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Abstract
We provide a survey of the concept and several successful applications of
effective potentials. After introducing Kelbg’s expression we discuss several
useful approximations and additional generalizations including non-diagonal
expressions. Finally, we present the recent results concerning non-diagonal
contributions and the relation to effective interactions arising from the dynamics
of Gaussian wave packets.

PACS numbers: 05.30.−d, 52.65.−y

1. Introduction

The Coulomb potential is a singular potential which gives rise to several divergences in
statistical thermodynamics. Taking quantum effects into account removes these singularities.
In fact two particles denoted by the indices i, j with masses mi,mj and thermal momentum
corresponding to temperature T do not ‘see each other’ as point particles but as charge clouds
with an effective diameter

λij = h̄√
2mijkBT

,
1

mij

= 1

mi

+
1

mj

. (1)

The idea of effective potentials was first introduced in quantum chemistry by Hellman and
Gombas and in statistical physics by Morita. Since 1962 Kelbg and co-workers at Rostock
University have developed this method to a powerful tool in plasma physics [1]. The idea
of Günter Kelbg [1] was to replace the Coulomb potential by an effective potential which
is finite at zero distance due to quantum effects (figure 1). Kelbg’s theory was originally
based on quantum perturbation theory for the diagonal matrix elements (Slater sums) of the
density matrix; he succeeded in obtaining exact expressions for the first order in e2. His
theory was developed by a group at Rostock University (including Ahlbehrendt, Ebeling,
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Figure 1. Effective pair potential for an electron–electron (e–e) and an electron–proton (e–p) pair
at temperature T = 106 K in several approximations. Dotted lines: pure Coulomb interaction;
solid lines: ‘exact’ pair potential Upair; dashed lines: Deutsch potential, equation (4); open
circles: UF variational perturbative potential due to Feynman and Kleinert [12]. Distances are in
aB = h̄2/mee

2 and potentials are in Ha = e2/aB units.

Hetzheim, Hoffmann, Kraeft, Kremp, Schmitz, Töwe, later joined by Röpke, Schlanges,
Redmer, Bonitz and others). The Rostock School in Quantum Statistics formed by Günter
Kelbg concentrated on analytical calculations of thermodynamic functions based on effective
potentials [2–4]. Several authors calculated the two-particle density matrix from the known
wave functions including numerical approaches [5–7]. Zelener, Zamalin, Norman and Filinov
gave first applications within the Monte Carlo formalism [8, 9], Deutsch introduced useful
approximations [10], Hansen, McDonald and Pollock [11] gave first applications to molecular
dynamics, and Kleinert developed a variational approach [12].

2. The Kelbg potential, approximations and corrections

The effective interaction potential for two particles of species i, j derived by Kelbg reads:

uij (r) = eiej

r

[
1 − exp

(
− r2

λij

)
+

√
πr

γijλij

(
1 − erf

[
γij

r

λij

])]
, (2)

where λij is the thermal wavelength given above, erf(x) is the standard error function and γij =
1 in Kelbg’s original formula. At zero distance the potential is finite, uij (0) = (eiej

√
π)/λij .

In addition, we may use the γ -parameter to modify the height at the origin; see below.
Since Kelbg’s expression is quite complicated, several useful approximations have been

proposed. One of the simplest approximations due to Zelener et al [8] uses the Coulomb
potential for equal and opposite charges in the following form:

u+− = −e2

r
if r > r0, u+− = ε if r < r0 = e2/ε. (3)

First MC simulations for dense plasmas were based on this simple effective potential [8].
Another simple expression has been proposed by Deutsch [10]:

uij = eiej

r
[1 − exp(−αr)], α � 1

λij

. (4)

This potential has already been used in quantum chemistry by Kramers and Hellmann and in
electrolyte theory by Glauberman and Juchnovskii. The MD simulations by Hansen et al [11]
were based on this approximation.
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Figure 2. Heuristic parameter γij (T ) which improves the Kelbg expression providing exact values
for height and derivative at r = 0 obtained from exact solution of the two-particle problem [14].

We will discuss now heuristic corrections at small distances. As a result of Kelbg’s
approximations (first order in e2) the effective potential is not exact at r = 0. It may differ
from the expression obtained from the hydrogen wave functions, which is known and given in
the form of tables [4, 6]. On the other hand, the first derivative of Kelbg’s potential at r = 0
and the asymptotic r → ∞ are correct, in agreement with quantum mechanics. This leads us
to the idea to include the higher orders in e2 by adapting the parameter γij introduced formally
into equation (2). By using in equation (2) the factor

γij = u
Kelbg
ij (0)

/
uexact

ij (0) (5)

and taking uexact
ij from quantum mechanics we may improve Kelbg’s expression substantially

[13, 14]. This approximation will be called the improved diagonal Kelbg potential (IDKP).
We represent in figure 2 the fit-parameter γij as a function of temperature. We see that at
T < 10 000 K the deviations from an unchanged Kelbg potential become essential.

