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Abstract

The dynamical mechanism of the Schwinger effect of vacuum pair creation
(VPC) under action of a strong external electric field is discussed. It is shown
that the common interpretation of this process as the tunnelling between
states with negative and positive energies is not universal and depends on the
choice of electromagnetic field gauge. We discuss the mechanism of VPC based
on the growth of virtual vacuum fluctuations (zitterbewegung). Finally, we
consider the parallels between the Schwinger effect in QED and the Landau-
Zener effect in solid state physics.

1. The original idea [1] about vacuum pair creation (VPC) under action of a
stationary spatially homogeneous electric field was based on the model of particle
tunnelling between the states with negative and positive energy in the Dirac model
of physical vacuum. The authors turn your attention to the obvious picture that
the electric field with the 4-potential

A0(x) = φ(x) = −Ex3, A(x, t) = 0 (1)

leads to appearance of a potential barrier between the two regions with the dispersion
laws (cf. Fig.1)

ω±pot(p,x) = eφ(x)± ω0(p), (2)

where ω0 =
√

m2 + p2 (below we concentrate on the case of QED as the basic
quantum field model), e is the electron charge with its sign, E is the electric field
strength oriented along of the axes x3). This model results in the exponential factor
exp(−Ec/E) for the tunneling probabilibty, with the critical field Ec = m2/e (here
and below we use the natural units ~ = c = 1). This result was confirmed and
generalized by J. Schwinger [2] who obtained the well-known exact solution of the
corresponding QED problem:

w =
1

4
(eE)2 exp

{
−πm2

|e|E
}

. (3)

However, a constant electric field of the given geometry E(0, 0, E) can be de-
scribed also in the alternative Hamilton gauge

Aµ = (0, 0, 0, A3 = A(t) = −Et). (4)
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Figure 1: The barrier (tunneling) mechanism of the stationary Schwinger effect
for an electron with momentum p = 0, left without and right with homogeneous
stationary electric field applied.

Using the exact solution of the Dirac equation for the potential [3]

Aex = E0b

[
tanh

(
t

b

)
+ 1

]
, Eex = E0 cosh−2

(
t

b

)
, (5)

leading to the field strength E(0, 0, E), one can obtain the Euler-Heisenberg-Sauter-
Schwinger (EHSS) formula (3) also (at b → ∞ [4, 5]). This is an expected conse-
quence of gauge invariance. But the potentials (4) and (5) do not admit a simple
tunnelling interpretation of the VPC process. Indeed, the dispersion laws for elec-
trons and positrons have now the following form:

ω±(p, t) = ±
√

m2 + (p±eA(t))2 (6)

and the energy gap has now no inclination needed for the barrier effect, cf. Fig.2,
where we show instantaneous dispersion curves (6) for a fixed t 6= 0). Time evolution
is accompanied by uniform (or, in general, nonuniform) motion of the dispersion
curves (6).

The absence of a tunnelling interpretation of the EHSS effect in the gauge (4) jus-
tifies the search for a more general mechanism allowing for universal interpretation
of this effect independently of the chosen gauge. This becomes even more obvious
if one considers more general electric fields which are still spatially homogeneous,
but have an arbitrary time dependence (it is assumed that the applicability of the
quasi-classical approximation [6] is not violated). In general, the EHSS formula (3)
does not describe such situations (see, however, the work [7]).

This motivates the transition to a more general kinetic approach which is able to
describe such strongly non-stationary and non-equilibrium situations, see e.g. [8].
Such a kinetic approach to the dynamical EHSS effect can be extended also to other
classes of non-stationary fields (including gravitational and chromo-electromagnetic
fields), which are essentially of non-potential nature. However, there are more pro-
nounced examples of the dynamical EHSS effect with a non-potential mechanism,
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Figure 2: Dispersion laws (6) for eA(t) = m.

such as the so-called “inertial mechanism” corresponding to changing in time quasi-
particle masses [9] and the dynamical Casimir effect [10, 11] stipulated by the time
changing boundary conditions.

In this context, a hypothesis can be expressed (apparently, for the first time,
this supposition was made in the work [9]), that VPC is the original response of
the vacuum on any of its perturbations having quasi-classical or quantum nature.
For example, one can expect that also a time-dependent magnetic field can lead to
VPC (the influence of a constant strong magnetic field on VPC was considered in
the works [5, 8, 16], see also [18]).

2. Apparently, all these manifestations of VPC have some common nature con-
nected with vacuum fluctuations (“zitterbewegung”) under action of some (in gen-
eral) time-dependent external causes. As a consequence, the life time of virtual vac-
uum oscillations increases which is also related to virtual particle-antiparticle pairs.
Some part of such quasiparticle pairs are found on the instantaneous mass-shell
[e.g., Eq. (6) in QED]. During the action of the external force, also pair annihilation
processes take place, simultaneously with VPC giving rise to a dynamical quasipar-
ticle plasma [5]. At the same time, a substantial fraction of the particle-antiparticle
plasma will result from off-shell contributions. In particular, this leads to different
states of in- and out-vacuums [5]. In the considered approximation, any stage of
this process is coherent and the particle-antiparticle states are entangled.

The time-development of VPC processes can be investigated in detail. Some
steps in this direction were done in the work [12] where, on the basis of numerical
investigations, the just quantum processes was selected from the phase of quasi-
classical acceleration. This stage can be considered as a multiphoton process with
participation of the photon condensate (of the quasiclassical external field).

Thus, VPC processes have in their origin the fluctuation mechanism of virtual
vacuum oscillations under the action of different external causes. Some visual con-
firmations of this hypothesis are demonstrated in Fig. 6 (“dog brush”) of the work
[17] and Figs. 3 and 4 of the present paper. These figures show some details of the
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Figure 3: The momentum spectrum of the created particle-antiparticle pairs, left:
for a pulsed field at a time long after the pulse, i.e. t À b = 2π/ν and right: for a
monochromatic field with λ = 1000 nm after 5 field oscillations.

VPC process: initial smooth splashes of the distribution functions, followed by gen-
eration of high harmonics and development of instabilities with feasible transition
to a chaotic regime. However, all these stages still require more research to gain a
deeper understanding.

3. The analogy with solid state physics can play an important role for under-
standing of VPC in QFT. This is due to the simpler experimental observability of
solid state phenomena in time-dependent fields. This provides the possibility of de-
tailed comparison of theoretical models with experiments, including verification of
different elementary processes. The results appear to be useful also for the under-
standing of the analogous elementary processes occuring in VPC in quantum field
theory. Finally, the Schwinger mechanism of QFT has recently become of primary
interest in solid state theory in connection with applications to graphene, e.g. [21].

The two-band model is the simplest and often adequate model for the considered
situation in solid state systems such as insulators or semiconductors. Thereby the
lower (valence) band corresponds to the states with negative energy in the Dirac
picture of the physical vacuum whereas the upper (conduction) band is (at low
temperature) vacant, in the absence of an external field, and corresponds to the
states with positive energy in the Dirac model. The switch on of an external field is
accompanied by perturbation of the electron states in the lower band and creation
of electron-hole pairs. This process is connected with an overlap of the electron wave
functions of both bands. Here we do not consider the standard optical excitation
[13] where the photon energy is in (close to) resonance with the band gap but the
analog of the discussed above tunneling process.

The first step in the direction of a nonperturbative kinetic description of such
processes in a time dependent electric field was done in the work [14]. In the case of
a stationary electric field this process is known as the Landau-Zener effect [15]. For
rather fast changing electric fields, one can speak about a dynamical analogy of the
Landau-Zener effect (in analogy with the dynamical EHSS effect considered above).

The relevant kinetic equation for the distribution function of electrons f(p, t)
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Figure 4: The same as Fig.3 for a 103 times larger wave length λ = 0.1 cm corre-
sponding to a 103 times larger vector potential.

(it coincides with the distribution function of holes in the case of a non-preexcited
system where the initial distributions are zero) is [14]

ḟ(p, t) = 2λ(p, t)

∫ t

−∞
dt′λ(p, t′)[1 + 2f(p, t′)] cos 2θ(p, t, t′), (7)

where the transition amplitude is [P(t) = p + eA(t)]

λ(p, t) =
ε̇(P)

∆ + 2ε(P)
, (8)

and the dynamical phase is equal to

θ(p, t, t′) =

∫ t

t′
dτε [P(τ)]. (9)

Here, we use the simplest dispersion law, ε (p) = p2/2m, where m is the effec-
tive mass and, for simplicity, me = mh (generalization to arbitrary dispersions are
straightforward). The high frequency multiplier in Eq. (7) with the phase (9) cor-
responds to the “zitterbewegung” parametrized by the external field.

Figs. 3 and 4 show numerical solutions of Eq. (7) for the momentum distributions
for two cases: the right figures are for a time-periodic field

Aex(t) = −(E0/ν) cos νt, Eex = E0 sin νt, (10)

with the frequency ν corresponding to the wave length λ = 1000 nm (Fig. 3) and
λ = 0.1 cm (Fig. 4), where m = me and E0 = 1000 V/cm. The left parts of figures
3 and 4 correspond to a pulsed Sauter potential of the form (5) with b = 2π/ν,
i.e. only one period of (10) is included. Due to the choice of the prefactor, the
amplitude of the vector potential in Fig. 4 is 1000 times larger than in Fig. 3. As a
consequence, for a pulse, the two peaks of the distribution merge into one. Further,
it is easy to see that, in the periodic case, the coherent evolution of the system
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is accompanied by an increase of the number of higher harmonics (growth of an
instability) which eventually leads to chaotic behavior. This is due to the nonlinear
dependence on the field strength.

Similar highly nonlinear behavior of the distribution functions is found on the
level of a mean field theory (quantum Vlasov equation) [19] or in electron-ion colli-
sions in strong laser fields (inverse bremsstrahlung) [20]. Thus, we expect that the
present results show only a qualitative trend. To obtain a consistent description for
the VPC at high excitation densities it will be necessary to include many-particle
effects, such as Hartree-Fock and correlation contributions. Furthermore, the KE
(7) is based on the assumption that the dispersion of the energy bands is not altered
by the action of the external field which, in the case of strong fields, may need a
more careful analysis.
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