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The effect of electron-electron scattering on the equilibrium properties of few-electron quantum dots is
investigated by means of nonequilibrium Green’s function theory. The ground and equilibrium states are
self-consistently computed from the Matsubara �imaginary time� Green’s function for the spatially inhomoge-
neous quantum dot system whose constituent charge carriers are treated as spin-polarized. To include correla-
tions, the Dyson equation is solved, starting from a Hartree-Fock reference state, within a conserving �second-
order� self-energy approximation where direct and exchange contributions to the electron-electron interaction
are included on the same footing. We present results for the zero and finite temperature charge carrier densities,
the orbital-resolved distribution functions, and the self-consistent total energies and spectral functions for
isotropic two-dimensional parabolic confinement as well as for the limit of large anisotropy—quasi-one-
dimensional entrapment. For the considered quantum dots with N=2, 3, and 6 electrons, the analysis comprises
the crossover from Fermi gas or liquid �at large carrier density� to Wigner molecule or crystal behavior �in the
low-density limit�.
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I. INTRODUCTION

In the recent decades finite quantum systems have become
an intensively studied subject. Particular interest is due to
electrons in quantum dots1 �QDs� or wells, forming artificial
atoms2 with moleculelike behavior and novel spectral and
dynamical properties. In contrast to real atoms, such new
properties arise from dimensionality reduction and natural
scale differences as QDs embedded within semiconductor
heterostructures generate charge carrier motion on typically
nanometer length scales. The collective, optical, and trans-
port properties of QDs are examined by experimental3 and
theoretical4–7 research activities depending on various dot
parameters and geometries. For an overview see, e.g., Refs.
1, 8, and 9. Many ground-state �GS� calculations are
available in the literature which are based on different
methods—exact numerical diagonalization,10–12 self-
consistent Hartree-Fock,13–15 configuration interaction,16 and
quantum Monte Carlo.17 Extensions to finite temperatures
and to QD properties in �transverse� magnetic fields are to be
found in Refs. 5, 13, and 18.

Typical charge densities in QD devices vary over a large
range11—from macroscopic charge carrier ensembles to me-
soscopic few- and even single-electron quantum dots. How-
ever, injecting only a small integral number of electrons into
the dot reveals system properties that sensitively depend on
the charge carrier number and are thus externally control-
lable, e.g., by gate voltage or tip-electrode field variation or
local mechanical strain �band mismatch�. On the other hand,
the quantum dot state is governed by the interplay of quan-
tum and spin effects, the Coulomb repulsion between the
carriers, and the strength of the dot confinement. This gener-
ally leads to strong electron-electron correlation, i.e., colli-

sion or scattering effects the influence of which on the many-
particle state is very important in the behavior at zero and
finite temperatures.

The two-dimensional �2D� N-electron quantum dot
Hamiltonian to be considered is

Ĥe = �
i=1

N �−
�2

2me
��i

2 +
me

�

2
�0

2ri
2� + �

i�j

N
e2

4��rij
, �1�

where the effective electron mass is denoted by me
�, the fre-

quency �0 adjusts the �isotropic� parabolic confinement
strength, e is the elementary charge, and � is the background
dielectric constant. The vectors ri are the single charge
carrier coordinates with respect to the quantum dot center
and rij = �ri−r j�. The density in the QD is controllable by the
confining potential which directly affects the relative
electron-electron interaction strength and, tuned toward low
carrier densities, continuously leads to formation of electron
�Wigner� molecules15,17 or crystal-like behavior.18 Melting
processes owing to an increased temperature and/or density
cause weakening and finally preventing of such solidlike
structure formation. Also, with the restriction to Eq. �1�, the
present analysis neglects nonideality effects such as defects
and well-width fluctuations �see, e.g., Refs. 19 and 20�.

The objective of the present work is to analyze the elec-
tron correlations in QD system �1� on the pathway from
Fermi gas or liquid toward strongly correlated Wigner mol-
ecule behavior, i.e., during the �density� delocalization-
localization transition. To this end, in Sec. II, we present the
finite temperature formalism of nonequilibrium Green’s
function �NEGF� theory which is applied by a threefold mo-
tivation: �i� the NEGFs allow for a consistent and conserving
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treatment of Coulomb correlations, �ii� previous NEGF ap-
proaches to inhomogeneous QDs incorporate to our knowl-
edge no strong carrier-carrier coupling, and �iii�, in contrast
to other available many-body methods, such as quantum
Monte Carlo �QMC� or configuration interaction �CI� based
techniques which a priori fail to yield dynamical properties,
strong importance lies in the possibility and feasibility for
the direct extension of the approach to nonequilibrium situ-
ations including arbitrary time-dependent fields, gate-voltage
variations, optical switching,8 and quantum transport
phenomena.21

Using the NEGF technique, the properties of the investi-
gated spin-polarized N-electron quantum dot in thermody-
namic equilibrium follow from the self-consistently obtained
imaginary time �Matsubara� Green’s function. Such an ap-
proach has also more recently shown to give accurate
results for real atoms and molecules �see Refs. 22–24�. The
extension of the nonequilibrium Green’s function ansatz
from traditional applications on quasihomogeneous quantum
systems25–27 to spatial inhomogeneity is thereby only one
aspect of the present analysis. A crucial point is that the
resolution of any correlated carrier dynamics strongly de-
pends on the quality and consistency of the initial state com-
puted prior to propagation. In this sense, the present paper
serves as essential preparatory work in the prospect of non-
equilibrium applications. An important result of the present
work concerns the validity of the second Born �2ndB� ap-
proximation. While in homogeneous systems strong correla-
tions cannot be described correctly within the 2ndB and re-
quire, e.g., a T-matrix self-energy,28,29 for the present QDs
the 2ndB performs very well up to coupling parameters as
large as 10 �cf., Eq. �2��.

The theoretical part in Sec. II is followed by a detailed
description of the iteration technique used to numerically
solve the Dyson equation �in Hartree-Fock �HF� and second
Born approximation� to self-consistency. The results are dis-
cussed in Sec. IV. The starting point is the limit of large
anisotropy where in Eq. �1� we consider the limit �0

2ri
2

→�x,0
2 xi

2+�y,0
2 yi

2 with �y,0��x,0 �see Sec. IV A�. In the case
of N=3 �quantum dot lithium� and 6 electrons, the charge
carrier density, the orbital-resolved distribution functions,
and total energies are computed for different values of inter-
action strength and temperature. Also, we demonstrate that at
finite temperatures, the second Born �correlation� corrections
to the mean-field treatment yield significant density changes
in an intermediate regime whereas in the high- and low-
temperature limits the electron density is only less affected
by correlations. In Sec. IV B, we extend the calculations to
isotropic 2D confinement and analogously report on ground-
state results for N=2 electrons �quantum dot helium� which
are compared with exact and Hartree-Fock results.15 More-
over, the computation of the charge carrier spectral
function30 a��� allows in Sec. IV C for a collision induced
renormalization of the Hartree-Fock energy spectrum. This is
of relevance for the optical properties of the few-electron
QD. Section V gives a final discussion.