We propose here in addition a much simpler expression providing also exactness at the
point r = 0, this formula might be useful for simulations.

uij = eiej

λij

(√
π

γij

− r

λij

)
if r < r1, uij = eiej

r
if r > r1 (6)

where r1 follows from continuity. This approximation leads to very simple forces, which are
constant at small distances and Coulombic for larger distances. We underline again that the
height at r = 0 and the first derivative are exact by construction.

The parameters of effective potentials depend on the temperature; in non-equilibrium this
concept is not well defined. Klimontovich et al have shown how effective potentials may be
extended to non-equilibrium situations [15].

3. Off-diagonal effective potentials

The Kelbg potential describes the diagonal contributions to the binary density matrix. We
proceed now to a calculation of the off-diagonal elements, defining the off-diagonal effective
potential by means of the full binary density matrix

ρij (ri , rj , r′
i , r′

j ) = ρ ideal
ij exp[−βuij (ri , rj , r′

i , r′
j )]. (7)
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Figure 3. Off-diagonal potential of an electron–proton pair as a function of the distance r and three
angles between the vectors r and r′. In each panel the upper, middle and lower curves correspond
to φ = 0, π/2 and π , respectively. Distances are in units of electron Bohr radius, aB = h̄2/mee

2

and the potential in electron Hartree, Ha = e2/aB.

Based on first-order perturbation theory we find [13, 14]

uij (rij , r′
ij ) = eiej

∫ 1

0

dα

dij (α)
erf

(
dij (α)

2λij

√
α(1 − α)

)
, (8)

where dij (α) = |αrij + (1 − α)r′
ij |. In order to illustrate the dependence on the arguments we

use the ‘Mittelwertsatz’

uij (rij , r′
ij ) = eiej

|ξrij + ξ ′r′
ij | erf

( |ξrij + ξ ′r′
ij |

2λij

√
ξξ ′

)
. (9)

with two numbers satisfying (ξ + ξ ′) = 1. The diagonal elements of this expression are
closely related to the effective potential used in wave packet dynamics [16]. We show in
figure 3 the off-diagonal effective potential of an electron–proton pair for three different
angles φ between the vectors r and r′; the modulus of the second vector is fixed to |r′| = 0.25,

1.0, 2.0. In each panel the upper curve corresponds to φ = 0, the middle curve to φ = π/2,
and the lower curve to φ = π . Solid lines show the ‘exact’ off-diagonal potential, Upair(r),
obtained using the matrix squaring technique [14]. The dotted line represents the diagonal
approximation IDKP, uij (rij , r′

ij ) = 1
2 [uij (rij , rij )+uij (r

′
ij , r

′
ij )]. One can see that at distances

r ′ = 1.0, 2.0 the diagonal approximation becomes very crude and does not capture the
dependence on φ. Now it is interesting to compare this quantum mechanical result with the
perturbation solution (8).

The off-diagonal potential (8) is exact only to first-order in e2. In order to find an improved
off-diagonal potential corresponding to equations (2) and (6) we use the splitting

erf(x) = 1 − exp(−x2) + xe1(x). (10)
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The function e1(x) = 1 + O(x) defined this way is well behaved. The wanted generalization
correcting the behaviour at small distances is then

uij (rij , r′
ij ) =

∫ 1

0
dα

eiej

dij (α)

[
1 − exp

(
− d2

ij

4λ2
ij α(1 − α)

)]

+
eiej

γijλij

∫ 1

0

dα

2
√

α(1 − α)
e1

(
dij γij

2λij

√
α(1 − α)

)
, (11)

where γij (T ) is the correction parameter defined in the previous section. Spin and symmetry
effects may be included by certain combinations of the expressions given above [14]. The
results for the improved off-diagonal Kelbg potential (11) (IODKP) are shown in figure 3 with
the open circles. The splitting of the integral into two parts and correction of the second term
by the temperature-dependent parameter γij (T ) extends the applicability of the perturbation
expression (8) to rather low temperatures, e.g. T = 31 250 K, corresponding to the ground
state of the hydrogen atom. As one can see from figure 3, even at this temperature the
deviations from the exact result are quite small. At temperatures higher than T = 250 000
K the agreement is excellent and all angular dependences of the off-diagonal potential are
reproduced.

