilton operator
(18), the electron charge (19), the total electron-hole current etc. over the vacuum state.
As a result, we have the time dependent densities of total energy ω(t), carrier number
and total current in the form ([dp] = (2π)−3d 3p):

ω(t) = 2
∫

[dp] [2ε(p, t) + ∆] f(p, t), (49)

n(t) = 4
∫

[dp]f(p, t), (50)

j(t) =
4e

m

∫
[dp] p{f(p, t) + u(p, t)} = jcond(t) + jpol(t), (51)

i.e. the total current is the sum of conductivity and polarization currents. The Eqs. (50)-
(52) are written in the thermodynamical limit, V →∞. The integrations here are carried
out over the first Brilluin zone, pmax = π/a.

If the electric field is rather large (|E(t)| ∼ Ec), it is necessary to take into account
the induced electric field Ein(t) produced by the electron-hole plasma due to the external
field Eex(t). Thus, the total field is

Etot(t) = Ein(t) + Eex(t). (52)

The induced field Ein(t) obeys the Maxwell equation with the current (51)

Ėin(t) = −4πj. (53)

This equation together with the KE (37) (or the system (38)) forms the self-consistent
nonlinear system of the back reaction problem.

5 Comparison with the Bloch equations
It is interesting to note that equations (38) have the same structure as the optical

Bloch equations in the theory of the coherent regime of the interband transitions for the
two-band model of semiconductor systems [19]. By analogy with the Bloch equations,
Eqs. (38) allow for the compact vector formulation

U̇ = [ΩU], (54)
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where U1 = v, U2 = u, U3 = 2f − 1, Ω = 2λe1 − (2ε + ∆)e3 and ~ei (i = 1, 2, 3) are
Cartesian unit vectors. However, the physical nature of the coefficients of the KE (37)
and the Bloch equations is quite different. This is seen in the structure of the amplitude
λ(p, t), Eq. (27), and the corresponding coefficients in the Bloch equations (the Rabi
energy)

ωR = dehE0, (55)

where E0 is the amplitude of a periodic electric field directed along axis x3, Aex =
(0, 0, Aex(t)),

Aex(t) = −(E0/ν) cos νt, Eex(t) = E0 sin νt, (56)

and deh is the matrix element of the dipole operator calculated with the conduction and
valence band wave functions.

In contrast to this mechanism of interband excitations, in the present approach we
assume that electron and hole are moving as quasiparticles and the mixing mechanism is
provided in this case by overlapping electron and hole states in the presence of an external
field. Such mechanism is a consequence of the method of quasiparticle description and
diagonalization of the Hamiltonian of the system in the presence of an external field. We
underline, that the assumption about existence of coherent e-h states (Sect. 2 and 3) is
the most important element of our approach.

This leads to the following important difference of the two approaches: the coefficients
in the Bloch equations and one in Eq. (38) have different momentum dependences that
can lead to different predictions of the observable quantities (see below Sect. 7).

The most resemblance is achieved in the framework of the rotating wave approxima-
tion for a periodic signal (56) [19]. In this case only the resonant terms are kept in the KE
(37) (resonant approximation) which leads to the following system of equations (instead
of Eqs. (38))

ḟRA = ΛuRA,

u̇RA =
1
2
Λ(1− 2fRA)− (2ε + ∆− ν)vRA,

v̇RA = (2ε + ∆− ν)uRA, (57)

where
Λ(p, t) = − |e|PE0

m[∆ + 2ε(P)]
, (58)

i.e. λ = Λsin νt. In particular, one can speak here about the analogue to Rabi flopping
with a momentum and time dependent frequency |Λ(p, t)|, see Fig. 1. The solution of (38)
at fixed momentum has a quasi-resonant dependence on the frequency of the external
field: at ν ≈ νres = ∆ + p2/m, the value of f(p, t) changes from 0 to 1 with "Rabi
frequency"(58). The unit vector U moves always on the surface of a sphere owing to the
existence of the integral of motion (39). The “resonant” case corresponds to rotation of
U in the plane perpendicular to the e1 axis. At finite detuning, |ν − νr|, the angular
motion of the vector U is limited because of the fast decrease of the amplitude of the
oscillations of f(p, t) that is accompanied by a rapid increase of its frequency. Fig. 1
shows also some nonlinear features of the distribution function evolution characteristic
for the exact solution of Eqs. (38)