II. THEORY

For characterization and quantum mechanical treatment of
the N-electron dot system �1� it is convenient to introduce the

coupling �or Wigner� parameter 	 which relates the charac-
teristic Coulomb energy EC=e2 / �4��l0

�� to the confinement
energy E0

�=��0,

	 =
EC

E0
� =

e2

4��l0
���0

=
l0
�

aB
, �2�

with l0
�=	� / �me

��0� being the characteristic single-electron
extension in the QD and aB being the effective electron Bohr
radius. Using the replacement rules 
ri→ri / l0

� ,E→E /E0
��,

Hamiltonian �1� transforms into the dimensionless form,

Ĥ	 =
1

2�
i=1

N

�− �i
2 + ri

2� + �
i�j

N
	

rij
. �3�

For coupling parameters 	
1, the quantum dot electrons
will be found in a Fermi gaslike or liquidlike state, whereas
in the limit 	→�, it is l0

��aB, and quantum effects vanish in
favor of classical interaction dominated charge carrier
behavior.14 In the case of moderate coupling �	�1� quantum
dots with spatially well localized carrier density can be
formed. Further, in addition to N and 	, the system is char-
acterized by the environment temperature −1=kBT which
will be measured in units of the confinement energy E0

�.

A. Second quantization representation

Introducing carrier annihilation �creation� operators

�̂�†��r� with action at space point r, the second-quantized

form of Hamiltonian Ĥ	 �Eq. �3�� is

Ĥ	 =� d2r�̂†�r�h0�r��̂�r�

+
1

2
� � d2rd2r̄�̂†�r��̂†�r�

	

	�r − r�2
�̂�r��̂�r� , �4�

where h0�r�= �−�2+r2� /2 denotes the single-particle energy
and the second term in Eq. �4� describes the electron-electron

interactions. The field operators �̂�†��r� satisfy the fermionic

anticommutation relations ��̂�r� , �̂†�r��+=��r−r� and

��̂�†��r� , �̂�†��r��+=0, where �Â , B̂�+= ÂB̂+ B̂Â.
Ensemble averaging in Eq. �4� directly gives rise to the

one-particle nonequilibrium Green’s function which is de-
fined as

G�1,2� = −
i

�
TC��̂�1��̂†�2��� �5�

and is a generalization of the one-particle density matrix
�which is recovered from G in the limit of equal time argu-
ments t1= t2 �see, e.g., Ref. 30��. The used nomenclature is
1= �r1 , t1� and the expectation value �ensemble average�
reads Â�=Tr �̂Â. The two times t1 and t2 entering G�1,2�
arise in the Heisenberg picture of the field operators and
vary along the complex Schwinger/Keldysh contour C= 
t
�C , Re t� �0,�� , Im t� �− ,0��, where TC denotes time
ordering on C �see, e.g., Refs. 23 and 30�. Note that in the
remainder of this work we use �=1. The advantage of using
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the NEGF is that it allows for equal access to equilibrium
and nonequilibrium averages at finite temperatures and that
quantum many-body approximations can be systematically
included by diagram expansions22 �see Secs. II B and III�.
Moreover, most dynamic �spectral� and thermodynamic
information30 is contained in the NEGF �cf., Sec. IV�.

B. Green’s function formalism

In the case of thermodynamic equilibrium, where electron
system �1� is time independent for Re t1,2�0, G�1,2� has no
real-time dependence but extends on the imaginary contour
branch �−i ,0� only. We define the corresponding Matsubara
�imaginary time� Green’s function GM with respect to the
transformations t1− t2→ i� ��� �− ,�� and G→−iGM, i.e.,

GM�r1,r2;�� = − iG�1,2� , �6�

which only depends on the time difference t1− t2, t1,2� �
−i ,0�, and is antiperiodic in the inverse temperature  �see
Ref. 31�. Following the standard textbook derivation,30 the
Dyson equation22 for the spin-polarized QD system �4� reads

�− �� − h0�r1��GM�r1,r2;��

= ���� +� d2r̄�
0



d�̄�	

M
�r1,r;� − �̄�GM�r,r2; �̄� ,

�7�

with the antiperiodic Matsubara self-energy �	
M. Note that

the Dyson equation in this form is exact and that conserving
��-derivable� many-body approximations enter via �	

M�GM�.
Equation �7� is the central equation which will be applied

in Secs. III and IV to investigate the effect of carrier-carrier
correlations in the N-electron quantum dot. However, as the
self-energy �	

M�r1 ,r2 ;�� appears as a functional of the Mat-
subara Green’s function GM, a self-consistent solution of the
Dyson equation is required to accurately characterize the
equilibrium QD state.

III. SIMULATION TECHNIQUE

In this section, we discuss the computational scheme of
solving the Dyson equation for the few-electron quantum dot
specified by Eq. �3�. Thereby, we proceed in two steps: first,
we solve Eq. �7� at the HF level �see Sec. III A� and, second,
we incorporate correlations within the �-derivable second-
order Born approximation �see Sec. III B�. Throughout, we
represent GM in the � domain rather than solving the Dyson
equation in frequency space where GM�r1 ,r2 ;��
=�0

d�GM�r1 ,r2 ;��ei�� can be obtained by analytic continu-
ation �see, e.g., Ref. 32�.

A. Hartree-Fock at zero and finite temperatures

At mean-field level, the solution of the Dyson equation
�Eq. �7�� is fully equivalent to the Hartree-Fock self-
consistent field method13,33 generalized to finite temperatures
−1. Hence, we primarily resort to standard HF techniques
and will recover the uncorrelated Matsubara Green’s func-
tion, denoted G0�r1 ,r2 ;��, at the end of this section.