4. Applications of Kelbg-type effective potentials

Effective potentials found their main application in the field of equilibrium statistics [4]. The
original idea due to Morita (1959) was to express the diagonal density matrix in the form of
Boltzmann factors with two-particle, three-particle, etc, effective potentials. The advantage
of this procedure is that the calculation of the partition function may be reduced to a purely
classical problem including, however, many-particle interactions [4]. On the other hand, a
well-known disadvantage of this method is that several many-particle effects, such as exchange
and bound state effects, are not easily described. Most successful applications were given in
the field of analytical thermodynamics. By means of cluster expansions exact virial expansions
for the thermodynamic functions of quantum plasmas could be found up to the order n5/2 in the
density [2–4]. Since the convergence of this series is poor, the range of validity was extended
by Padé methods. The available Padé formulae are widely used in applications in plasma and
astrophysics. Recently good agreement of the Padé formulae with path integral Monte Carlo
(PIMC) calculations has been shown [17, 18].

Let us discuss now the applications of effective potentials within the PIMC method,
which is a new promising field of computational physics [17–19]. As is well known, PIMC
calculations are based on the high-temperature approximations for the density-matrix and the
Trotter–Feynman expansions of the exponential operator. This way we need for applications
good expressions for the high-temperature density matrices, and in particular the off-diagonal
elements. This is just the point where the formulae expressing the density matrix by effective
potentials come into play. This procedure very much improves convergence and provides
effective calculations.

Let us now discuss the applications of effective potentials to molecular dynamics
simulations. We mentioned already the pioneering work of Hansen et al [11]. More recent
MD simulations have shown that the use of Kelbg-type effective potentials provides good
thermodynamic functions, correlation functions, microfield distributions and, to some extent,
also non-equilibrium properties [20–26].
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5. Time-dependent effective potentials

The basic idea of using effective potentials is to condense all quantum properties of the
particles into some constant parameters, while their dynamics is traced according to classical
equations of motion. Generally, the respective parameters depend on the macroscopic state of
the system, such that every particle produces the same effective potential. While this concept is
very successful in describing certain equilibrium aspects of strongly coupled plasmas, it is not
well suited to study properties such as velocity distributions, velocity correlations, transport
properties or non-equilibrium processes.

On the other hand, we have seen above that there is a strong analogy between the effective
potentials and the resulting interactions between Gaussian wave packets (see equation (9)). In
fact the time evolution of such wave packets (WPs) can be obtained from classical equations
of motion by employing the variational formulation of the Schrödinger equation. This concept
of a wave packet-molecular dynamics (WPMD), originally developed by Heller [27], has
been successfully applied for a number of applications ranging from collision processes in
nuclear physics [28] over atomic strong-field dynamics [29] to the description of dense plasmas
[30]. Generally, one starts with a proper parametrization of the many-body wave function
ψ({ri}, {qj }), where the dynamics of the parameters qi is determined from the Dirac–Frenkel–
McLachlan form of the Schrödinger equation [32]

δ

∫ t2

t1

〈ψ |ih̄ ∂

∂t
− Ĥ |ψ〉 dt = 0. (12)

After some algebra evaluation of equation (12) leads to the following equations of motion for
the parameters

∂H

∂qi

=
∑

j

N ij q̇j , Nij = 2 Im

[〈
∂ψ

∂j

∣∣∣∣∂ψ

∂i

〉]
, (13)

with H = 〈ψ |Ĥ |ψ〉 being the expectation value of the Hamiltonian operator. We represent
here the N-particle wave function by the following product state

ψ =
N∏

i=1

φi,

φi =
(

3

2πβi

)3/4

exp

(
−

(
3

4β
+ ipβ

)
(xi − ri )

2 + i
d

β
(xi − ri )

4 − ipi (xi − ri )

) (14)

of single particle WPs φi .5 Here ri and pi parametrize the position and momentum of the WP
centre, while βi and pβi

denote the WP width and its corresponding momentum. In difference
to the standard ansatz [30] we included an additional constant phase shift id(xi − ri )

4/β,
which will help us to treat several principal problems. The major benefit of the ansatz is
that it results in Hamiltonian equations for the conjugated pairs (ri , pi ) and (βi, pβi

) with the
effective Hamiltonian H.