On the level of the system (57), the unique distinction of the two approaches is
displayed in the interband amplitudes (58) and (55). The system (57) can be rewritten
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Рис. 1: Time dependence of f(p, t) in a monochromatic field with E = 107 V/cm, energy gap
∆ = 1 eV and effective mass m = me in the vicinity of the “resonance” frequency νres = ∆+p2/m
at |p| = 8.6 ·10−4me (λ = 600nm): solid line – exact solution of Eqs. (38), dashed line – resonant
approximation (57) and dashed-dotted line – solution of RWA equations (5.44) of Ref.[19].

in the KE form similar to Eq. (37)

ḟRA(p, t) =
1
2

Λ(p, t)

t∫

−∞
dt′Λ(p, t′)[1− 2fRA(p, t′)] cos 2Θ(p; t, t′), (59)

where
Θ(p; t, t′) = 2θ(p, t, t′)− ν(t− t′). (60)

It is obvious that the transition to the KE (59) in the resonant approximation means the
selection of the slowly changing part of the distribution function in the vicinity of the
resonant frequency

Θ̇ = ∆ + 2ε(P)− ν = 0. (61)

This condition depends on time and external field. In order to simplify the situation,
one may neglect this dependence, which is achieved by the substitution P → p and
ε(P) → ε(p) in Eqs. (58) and (61). Of course, this is impossible in the case of a strong
field.

For comparison of the efficiency of e-h pair creations in the framework of these two
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Рис. 2: The same as Fig. 1 but very far from νres.

approaches, let us find the ratio

ξ =
Λ
ωR

=
|e||P 3|
md0∆

, (62)

in the region of weak field (it is assumed that the vectors P and d are collinear), where
the optical dipole matrix element is [19]

deh(k) = d0
∆

∆ + 2ε(k)
. (63)

If d0 = |e|a0 and p . π/a, it follows from Eq. (62)

ξ . π

ma0a∆
=

1
2π

a

a0

ε0

∆
, (64)

where ε0 = (2π/a)2/2m is the electron ground state energy in a one dimensional potential
well with the size of an elementary cell. This is the upper bound of the parameter (62).
For typical parameter values, ξ ∼ 1, i.e. both approaches predict approximately the same
level of interband excitations.

The similarity of the mathematical structure of the Bloch equations and the system
(38) is not accidental. At the same time there are important differences the Bloch equation
are a consequence of the approximation of a space homogeneous time-dpendent electric
field (dipole approximation) with the Hamiltonian

H
(d)
in = −dE(t) = −exE(t), (65)

while the discussed approach is based on the more general standard replacement

∂k → Dk or pk → Pk, (66)

and accordingly

Hin =
ie

m
~A(t)∇− e2

2m
A2(t), (67)

which is the fundamental way of introduction of the electromagnetic field interaction
with a charge. Both approaches are equivalent in a space with a continuous translational
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symmetry group [26]. This equivalence is proven by the gauge transformation of the wave
function

Ψ(x, t) = exp {−iA(t)x}Ψ̃(x, t). (68)

However, this transformation is impossible in a space with a discrete translational sym-
metry group. As a result, the theories based on the prescriptions (65) and (66) become
different.

In addition, let us note, that the dipole approximation (65) violates the discrete
translational invariance of the Bloch theory in contrast to Eq. (66). This circumstance is
very important because the behavior of systems with broken symmetry can strongly differ
from the behavior of the analogous system with unbroken symmetry (e.g., [29]). Thus,
the presented approach is alternative to the Bloch one and free of the restriction λ À d
(the long wave length approximation) that is inherent in the Bloch equation formalism.

6 Electron-hole excitations in strong electric field
For numerical estimates, we will consider below linearly polarized electric fields of

two kinds: a pulsed field with the Sauter potential A = (0, 0, A(t)) [8],

Aex(t) = E0b[tanh (t/b) + 1], Eex(t) = E0 cosh−2 (t/b), (69)

where b is the pulse width, and periodic field (56) with the frequency ν. The characteristic
field strength E must satisfy the quasiclassical field condition [24], which is necessary for
application of the used formalism,

E À 1/τ2, (70)

where τ is the characteristic time of the field variation: τ ∼ b for the pulse field and
τ ∼ 1/ν2 for the periodic one.

The parameters of the semiconductor are chosen close to the ones for silicon: the ener-
gy gap is ∆ = 1 eV and the effective mass m = me. Time dependence of the distribution
function f(p, t) in a monochromatic field in the resonance and non- resonance regions
are presented on Figs.1,2. The time evolution of the carrier densities calculated on the
basis of the KE (37) and Eqs. (50) are presented on Figs. 3 and 4 for the pulsed field
(69) with b = 1.5 ∗ 10−12c (left part) and a monochromatic field (56) with λ = 1µm for
different amplitudes E0 = Em = 102, 103 and 104 V/cm (right). An initial strong growth
and a subsequent saturation regime are observed for a pulsed field, whereas action of
a periodic field is accompanied with “accumulation” of density similar to the results for
vacuum pair creation, see Ref. [18]. We note that the choice of a quadratic dispersion in
the given work may lead to considerable errors for strong excitations (very strong field),
and the generalization to a more realistic dispersion is an important task for the future.

Figs. 5 and 6 show the corresponding momentum distributions: the right figures are
for a time-periodic field (56) with the frequency ν corresponding to the wave length
λ = 1000 nm (Fig. 5) and λ = 0.1 cm (Fig. 6), where m = me and E0 = 1000 V/cm. The
left parts of figures 5 and 6 correspond to a pulsed Sauter potential (69) with b = 2π/ν,
i.e. only one period of (8) is included. Due to the choice of the prefactor, the amplitude
of the vector potential in Fig. (6) is 1000 times larger than in Fig. (5). As a consequence,
for a pulse, the two peaks of the distribution merge into one. Further, it is easy to see
that, in the periodic case, the coherent evolution of the system is accompanied by an
increase of the number of higher harmonics (growth of an instability) which eventually
leads to chaotic behavior. This is due to the nonlinear dependence on the field strength.
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Рис. 3: Time dependence of created carrier density for the pulsed field (69) (left) and the
monochromatic field (56) (right) for E = 1000 V/cm in the vicinity of the resonance frequency
λ = 600 nm, corresponding to the maximal pair creation rate.
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Рис. 4: The same as Fig. 3 for different field strengths.

The derivation procedure of the basic KE (37) shows (Sect. 3 and 4), that the limita-
tion me = mh = m can be eliminated and one can instead understand m as the effective
mass of the carriers. The presented approach is valid for arbitrary physical reasonable
parameters of quasiclassical external electric field, In particular, for a harmonic field Eq.
(37) is valid for the whole range of values of the Keldysh adiabatic parameter (1).

The curves of Fig. 4 demonstrate the saturation for a given field strength. This effect
is not connected with the finite width of the valence and conduction bands, but is due
to the dynamic equilibrium in the electron and hole subsystems. However in the case of
semiconductors with narrow bands, another saturation effect is possible which is caused
by the limited nature of the electron reservoir.

7 Linear response

7.1 Optical absorption
Let us show that in the leading order of perturbation theory with respect to the pa-

rameter E0/Ec ¿ 1 (E0 is the amplitude of an external signal), the optical susceptibility
is defined by the polarization part of the current (51) only. We consider the case that
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Рис. 5: The momentum spectrum of the created electron-hole pairs, left: for a pulsed field at a
time long after the pulse, i.e. t À b = 2π/ν and right: for a monochromatic field with λ = 1000
nm after 5 field oscillations.

Рис. 6: The same as in Fig. 5, but for a 103 times larger wave length λ = 0.1 cm corresponding
to a 103 times larger vector potential.

some free carriers are present in the initial state before switching on an external field.
In the Bloch approach, the optical susceptibility is defined by means of dipole moment

density P(t). Below we will use a prescription which leads to connection of vector P(t)
with the polarization function (46) in our approach. That allows to observe some close
parallels and distinctions between both approaches. For a weak external field, compar-
ison of the conductivity and polarization current densities (51) shows that we have the
following estimations in the leading approximation in characteristic field strength E:

jpol = j
(1)
pol ∼ E, jcond = j

(2)
cond ∼ E2, (71)

and hence according to Eq. (51) we have

j(t) ∼= j(1)pol(t) =
4e

m

∫
[dp]pu(1)(p, t). (72)

On the other hand, one can use the general definition of the polarization current density

j(1)pol(t) = Ṗ(t), (73)
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where, in the present approach, the vector P(t) is defined by the polarization current
(73)

P(t) =
4e

m

t∫

−∞
dt′

∫
[dp]pu(1)(p, t′). (74)

Using the Eq. (51) for the electric field E(0, 0, E(t)) one can easily obtain for the Fourier
component of the optical susceptibility

ξ(ω) =
P (ω)
E(ω)

=
4e2

m2
rω

∫
[dp]

(p3)2

∆ + 2ε(0)
[1− 2f0(p)]×

{
1

∆ + 2ε(0) + ω + iδ
− 1

∆ + 2ε(0) − ω + iδ

}
, (75)

where f0 is the equilibrium distribution function of the free carriers and ε(0) = p2/2mr

with the reduced electron-hole mass mr.
The absorption coefficient α(ω) = Imξ(ω) is equal to

α(ω) =
4πe2

m2
r

∫
[dp]

(p3)2

(∆ + 2ε(0))2
[1− 2f0(p)]δ(∆ + 2ε(0) − ω). (76)

Calculations for different dimensionalities lead to the following results:

D = 1 : α(ω) = e2

√
∆
m

1
ω2

( ω

∆
− 1

)1/2

F (ω)θ
( ω

∆
− 1

)
, (77)

D = 2 : α(ω) =
e2∆
2

1
ω2

( ω

∆
− 1

)
F (ω)θ

( ω

∆
− 1

)
, (78)

D = 3 : α(ω) =
e2m1/2∆3/2

3π

1
ω2

( ω

∆
− 1

)3/2

F (ω)θ
( ω

∆
− 1

)
, (79)

where F (ω) is the statistical factor on the energy surface Pω =
√

m(ω −∆), i.e

F (ω) = 1− f0(Pω). (80)

Thus, we obtain the characteristic frequency dependence for the different dimensions D:

αD(ω) ∼ 1
ω2

( ω

∆
− 1

)D/2

. (81)

In the validity region of Eqs. (77)-(79) ω/∆ ≥ 1 and E/Ec ¿ 1, the adiabatic parameter
(1) is large, γ À 1 corresponding to action of the multiphoton mechanism of absorption.

The standard theory of optical absorption based on the dipole approximation leads
to a different frequency dependence [19]:

αdip
D (ω) ∼ 1

ω2

( ω

∆
− 1

)(D−2)/2

. (82)

Technically, this circumstance is stipulated by the characteristic momentum dependence
of the transition amplitude (27) in contrast to the Rabi frequency (55).

Let us remark, that in the case of a periodic signal (56) the phase (41) can be written
as

Θ(p, t) = Eqt− 2eE0

mν2
sin νt +

1
4mν

(
eE0

ν

)2

sin 2νt, (83)
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where

Eq = ∆ + 2ε(p) +
1
m

(
eE0

ν

)2

(84)

is the quasienergy. This representation can serve as a basis of an improved perturbation
theory.

7.2 Conductivity
In general, the considered system is nonstationary and its properties are defined by

the presence of an external field. For such kind systems, the connection of current density
with the electric field strength is [28]

ji(t) =

t∫

−∞
dt′σij(t− t′, t′)Ej(t′). (85)

The conductivity tensor σij(t − t′, t′) depends on two times: the first argument t − t′

takes into account the retardation effects while the second one t′ corresponds to the
nonstationary state of the medium caused by the influence of an external field. In the
leading approximation (72), the external field does not influence the state of the medium
(linear response), so the relation (85) is transformed to (for the considered polarization
in z−direction)

j3(t) =

t∫

−∞
dt′σ33(t− t′)E3(t′). (86)

This form is convenient for comparison with Eq. (72) and definition of conductivity
tensor stipulated by the polarization current in the leading approximation. We obtain,
using Eqs. (46) and (51),

σ33(t) =
4
√

2|e|3
3π3

EcI(t), (87)

where Ec is the critical field (48) and

I(t) =

zmax∫

1

dz(z − 1)3/2[1− 2f0(z)]
cos [z∆t]

z
, (88)

zmax = 1 + pmax/m∆ = 1 + π/am∆. (89)

In the simplest case, f0 = 0, we obtain from Eq.(89) for D = 3

σ33(ω) =
2
√

2|e|3Ec

3π3

1
ω

( ω

∆
− 1

)3/2

θ
( ω

∆
− 1

)
. (90)

This result is well correlated with Eq. (79): α(ω) = σ33(ω)/ω.