The Hartree-Fock approach leads to an effective one-
particle description of the QD and gives a first estimate of
exchange effects. However, as an independent-electron ap-
proximation, it does not include correlations, i.e., the HF
total energy is given by EHF

0 =Eexact−Ecorr. With respect to the
second-quantized Hamiltonian of Eq. �4�, the effective HF
Hamiltonian is obtained by approximately replacing the four
field operator product entering the interaction term by sums

over products �̂†�̂ weighted by the generalized carrier den-
sity matrix ��r ,r�. This leads to

Ĥ	 =� � d2rd2r̄�̂†�r��h0�r���r − r� + �	
0�r,r���̂�r� , �8�

with the Hartree-Fock self-energy

�	
0�r,r� =� d2r�

	��r�,r��
	�r� − r�2

��r − r� −
	��r,r�
	�r − r�2

. �9�

Here, the first �second� term constitutes the Hartree �Fock or
exchange� contribution.

Computationally convenient is the introduction of a basis
representation for the electron field operator according to

�̂�†��r� = �
i

�i
����r�âi

�†�, i � 
0,1,2, . . .� , �10�

where the one-particle orbitals �i�r� form an orthonormal
complete set and âi

�†� denotes the annihilation �creation� op-
erator of a particle on the level i. At this stage, QD system
�8� can be transformed into the matrix representation h	,ij
=hij

0 +�	,ij
0 with the single-particle quantum numbers i and j,

hij being the electron HF total energy, h	ij
0 being the single-

particle �kinetic plus confinement� energy, and �	,ij
0 being the

electron self-energy in mean-field approximation. More pre-
cisely, we have

hij
0 =

1

2
� d2r�i

��r��− �2 + r2�� j�r� , �11�

�	,ij
0 = 	�

kl

�wij,kl − wil,kj��kl�� , �12�

with the finite �zero� temperature charge carrier density ma-
trix �ij��= âi

†âj� �in the limit →�� in the grand canonical
ensemble and the two-electron integrals wij,kl defined as

wij,kl =� � d2rd2r̄
�i

��r��k
��r�� j�r��l�r�

	�r − r�2 + �2
. �13�

Using �→0, the integrals in wij,kl can be performed analyti-
cally in two dimensions but, in the limit of large anisotropic
confinement �quasi-one-dimensional �quasi-1D� quantum
dot�, a truncation parameter 0��
1 is needed to regularize
the �bare� Coulomb potential at �r−r�=0 keeping wij,kl finite
�see, e.g., Ref. 11�. Alternatively, the parameter � adjusts a
confining potential in the perpendicular dimension and al-
lows �at small rij� for a transverse spread of the wave
function.12 For the specific choice of the parameter �, see
Sec. IV.
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Using standard techniques, we iteratively solve the self-
consistent Roothaan-Hall equations34 for the Hartree-Fock
Hamiltonian h	,ij,

�
k=0

nb−1

h	,ikckj − � j
0cij = 0, �14�

which at finite dimension nb�nb �i=0,1 , . . . ,nb−1� yield
the numerically exact eigenfunctions �HF orbitals� expanded
in the form �	,i�r�=� j=0

nb−1cji� j�r�, cij �R, the corresponding
energy spectrum �HF eigenvalues� �i

0, and the chemical po-
tential �0. Consequently, the N-electron quantum dot system
is fully characterized by the solution �	,i�r�, e.g., its charge
carrier density is given by

�0�r� = �
i=0

nb−1

f�,�i
0 − �0��	,i�r� , �15�

where f� ,�i
0−�0� denotes the Fermi-Dirac distribution.

For numerical implementation of mean-field problem
�14�, we have chosen the Cartesian �2D� harmonic oscillator
states

�m,n�r� =
e−�x2+y2�/2

	2m+nm ! n ! �
Hm�x�Hn�y� , �16�

with single-electron quantum numbers i= �m ,n�, r= �x ,y� in
units of the oscillator length l0

�, Hermite polynomials Hm�x�,
and �m+1�-fold degenerate energies �m,n=m+n+1, m ,n
� 
0,1 ,2 , . . .�. In the 1D quantum dot limit, these states re-
duce to the one-dimensional oscillator eigenfunctions �m�x�
= �2mm !	��−1/2e−x2/2Hm�x�.

As mentioned before, the self-consistent Hartree-Fock re-
sult generates an uncorrelated Matsubara Green’s function
G0�r1 ,r2 ;�� which yields the same observables. For instance,
the N-electron density of Eq. �15� is recovered from �0�r�
=G0�r ,r ;0−�—the energy contributions are discussed sepa-
rately in Sec. IV. When G0 is expanded in terms of the ob-
tained HF basis �	,i�r� according to

G0�r1,r2;�� = �
ij

�	,i
� �r1��	,j�r2�gij

0 ��� , �17�

the associated �-dependent matrix �g0����ij =gij
0 ���

=�ij f� ,�i
0−�0�e−���i

0−�0� is diagonal and solves the Dyson
equation

�− �� − h0 − �	
0�g0��� = ���� . �18�

Here, the time-independent matrices �h0�ij =hij
0 and ��	

0�ij
=�	,ij

0 are defined in correspondence to Eqs. �11� and �12�
with �i being replaced by �	,i, and the charge carrier density
matrix due to Eq. �12� reads �ij��=gij

0 �0−� with notation 0−

denoting the limit from below on the contour C. Further, it is
�ab�ij =�kaikbkj. Note that in Eq. �13� also the two-electron
integrals are to be transformed into their HF representation
and that in the following bold-typed expressions as intro-
duced in Eq. �18� denote matrices with respect to the HF
basis �	,i�r�.

B. Solving the self-consistent Dyson equation in the Born
approximation

In this section, we focus on electron-electron correlation
corrections to the self-consistent Hartree-Fock reference
state22 determined by G0�r1 ,r2 ;��. The idea is to start from
the Dyson equation �Eq. �7�� in HF orbital representation,

�− �� − h0�gM��� = ���� + �
0



d�̄�	
M�� − �̄�gM��̄� , �19�

with the full time-dependent Matsubara self-energy
��	

M����ij =�	,ij
M ��� and the equilibrium Green’s function

�gM����ij =gij
M���, both obtained by applying the orbital ex-

pansion of Eq. �17�. An explicit approximate expression for
�	

M including correlation effects is introduced below �cf.,
Eqs. �24�–�26��.

First, we discuss the general solution scheme for Eq. �19�.
However, we will not consider it in this form. Instead, we
integrate Eq. �19� inserting Eq. �18� and applying the antipe-
riodicity property of gM���. This leads to the integral form of
the Dyson equation,

gM��� − �
0



d���
0



d�̄ g0�� − ����	
r �gM���� − �̄�gM��̄� = g0��� ,

�20�

�	
r �gM���� = �	

M�gM���� − �����	
s , �21�

where the expression �	
r ��� according to definition �21� im-

plicates the total Matsubara self-energy reduced by the initial
�steady-state� mean-field �	

s =�	
0�g0�0−�� which is not a

functional of the full �correlated� Green’s function gM���. In
addition, the single-particle energy h0 has already been ab-
sorbed in the HF reference state g0��� and thus does not
appear explicitly in Eq. �20�. For a more detailed derivation
of Eq. �20� see Appendix.

We highlight that the integral form of the Dyson equation
can be parametrized by the second index j� 
0,1 , . . . ,nb
−1� of the Matsubara Green’s function gij

M��� since the ma-
trix multiplications on the left-hand side of Eq. �20� do not
affect this index. Hence, at a fixed Matsubara self-energy and
discretized � interval �− ,�, Eq. �20� allows for reinterpre-
tation as a set of nb independent �but typically large-scale�
linear systems of the form

AX�j� = B�j�, �22�

where the unknown quantity and the inhomogeneity are
�X�j��ip=gij

M��p� and �B�j��ip=gij
0 ��p�, respectively. The coeffi-

cient matrix �A�ip,jq=�ij��p ,�q� is defined by the expression
�convolution integral�

�ij��, �̄� = �ij��� − �̄� − �
k=0

nb−1 �
0



d��gik
0 �� − ����	,kj

r ��� − �̄� ,

�23�

in which the integral over �̄ in the Dyson equation �Eq. �19��
vanishes due to its replacement by the matrix multiplication
AX�j�. In more detail, we need to specify the time discreti-
zation of the Matsubara Green’s function undertaken in Eq.
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�22�. First, due to the antiperiodicity property of GM, we can
restrict ourselves to solve Eq. �19� on the negative � interval
�− ,0�. This specific choice originates from the fact that in
the limit �→0− the density matrix is obtained from gM���.
Second, the numerical treatment must take into account the
time dependence of GM���. From Eq. �18� it follows that the
Green’s function is essentially peaked around �=0 and �.
Thus, not an equidistant grid but a uniform power mesh35

�UPM� is adequate to represent the Green’s function—this
method is also used in Refs. 22 and 32. With a total number
of nm mesh points the dimensionality of the linear system
AX�j�=B�j� becomes nbnm�nbnm. As stated above, Eq. �22�
can only be processed for a fixed self-energy �	

r �gM����. This
means that in order to provide a self-consistent solution of
the Dyson equation, we have to iterate the procedure by
computing, at each step, a new self-energy from the current
gM���. This loop is then repeated until convergence.

So far, we have not specified a certain self-energy ap-
proximation. In Eq. �21�, one generally can split �	

M��� into
a mean field and a correlation part, i.e.,

�	
M�gM���� = �����	

0�gM�0−�� + �	
corr�gM���� , �24�

where the Hartree-Fock contribution,

�	,ij
0 = 	�

kl

�wij,kl − wil,kj�gkl
M�0−� , �25�

is exact �compare with Eq. �12�� and the correlation part
�corr���, at the second Born level, is given by

�	,ij
corr��� = − �

klmnrs

wik,ms�wlj,rn − wnj,rl�gkl
M���gmn

M ���grs
M�− �� .

�26�

Here, the first term denotes the direct contribution, whereas
the second one includes the exchange—for details see, e.g.,
Refs. 22 and 30. Note that the two-electron integrals wij,kl are
given in their Hartree-Fock basis representation. Since the
interaction potential W enters Eq. �26� in second order the
present description of charge carrier correlations goes be-
yond the first Born approximation of conventional scattering
theory.

When the self-consistency cycle reaches convergence, the
matrix gM��� becomes independent of the initial state g0���
and, in configuration space, the correlated Matsubara Green’s
function of QD system �3� follows as GM�r1 ,r2 ;��
=�ij�	,i

� �r1��	,j�r2�gij
M���, where the HF orbitals �	,j�r� are

those obtained in Sec. III A. Consequently, correlations
are included via the �-dependent matrix elements gij

M���, �
� �− ,0�, which give access to the electron density via
��r�=GM�r ,r ;0−�. We note that G0 as obtained from the
self-consistent HF calculation is only one possible reference
�initial� state which can be used in the Dyson equation �Eq.
�20��. Also different types of uncorrelated Green’s functions,
e.g., obtained from density-functional theory �DFT� or orbit-
als in local density approximation �LDA� are applicable if
they satisfy the correct boundary conditions. For a recent
discussion on the relevance for atoms and molecules see Ref.
22.

In summary, the presented procedure is valid for arbitrary
temperatures −1 and arbitrary coupling parameters 	.
Thereby, the scope of numerical complexity is determined by
the parameters nb �matrix dimension associated with the HF
basis size� and nm �time discretization on the UPM� which
must be chosen with respect to convergence of the QD ob-
servables. Corresponding to Eq. �20� it has been found that
particularly the particle number N=�i=0

nb−1gii
M�0−� and the cor-

relation energy Ecorr sensitively depend on nm �cf., Eq. �28�
in Sec. IV�.

IV. NUMERICAL RESULTS

In this section, we report on the numerical results for the
few-electron quantum dots with N=2, 3, and 6 charge carri-
ers. At that, we mainly focus on the energies and the �accu-
mulated� single-carrier density and compare the influence of
HF and second Born-type self-energies, i.e., Eq. �25� versus
Eqs. �25� and �26�.

The energies that contribute to the total energy of the QD
system are, in addition to the single-particle �kinetic �t0�
and confinement �v0�� energy E0=Tr h0gM�0−�
=Tr�t0+v0�gM�0−�, the mean-field Hartree-Fock and the cor-
relation energy23 defined as

EHF = 1
2Tr �	

0gM�0−� , �27�

Ecorr =
1

2
�

0



d� Tr �	
corr�− ��gM��� . �28�

The total energy is then E2ndB=E0+EHF+Ecorr. For compari-
son, the total energy with respect to the HF Green’s function
G0�r1 ,r2 ;�� will be denoted by EHF

0 . For evaluation of the
two-electron integrals needed in Eqs. �27� and �28�, we have
chosen the truncation parameter �=0.1 in one dimension and
��0 in two dimensions �no divergence of the integrals
wij,kl; see Eq. �13� in Sec. III A�.