The standard ansatz (equation (14) with d = 0) appears to provide a semiclassical
description of the particle dynamics; however, the classical high-temperature limit, namely a
strong narrowing of the individual WPs, cannot be recovered with such WPMD simulations. In
fact, the divergence of the WP width not only leads to a divergent partition sum in parameter
space but also causes technical problems in numerical plasma simulations even at finite
temperatures. This is, in fact, not surprising as freely propagating WPs spread without
bounds, while the transition to classical behaviour results from localization effects due to

5 Exchange effects may be taken into account by using a properly symmetrized wave function [30].
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Figure 4. Phase-space trajectories of the WP width parameters, for α = 0 (dashed line) and α = 1
au (solid line). Atomic units are used.

decoherences caused by environmental influences. Despite the ongoing discussion about the
way of extracting thermodynamic properties from time averages of quantum mechanical time
evolution in a restricted trail space, WPMD simulations have been successfully applied to
describe the statistical properties of strongly coupled plasmas [30, 33, 34], as long as the
problem of a diverging WP width has been avoided. Thereby different ideas, such as fixing
β at some value or assuming an adiabatic dynamics for the WP width, have been employed
[29–31]. We may show that fixing the width by means of the thermal wavelength β ∝ λ2

leads us back to the previous approximation equation (9). Alternatively, we multiplied here
(see equation (14)) the trail state by the additional phase factor exp[−id(xi − ri )

4/β] in order
to model localization effects. It is important to note that the inclusion of this phase factor
preserves the Hamiltonian character of the underlying equations of motion. However, the
substitution of this ansatz results in a new effective Hamiltonian

H =
∑

i

Hi +
∑
i<j

Vij , Hi = p2
i

2m
+

h̄2

m

(
9

8βi

+ 2βip
2
βi +

280

9
d2βi − 40

3
dβiPβi

)
, (15)

Vij = e2

rij

erf

(√
3

2(βi + βj )
rij

)
. (16)

The effective interaction potential Vij does not depend on the new phase factor α. Instead
of fixing β ∝ λ2 which would lead us back to equation (9), we use here the full dynamics
of β(t). We note that our phase factor d is closely related to the procedure proposed in
[30, 31].

As illustrated in figure 4, the additional phase factor causes the width to prescribe closed
trajectories, even in the case of free particles. Therefore the resulting parameter-space partition
sum of free particles is indeed finite

Zp = π2

α

−5 exp

(
− 3h̄2α

mkBTp

)
, (17)

where α = √
40d/3,
 = h/

√
2πmkBTp denotes the thermal wavelength and Tp is the

temperature in the parameter space. Note that this temperature does not provide a unique
measure of thermodynamic properties as it depends on the particular choice of the trail wave
function ψ . However, from the correct quantum mechanical entropy one can find a relation
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between Tp and the physical system temperature T, resulting in an average WP width of

〈β〉 = 3

4α

(
1 +

mkBT

3h̄2α

)
. (18)

From comparison of equation (16) with equation (9) one finds that 〈β〉 = 3h̄2/(mkBT ), which
finally leads to the desired result

α = (3 +
√

89)

40

mkBT

h̄2 ≈ 0.31λ−2, (19)

ensuring the correct high-temperature limit of the system in thermodynamic equilibrium.
Finally, we would like to note that the problem of the diverging WP width can be directly

overcome by starting from a density matrix description rather than propagating the individual
wave function of the system and doing the averaging afterwards. As shown in [35], a Gaussian
ansatz for the equilibrium density matrix together with the corresponding variational principle
leads to promising results for equilibrium properties of strongly coupled plasmas and at the
same time reproduces the known high temperature limit. An extension of this idea to dynamical
processes, based on the time-dependent variational principle as presented in [27], may thus
allow the study of more complex non-equilibrium situations without employing any additional
constraints. This is however beyond the scope of the present paper and may be the subject of
future work.

6. Conclusions

The method of effective potentials is nowadays a well-established tool in the theory of dense
quantum plasmas; we extended the method here to non-diagonal contributions. In combination
with quantum Monte Carlo methods this approach describes thermodynamic properties and
spatial correlations in strongly coupled Coulomb systems quite well. In order to describe
dynamical processes like transport phenomena, potentials with time-dependent parameters
are required. We have discussed how these potentials may be introduced from wave packet
methods and demonstrated how best agreement with the Kelbg-type potentials can be obtained.
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[4] Kremp D, Kraeft W, Ebeling W and Röpke G 1986 Quantum Statistics of Charged Particle Systems (New York:
Plenum)

[5] Trubnikov B A and Elesin V F 1964 Zh. Eksp. