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Abstract
We investigate structures of 2D quantum electron–hole (e–h) plasmas by the
direct path integral Monte Carlo method (PIMC) in a wide range of temperature,
density and hole-to-electron mass ratio. Our simulation includes a region of
appearance and decay of the bound states (excitons and biexcitons), the Mott
transition from the neutral e–h plasma to metallic-like clusters, formation from
clusters of the hexatic-like liquid and formation of the crystal-like lattice.

PACS numbers: 71.23.An, 71.55.Jv, 52.65.Pp

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Strongly correlated two-dimensional quantum Coulomb systems are the subject of intensive
discussions [1, 2]. In particular, it is known that the competition between electrostatic
and kinetic energies in an electron gas may be the reason for an unusual phase diagram
of a 2D system of electrons. The liquid state of such a system is stable when the kinetic
energy dominates while the electrostatically favored ‘Wigner’ triangular crystal is stable in the
opposite case [3]. If there is a strong competition between these two kinds of energies, different
situations are possible. The question under discussion is the existence of the intermediate
anisotropic liquid phase (hexatic) under melting of crystal into isotropic liquid. Moreover,
the physical mechanism of melting can be influenced by the interaction with substrate and
defects. Currently, all mentioned phenomena can be extensively investigated by a consistent
first-principle numerical simulation, and in this brief paper we present the most interesting
results of our numerical experiments by the direct PIMC method.
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2. Path integral Monte Carlo approach

Let us consider a two-component neutral e–h plasma. In particular, the properties of such
plasma at different hole-to-electron mass ratios are very useful for the understanding of
phase diagrams of semiconductors [4]. Thermodynamics of e–h plasma are defined by the
partition function Z, which for the case of Ne electrons and Nh holes (Ne = Nh) is given by
Z(Ne,Nh, V, β) = Q(Ne,Nh, β)/Ne!Nh!, with Q(Ne,Nh, β) = ∑

σ

∫
V

dr dq ρ(q, r, σ ;β),
where β = 1/kBT , σ = (σe, σh), r, σe denote the space and spin electron coordinates, while
q, σh denote the space and spin hole coordinates. The exact density matrix ρ(q, r, σ, β) of
a quantum system for low temperature and high density is in general not known but can be
constructed using a path integral representation [5, 6]. Thus we take into account interaction,
exchange (through permutation operators) and spin effects for both electrons and holes. The
maximum statistical and systematic errors in our simulations are not more than 5%.

3. Simulation results

We are interested in strong Coulomb correlation effects such as bound states (excitons, bi-
excitons, many particle clusters), their transformation and eventual breakup at increasing
density (Mott effect). Beyond the Mott density, we expect the possibility of the hole
crystallization if the hole mass is sufficiently large [7]. Below, the density of the two-
component plasma is characterized by the Brueckner parameter rs defined as the ratio of the
mean distance between particles d = [1/π(ne + nh)]1/2 and the 3D exciton Bohr radius aB ,
where ne and nh are the electron and hole 2D densities. The dimensionless temperature will
be presented as a ratio of the temperature and the 3D electron–hole binding energy (Rydberg),
which includes the reduced effective mass and dielectric constant.

We analyze some spacial distribution functions and related spin-resolved typical
‘snapshots’ of the e–h state in the simulation box for different particle densities, temperatures
and hole-to-electron mass ratios M. Due to the limited size of the paper all results are illustrated
at M = 800 which is higher than the critical value for crystallization (M ≈ 60, see [7] for
details). At this value of mass ratio we obtain the most remarkable physical effects. According
to the path integral representation of the density matrix, each electron and hole is represented
by several tens of points (‘beads’). The spatial distribution of the beads of each quantum
particle is proportional to its spatial probability distribution. Figure 1 shows that the typical
size of the cloud of beads for electrons is several times larger than the one for the heavy holes.
At low temperature and low (rs = 6) and middle (rs = 2) densities practically all holes are
closely covered by electron beads. From a physical point of view this means that electrons and
holes form bound states, i.e. excitons, bi-excitons and many particle clusters. The existence of
the bound states is also supported by the behavior of the pair distribution functions, exhibiting
pronounced maxima at the distances of about half and a bit more of the Bohr radius (see geh in
figure 1). We note that raising the temperature at a fixed density leads to a temperature-induced
ionization of the bound states. As a result we found a substantial number of free electrons and
holes.

From figure 2 it follows that the growth of density results in the increase of the number
of particles in clusters. The structural analysis of large many-particle clusters shows the
hexagonal ordering of heavy holes inside liquid-like clusters (upper right panel). In this panel
there are only two clusters: one is in the center of the Monte Carlo cell, while the second one
is divided into four parts (in each corner) due to the periodic boundary conditions of the Monte
Carlo cell. Here besides the inner normal hexagonal structure the holes due to the strong
Coulomb repulsion form the filament-like structures of the clouds of beads at the bounds of

2



J. Phys. A: Math. Theor. 42 (2009) 214014 V S Filinov et al

0 1 2 3 4 5
0

5

10

15

20

25

g a
b(

r)

(a)
T = 0.007,
M = 800,
rs= 6

0 2 4 6 8 10
0

2

4

6

8

10

g a
b(

r)

(a)
T = 0.007,
M = 800,
rs= 2

Figure 1. Pair distribution functions (left column) and snapshots of the Monte Carlo cell (right
column). Left column: gee (black solid line), ghh (red dashed line), geh (blue dot-dashed line) at
temperature T/Ry = 0.007, the hole-to-electron mass ratio M = 800 and densities related to the
Brueckner parameter rs = 6 and rs = 2. Right column: red and magenta clouds—holes, yellow
and cyan clouds—electrons with the opposite spin directions.
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Figure 2. Pair distribution functions (left column) and snapshots of the Monte Carlo cell (right
column) at temperature T/Ry = 0.007, the hole-to-electron mass ratio M = 800 and densities
related to the Brueckner parameter rs = 0.5 and rs = 0.25. Notations are the same as in figure 1.
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clusters. The filament-like structures are fully 2D topological effect as in 3D case the holes in
analogous many-particle clusters have normal liquid-like ordering [6, 8].

If the particle density is high enough (rs = 0.25), the electron wavelength becomes larger
than the mean inter-particle distance d and even larger than the size of the Monte Carlo cell
which is seen by the large extension of the clouds of electron beads. For rs � 0.5 clusters
become unstable because two electrons bounded to neighboring holes start to overlap allowing
for electron tunneling from one cluster to the other (Mott effect). Since the hole wavelength
is significantly smaller than the electron wavelength, it may still be smaller than d and the
structure of the hole beads resembles a liquid-like or a crystal-like state. If the hole mass
exceeds a critical value, the holes may even form a crystal-like structure [7] (lower right
panel in figure 2). Here the holes form a crystal-like structure, while the electron density
demonstrates the Bloch oscillations. At this very high density the type of the hole ‘crystal’ is
influenced by the boundary conditions of the Monte Carlo cell (finite-size effect). The detailed
analysis of the type of the crystal-like structure is possible for a much more bigger number of
particles in the Monte Carlo cell.

4. Conclusion

In this paper we have presented a computer simulation analysis of strong Coulomb correlations
in dense two-dimensional two-component quantum plasmas at low temperatures. In particular,
the formation and dissociation of bound states, such as excitons, bi-excitons and many particle
clusters, is analyzed and the density–temperature regions of their occurrence are identified.
We have shown that, above the Mott point, two-component plasmas with large mass anisotropy
show interesting Coulomb correlation phenomena: with increasing density holes can undergo
a phase transition to a Coulomb hexatic-like liquid and to a Wigner crystal which is embedded
into a degenerate electron gas. The crystal-like formation in a two-component plasma is
possible for large enough hole-to-electron mass ratios [7].
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