Moreover, the HF orbital-resolved energy distribution
functions �level occupation probabilities� ni�N ;	 ,� are ana-
lyzed with respect to correlation-induced scattering processes
of particles into different energy levels. In general, it is

ni = ni�N;	,� = gii
M�0−� , �29�

which, in the case of vanishing correlations �GM →G0�, is
just the Fermi-Dirac distribution, i.e., ni=gii

0�0−�= f� ,�i
0

−�0�= f i
0 �cf., Eq. �18��.

A. Limit of large anisotropy (1D)

When in Hamiltonian �1� the isotropic confinement of fre-
quency �0 is replaced by an anisotropic entrapment accord-
ing to �y,0��x,0, the QD charge carriers move effectively in
one dimension. With the finite regularization parameter �
=0.1 we thereby allow for a small transverse extension �per-
pendicular to the x axis�. That is why we will call the system
in this regime quasi-1D.

In the following, let us first consider the 1D version of
quantum dot lithium36 �N=3� and, hereafter, a QD with N
=6 confined electrons. For the respective HF and second
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Born calculations we throughout have used nb=30 oscillator
functions, �see Sec. III A� and the number of mesh points
nm�u , p� for the � interval �− ,0�, discretized in Sec. III B,
was varied between 60 and 140 in order to achieve conver-
gence and preservation of particle number in the Dyson
equation �Eq. �20��. Table I gives an overview of the relevant
energies obtained at different coupling parameters and tem-
peratures. Also, we included reference data from quantum
Monte Carlo �QMC� simulations37 for the three-electron QD.

The low-energetic discrete orbital energies �i
0 contributing

to the HF reference state g0��� are shown in Fig. 1 against 	
and . For the quasi-ground state �quasi-GS�, =10, the oc-
cupied states i�3 are energetically well separated from the
unoccupied states i�3 by the HOMO-LUMO gap—the en-
ergy gap between the highest occupied �molecular or
Hartree-Fock� orbital and the lowest unoccupied �molecular�
orbital �see the gray area�. For temperatures �10, this gap
is reduced eminently for moderate coupling around 	�3
�see the dotted and dashed lines�, while, for 	→�, the
curves converge due to the strength of carrier-carrier interac-

tions exceeding the influence of thermal fluctuations. More-
over, the HF chemical potential �0�	�, situated within the
HOMO-LUMO gap, is only slightly affected by , see Table
I.

If we now include correlation effects, the HF spectra 
�i
0�

become renormalized—for the discussion see Sec. IV C. On
the QD total energy, the influence of correlations is as fol-
lows: the correlation contribution Ecorr is negative, and its
magnitude increases with temperature. Moreover, the corre-
lation energy is nonmonotonic with regard to the coupling
parameter 	 �see Table I and inset of Fig. 1�, demonstrating
that correlation effects are dominant at moderate coupling
between 	=2 and 6. For the ground states, =10, the inclu-
sion of correlations lowers the total energy independent of 	
�compare E2ndB to EHF

0 � which is in full agreement with the
Rayleigh-Ritz principle. However, this not necessarily holds
for finite temperatures. Due to the self-consistency, the value
of EHF is generally increased by correlations, whereas the
tendency for the single-particle energy E0 is 	 dependent: for
highly coupled states, e.g., =2 and 	�4, E0 is decreased.

TABLE I. Different energy contributions as function of the coupling parameter 	 for the GS �=10� and
equilibrium states �=2 and 1� of N=3 and 6 spin-polarized electrons in a quasi-1D quantum dot. �0 gives
the chemical potential as obtained from the Hartree-Fock calculation with total energy EHF

0 �see Sec. III A�.
E2ndB, E0, EHF, and Ecorr are computed from the correlated Green’s function gM���. All energies are in units
of E0

� and the underlined values pertain to the results shown in Figs. 3–6. For comparison, EQMC denotes the
total energy obtained from quantum Monte Carlo simulations �see also Fig. 2�.

	 EHF
0 �0 E2ndB E0 EHF Ecorr EQMC

N=3 �1D�
=1

1 8.173 4.621 8.201 6.115 2.321 −0.235 7.661

2� 10.066 6.124 10.215 6.556 4.405 −0.747 9.510

=2

1 7.043 4.670 7.065 5.027 2.153 −0.115 6.761

2� 8.790 6.169 8.941 5.311 3.936 −0.306 8.603

4 11.732 8.852 11.918 5.920 6.303 −0.304 11.721

6 14.387 11.231 14.374 6.712 7.822 −0.160 14.403

8 16.790 13.362 16.747 7.514 9.354 −0.120 16.809

10 19.005 15.294 18.962 8.257 10.800 −0.095 19.034

=10 �GS� EQMC
=5

1 6.615 4.673 6.591 4.645 1.987 −0.042 6.529

2� 8.480 6.173 8.421 4.966 3.560 −0.105 8.371

4 11.667 8.853 11.578 5.817 5.917 −0.156 11.484

6 14.374 11.243 14.292 6.710 7.720 −0.137 14.161

8 16.787 13.376 16.721 7.534 9.296 −0.110 16.570

10 19.004 15.298 18.950 8.285 10.752 −0.087 18.791

N=6 �1D�
=10 �GS�
1 27.600 9.263 27.519 18.613 9.028 −0.123

2� 36.145 12.195 35.919 19.976 16.289 −0.346

4 50.960 16.110 50.440 23.666 27.384 −0.609
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For small 	, this trend is reversed leading, overall, to a
correlation-induced increase in the total energy for =2 and
1.

In general, both, the HF and second Born total energies
well approach the corresponding �exact� QMC data indepen-
dent of 	 and  �see Table I�. In order to properly compare
the different approximations, the total energy is shown in
Fig. 2 relative to the mean-field chemical potential �0. In the
whole considered 	 regime, the quasi-ground-state energy
EHF

0 �dashed curve for =10� is downshifted by second Born
corrections �solid curve� toward the energies obtained by
QMC �dotted curve�. At 	=2, we identify the best agreement
of the correlated result with EQMC. In particular, for 	→0,
the three different total energies converge to the value E
−�0= 3

2 of the ideal QD. At larger temperatures =2 and 1,
the correlated Green’s function gM��� leads, at moderate cou-
pling around 	�3, to total energies that are significantly
larger than the corresponding HF energies. This is consistent
with the larger absolute values of the correlation energy Ecorr
given in Table I. For stronger coupling 	�6 �at =2�, E2ndB
then crosses the HF value in order to converge to the respec-
tive GS curve. The comparison with QMC is difficult at fi-
nite temperatures: we point out that �readily at 	=0� there is
a general shift due to the usage of different ensemble aver-
ages. Whereas QMC uses a canonical approach, the Green’s
function results emerge from a grand canonical picture. Nev-
ertheless, close to the GS, Fig. 2 reveals a quite similar be-
havior as function of 	.