8 Summary
We have presented a quantum kinetic theory of coherent e-h pair excitations exploit-

ing the close analogy to vacuum pair creation in a strong field (dynamical Schwinger
effect). For the mathematical realization of this idea, it is natural to construct [on the
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basis of Eq. (2)] an equation of motion of the second order with respect to time, which
combines the dispersion properties of both electron and hole. This equation was used
for derivation of the KE for the description of coherent e-h excitations under action of a
nonstationary electric field (dynamical Zener effect) obtained within a non-perturbative
dynamical framework. As a first step, the obtained KE was used for some simple numer-
ical estimation of carrier density dynamics in a monochromatic and a pulsed field.

In the considered formalism, the frequency of the electric field is limited by the con-
dition (70) (quasiclassical field). It is obvious, that in the case of low frequency ν . ∆
(in the transparency region) the process of e-h excitation is essentially of multi-photon
nature and stipulated by loss of stability of electron states in the valence band under
action of an external field and, as a consequence, its transition to an excited state in
the conduction band [25]. The discussion of Sect. 5 shows, that there are many parallels
between the proposed approach and the model based on the Bloch equations in dipole
approximation.

Let us summarize the main features of the proposed theory:

1. The given approach is a consecutive kinetic theory based on a non-perturbative
dynamical foundation.

2. These KE’s allow to describe states of carriers far from equilibrium under action
of a time-dependent electric field. In particular, they allow to calculate the non-
equilibrium distribution function and all relevant physical quantities.

3. The theory allows for various modifications and improvements on the dynamical
level, such as inclusion of carrier-carrier interaction in the presence of a strong field
as has been demonstrated for laser plasmas [31].

4. The presented theory is valid in the whole domain of the adiabatic parameter (1)
and selfconsistently covers both – the tunnel and multiphoton excitation mecha-
nisms.

Thus, the suggested approach is an alternative to the Bloch one and leads to some
different predictions (Sect. 7). A possible cause of these differences is the violation of
translational invariance due to introduction of interaction with an electromagnetic field
in the dipole approximation (65) in constrast to our general method (66). The peculiarity
of this approach becomes apparent also in the case of multi-band models leading to the
increase of degree of the time derivatives in the corresponding equation of motion (cf.
Sect.2). Let us note, equations of motion with higher derivatives are considered in the
modern mathematical physics (e.g., [30]).

The next important step on the way to a more adequate description of the non-
stationary Zener effect is to take into account a realistic (non-parabolic) dispersion of
electrons and holes.

We plane to do that in a future work.
Finally, we want to note the interesting possibility connected with the close analogy

of the constructed formalism with its QED counterpart. The experimental test of vacu-
um tunneling in QED requires enormous field strengths which are not available in the
laboratory today. It is expected that such fields will be accessible by very high power
lasers in the near future but this task is very difficult and expensive. On the other hand,
some qualitatively similar results can be obtained in a much simpler manner by studying
interband transitions in semiconductors with present day lasers.

We thank Prof. M. Kisin, Prof. S.G. Gestrin and A.V.Prozorkevich for useful discus-
sions.
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Аннотация

В данной работе представлено кинетическое непертурбативное описание
межзонных переходов в твердых телах под действием сильного электрического
внешнего поля (динамический аналог эффекта Зенера). Этот подход основан на
аналогии с эффектом Заутера - Швингера и его динамического аналога в КЭД.
В рамках осцилляторного представления получено кинетическое уравнение для
описания эволюции квазичастичных возбуждений. Проведен численный расчет
для случаев монохроматического и импульсного внешних полей. Проведено
сравнение с результатами на основе уравнений Блоха. Данный подход, в отличии
от теории Блоха, не использует дипольное приближение, что приводит к различным
результатам, в частности, для частотной зависимости коэффициента поглощения.

1Смолянский Станислав Александрович , e-mail:smol@sgu.ru, кафедра теорететической и
математематической физики, Саратовский государственный университет, 410012, г. Саратов, ул.
Астраханская, 83.

2Бониц Михаил, e-mail:bonitz@physik.uni-kiel.de, Институт теоретической физики и
астрофизики, Киль,D-24098, Германия.

3Тараканов Александр Викторовичe-mail:tarakanovav@sgu.ru, кафедра теорететической и
математематической физики, Саратовский государственный университет, Саратов, 410012, г.
Саратов, ул. Астраханская, 83.