From Figs. 3, 4, and 5�a�, one gathers how the QD mean
field �	

0 renormalizes the ideal equidistant energy spectrum
�i= i+ 1

2 of the noninteracting system �	�0�; see the shifted

HF energies �i
0 �open circles� which exactly follow a Fermi-

Dirac distribution according to Eq. �18�. Correlations due to
�	

corr now modify this statistics as can be seen from the quan-
tity ni− f i

0 in Figs. 3, 4, and 5�b�, which measures the HF
orbital-resolved deviation from the Fermi-Dirac distribution
�in percent� and shows that charge carriers around �0 are
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being scattered into higher HF orbitals �black circles�. At
larger temperatures �see, e.g., Fig. 4�b��, the change in the
occupation probability ni exceeds 2% for 	=2.0. Moreover,
Pauli blocking prevents energetically low lying electrons to
essentially take part in the scattering process—consequently,
ni− f i

0 is small for �i
0
�0.

Figs. 3, 4, and 5�c� visualize the inhomogeneous one-
particle density ��x� in the three-electron quantum dot �	
=2.0� in HF and second Born approximation. For compari-
son, we included also the density of the respective ideal sys-
tem �blue dotted lines�. Being symmetric around x=0, the
density at low temperatures �Fig. 3 and 4�c�� is threefold
modulated, and due to the electron-electron interactions the
modulation in ��x� is more intense compared to the ideal
QD, where the oscillations originate from the Pauli principle
only. Notably at =2, �second Born� correlations substan-
tially weaken the density modulation which is not a novel
feature but is well confirmed by QMC simulations and CI
when compared to �mean-field� HF results. At temperature
=1, the correlation effects are still present �see the quantity

ni− f i
0� and reveal a more smooth almost monotonic decay of

the density with x→�.
For the quasi-ground-state �=10� of the QD with six

electrons �see Table I and Fig. 6�, we observe similar prop-
erties as for the example of quantum dot lithium. Here, ��x�
becomes sixfold modulated and the quantum dot state can be
interpreted as a Wigner chain of six aligned charge carriers
held together by the parabolic confinement. However, we
note that no orbitals at 	=2.0 are degenerate and that there is
strong overlap of the single-carrier �HF� wave functions
�	,i�x�. In contrast to the N=3 quantum dot, the influence of
correlations on the equilibrium state GM �see ni− f i

0� is stron-
ger leading to considerable lowering of the total energy. This
is consistent with an increased number of carriers and hence
increased electron-electron collision probabilities �compare
Figs. 3 and 6�b��.

B. Isotropic quantum dot (2D)

With no extra restriction on the carrier motion, Hamil-
tonian �1� describes a 2D QD with isotropic parabolic con-
finement. Here, we report on the obtained Matsubara Green’s
function results for the special case of N=2 electrons, i.e.,
for spin-polarized quantum dot helium. Thereby, we restrict
ourselves to very low temperatures in order to compare with
ground-state data available in the literature.15

For the HF and second Born calculations, the results of
which are shown in Table II, the inverse temperature was set
to =50, and we used up to nb=40 of the energetically low-
est Cartesian oscillator functions �see Eq. �16� in Sec. III A�.
Further, the uniform power mesh �nm�u , p�� was chosen as in
Sec. IV A, including essentially more than 100 grid points.

First, the unrestricted HF energies EHF
0 in Table II exactly

agree—to more than three decimal places—with the total
energies computed in analogous manner by Reusch et al.15

This is a clear indication for the HF basis to be large enough.
Second, applying the second Born approximation we are able
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to �essentially� improve these ground-state results. The val-
ues of E2ndB, thereby, come quite close to the exact energies,
which are obtained by numerical diagonalization,40 and the
data are also in good agreement with the QMC results.

For instance, for coupling parameter 	=2.0, the inclusion
of correlations reduces the relative error �x by a factor of
5—for definition of �HF and �2ndB see caption of Table II.
Hence, with respect to the HF solution, this means an im-
provement of the ground-state total energy by about �
= �EHF

0 −E2ndB� / �EHF
0 −Eexact��80%. For the strongly corre-

lated case 	=4.0, the second Born calculation slightly over-
estimates the influence of correlations and leads to a total
energy lower than the exact value. This, most probably, can
be improved by increasing the number of mesh points for the
� interval which is crucial for the convergence of the corre-
lation energy �see integral in Eq. �28��. Nevertheless, the
exact ground-state energy is considerably well approximated.

As a final remark, we note that our second Born calcula-
tions do not restore the rotational symmetry of Hamiltonian
�1� into the two-dimensional solution. This behavior is inde-
pendent of the spin configuration as well as of the applied
self-energy �corr and is a natural consequence of the fact that
we start from a symmetry broken13 �HF� initial state G0

when solving the Dyson equation to self-consistency. The
problem of restoring the symmetry using projection opera-
tors �see, e.g., Ref. 41� is up to now solved for HF ground
states but extensions of the method to finite temperatures and
correlated states are not �yet� at hand. Hence, our approach is
primarily applicable to symmetry broken charge carrier
states. This is typical for QDs where impurities naturally
destroy rotational symmetry.

C. Spectral function

In HF approximation, the single-particle energy spectrum
of the QD consists of discrete levels �see, e.g., 
�i

0� for the
three-carrier system considered in Fig. 1�. When correlations
are included the spectra generally turn into continuous func-
tions of energy due to electron-electron scattering and pro-
vide additional information such as finite linewidths or ther-
mal broadening. However, from the Matsubara Green’s
function, it is intricate to extract the correlated single-particle
energy spectrum as its computation besides Fourier transfor-
mation usually involves Padé approximations.32 The direct

time propagation of the equilibrium state GM�r1 ,r2 ;�� solv-
ing the Keldysh/Kadanoff-Baym equations24,29,30 �KBEs� for
the two-time NEGF G�1,2�= �t1− t2�G��1,2�− �t2
− t1�G��1,2� allows for a more systematic approach. Here,
the time dependency of G�1,2�, which now extends also
along the real part of the contour C, provides access to the
electron energies � via the spectral function30 a���
=�−�

+�d�ei��a���, where here � is the difference of the two
real-time arguments in G.

The orbital-resolved carrier spectral function a��� is given
by

a��� = i
g��T − �,T + �� − g��T − �,T + ��� , �30�

where T�0 is a specific point on the diagonal of the two-
time plane P= �0,��� �0,��, �= t1− t2� �−	2T ,	2T� de-
notes the relative time, and g!�t1 , t2� are the contour-ordered
correlation functions with respect to the HF basis. Further,
we identify the diagonal �off-diagonal� elements of matrix
a��� with the intralevel �interlevel� spectral functions.

Well documented computational specifications for solving
the KBE on P, with initial condition gM���, are provided,
e.g., in Refs. 23, 24, and 38. We will not give a detailed
description here. Nevertheless, it is instructive to note that,
as the one-particle energy h0 includes no time dependency,
the dynamics of G�1,2� can be obtained by propagation on
the t1,2 axes only �instead on whole P� or by using the re-

tarded Green’s function8 GR�1,2�= i
� ��̂�1� , �̂†�2��+� �t1

− t2�.
A careful analysis confirms that the QD spectral function

is not of Breit-Wigner type, akk���=ak���" 1
��−�k�2+#2 , as it

would follow from a quasiparticle �local approximation�
ansatz42 with ak���=ei�k�e−#�, single-particle energy �k, and
phenomenological damping #. In contrast, the spectral func-
tion essentially deviates from an exponential �Lorentzian�
behavior around �=0, more precisely ��ak���→0 for ���
→0 �cf., the circles in Fig. 7�. To this end, at large T�1, we
have adapted the computed spectral function ak��� to an in-
verse hyperbolic cosine �IHC� model,43

ak��� = ei�k�
1

cosh$k�%k��
, �31�

which has been demonstrated to yield good results for Cou-
lomb quantum kinetics �see Ref. 42�. Ansatz �31� leaves

TABLE II. Different energy contributions as function of coupling parameter 	 for the ground state �=50� of N=2 spin-polarized
electrons in an isotropic 2D quantum dot. The exact energies for 	=2 and 4 are quoted from Refs. 15 and 40 and arise by an exact
diagonalization method. EQMC gives quantum Monte Carlo reference data computed at the temperature =5. �x= �Ex−Eexact� /Eexact gives the
relative error in percent. �= �EHF

0 −E2ndB� / �EHF
0 −Eexact� measures the correlation-induced improvement of the total energy. All values are

given in units of E0
�=��0. In particular, all three decimal places of the HF energies EHF

0 agree with Ref. 15.

N=2 �2D�

	 Eexact EHF
0 �0 E2ndB E0 EHF Ecorr

�HF
0

�%�
�2ndB

�%�
�

�%� EQMC
=5

1 3.604 2.885 3.597 3.023 0.584 −0.010 3.591

2 4.142 4.168 3.393 4.147 3.082 1.092 −0.026 0.638 0.121 80.8 4.148

4 5.119 5.189 4.304 5.117 3.285 1.901 −0.069 1.367 0.039 102.9 5.123
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open a set of three parameters 
�k ,$k ,%k� �obtained by fit-
ting� and, in accordance to the numerical data, �i� ensures
zero slope of Re ak��� at �=0 and �ii� exhibits an exponential
decay for large � with a damping constant #k=$k%k. The
former feature is especially missing in the quasiparticle pic-
ture. The solid curves in Fig. 7 exemplify the good quality of
the IHC model including properties �i� and �ii� and justify its
usage.

In energy space, the collisional broadening #k of the peaks
in ak��� can be shown to be again described by an inverse
hyperbolic cosine.43 Explicitly, the accumulated energy spec-
trum follows from

a��� = �
k=0

nb−1

ak��� = �
k=0

nb−1 �
−�

+�

d�ei�tak��� , �32�

where in Hartree-Fock approximation one recovers a���
=�k=0

nb−1��� /�0−�k
0�, compare with Fig. 7.

For the quasi-1D quantum dot with N=3 electrons at 	
=1 and 	=2, Fig. 8 shows the spectral function a��� includ-
ing all low-energetic orbitals at different temperatures −1.
The vertical solid lines indicate the discrete HF spectra 
�k

0�
and the gray filled dashed curves show a��� at the second
Born level, being composed of the intralevel functions ak���
which, themselves, are represented by the thin dotted curves.
Additionally, the positions of the maxima in ak��� are
marked by the vertical dotted lines. As a general trend, we
observe a shift of almost all peaks in a��� compared to the
HF eigenvalues �k

0 of the charge carriers—in particular, the
shifting is dominant around the chemical potential �0. More-
over, the energy shifts are accompanied by a state and tem-
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fitting results of the IHC model �Eq. �31��, with exponential damp-
ing constants #k=$k%k �solid exponential curves�. The undamped
oscillations �thin dashed curves in the background� correspond to
the Hartree-Fock approximation, where no collisional broadening
and thus no damping of ak��� occur.
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FIG. 8. �Color online� Spectral function a��� �dashed curves filled gray� accumulated from the orbital-resolved functions ak��� �thin
dotted curves� for the quasi-one-dimensional QD with N=3 electrons at different temperatures −1 as indicated—��a�–�c�� 	=1.0 and ��d�
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the dotted lines correspond to the maxima of the inverse hyperbolic cosines ak��� �Eq. �31��. The numbers at the peak profiles in �a� and �d�
denote the shift of the maxima in ak=2,3��� with respect to the HF energies. The triangles on the abscissas give the position of the chemical
potential �0. Moreover, the dotted-dashed �double-dotted-dashed� curve show the �inverse� spectral weight.
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perature dependent collisional broadening �finite lifetime�,
where, at sufficiently low temperatures, the spectral width is
small and the intralevel functions ak��� do not overlap.
Close to the ground state, less occupied HF states k around
�0, typically, show larger broadening than more strongly oc-
cupied states �see Figs. 8�a� and 8�d��. However, we note
that, in Born approximation, the width of the peaks is finite
even in the GS limit →�, whereas the exact QD states are
purely discrete. The origin of this behavior is not clear and
requires further analysis.44 Interestingly, the HOMO-LUMO
gap, i.e., the energy gap between the highest occupied �mo-
lecular or Hartree-Fock� orbital and the lowest unoccupied
�molecular� orbital appearing at quasi-zero-temperature 
=10, is reduced by electron-electron collisions which is also
confirmed in Refs. 21 and 45. In particularly, the gap shrinks
at larger temperatures, see Figs. 8�b� and 8�e� where =2.
This should clearly affect the optical absorption �emission�
spectra of the few-electron quantum dot.3 Finally, at even
higher temperatures, &1, all spectra a��� gradually be-
come smooth functions with no or only few distinct peaks
around the chemical potential �0. Thereby, also quasiparticle
energies below �k=0

0 can be adopted by the charge carriers.
In addition, if in Eq. �32� the intralevel functions ak���

are weighted by the respective occupation probabilities nk �or
their inverse n̄k=1−nk�, one turns the energy spectrum a���
into �k=0

nb−1nkak��� ��k=0
nb−1n̄kak����. These quantities allow us

to determine the spectral weight with which specific energies
are �are not� realized and thus are �are not� measurable in the
correlated QD state GM �see the corresponding dotted-dashed
�double-dotted-dashed� curves in Figs. 8�a�–8�e��.

Beyond the spectral information, the time propagation of
G�1,2� also allows us to keep track of the accuracy of the
correlated initial state gM��� �solution of the Dyson equation
�Eq. �20���. Qualitatively, the accuracy can be extracted from
the temporal evolution of the electron correlation energy38

which is given by

Ecorr�t� =
1

2
� d2rI��r,r;t� − EHF

0 ,

I��r1,r2;t1� = − ��
C

d3W�1 – 3�G12�13;23+��t1=t2
+, �33�

where the two-particle Green’s function G12 is used in sec-
ond Born approximation. When the iterative procedure dis-
cussed in Sec. III B has led to convergence and thus to a
self-consistent solution gM��� of the QD Dyson equation, the
correlation energy Ecorr�t� must stay constant in time. Conse-
quently, the amplitude of any small oscillatory behavior of
the correlation energy �obtained by propagation� serves as a
reasonable estimator for the error �Ecorr. Throughout, with
typical errors of less than 5%, such a test has been found to
be very sensitive and useful to verify the presented results.

V. CONCLUSION

In this paper, we have applied the method of nonequilib-
rium Green’s functions to study inhomogeneous, in particu-
lar, strongly correlated quantum few-body systems: quantum

dots with up to six electrons at finite temperatures. The re-
sults extend up to the Wigner liquid �Wigner molecule� re-
gime. We concentrated on spin-polarized states which are of
relevance, e.g., for the high-magnetic field limit. At various
interaction strengths, the self-consistent solution of the
Dyson equation at the level of the second Born approxima-
tion has enabled us to focus on correlation phenomena which
considerably affect the dynamical or statistical and spectral
properties of the few-electron QD.

Close to the ground state, the second Born results yield
substantial improvements, compared to HF, for the total en-
ergies, the one-electron density, and the orbital-resolved dis-
tribution functions. Also for larger temperatures, the Born
approximation improves the QD observables, although, at
finite temperatures, the correlation-improved total energy is
not necessarily smaller than the corresponding HF value �see
Fig. 2�. Finally, the discussion of the spectral function in Sec.
IV C gives valuable insight into the spectral weight of the
many-body states and, at the same time, implies strong in-
fluence of correlations on the optical emission and absorp-
tion spectra of the considered few-electron QDs.

Of course, the second Born approximation is a very
simple model. It neglects both higher order correlations �be-
yond second order in the interaction� and dynamical screen-
ing �GW approximation; see, e.g., Ref. 21 and references
therein�. Nevertheless, comparison of the Born approxima-
tion results to first-principle quantum Monte Carlo �Fig. 2�
and exact diagonalization data �Table. II� suggests that this
approximation is well capable to accurately describe the
present system even when coupling strengths of 	�4 is in-
volved.

Further, the methods discussed in this paper should allow
us to study system sizes up to N=12 charge carriers in one
dimension and N=6 in two dimensions in a reasonable com-
puter time on a single personal computer. However, the main
restriction is basically not the particle number itself but
rather the number of basis functions, which—together with
the discretized � grid—sets up the large dimensionality of the
matrices to be computed and processed. At the mean-field
level, the evaluation of the two-electron integrals �Eq. �13��
and the transformation of which into the HF basis are the
most time-consuming parts while solving the corresponding
Dyson equation is relatively simple. For the second Born
case, apart from solving large-scale linear system �22� in
each iteration, in particular the computation of the self-
energy �	

corr��� �Eq. �28�� and the convolution integrals
�ij�� , �̄� �Eq. �23�� both needed with adequate/high accuracy
account for the complexity of the calculation.

Finally and most importantly, the use of NEGFs provides
a very general approach to the study of �arbitrarily fast� time-
dependent processes. The feasibility of nonequilibrium cal-
culations is thereby conditioned by the relatively simple
structure of the second Born self-energy, which only takes a
second time argument arising from the two-time Green’s
function G�1,2�. Moreover, all time-dependent observables
then follow in a direct and consistent way from the solution
of the KBE and include correlation-induced memory effects.
Hence, the presented approach provides the basis for time-
dependent studies of optical and transport properties in
strongly �inhomogeneous� correlated systems. QD-specific
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applications are, thus, e.g., “QD molecules” �assemblies of
single QDs� with interdot-coupling and time-dependent car-
rier transport and QDs coupled to electronic leads or external
�optical� laser field sources.
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APPENDIX: DYSON EQUATION IN INTEGRAL FORM

In order to develop a numerical solution procedure, we, in
Sec. III B, have considered the Dyson equation in its integral
form which can be derived from Eq. �19� in the following
way: multiplying Eq. �19� by the �level diagonal� Hartree-
Fock state g0��� −�� �cf. Eq. �18�� and integrating over �
� �0,� leads to

�
0



d�
�− �� − h0�gM����g0��� − �� = g0����

+ �
0



d��
0



d�̄
�	
M�� − �̄�gM��̄��g0��� − �� . �A1�

Using the identity −��
gM���g0��� −���=−��g
M��� ·g0��� −��

+����−��g
0��� −�� ·gM���, the left-hand side of Eq. �A1� can be

written as

�− gM���g0��� − ���0
 + �

0



d��− ����−��g
0��� − �� − h0g0���

− ���gM��� �A2�

=gM���� + �
0



d��	
0g0��� − ��gM��� , �A3�

where the first term in Eq. �A2� vanishes due to the antipe-
riodicity property of gM��� and in the second term we are
allowed to insert the Dyson equation �Eq. �18�� for the HF
reference state g0��� −��. Doing so gives us expression �A3�.
Finally, equating the right-hand side of Eq. �A1� with Eq.
�A3� leads over to

gM���� − g0���� = �
0



d��
0



d�̄g0��� − ��
�	
M�� − �̄� − ���

− �̄��	
0�gM��̄� , �A4�

which is equivalent to Eqs. �20� and �21� in Sec. III B with
the replacements �� ↔�, and the notations �	

0 =�	
s and

�	
r ���=�	

M���−�����	
s .
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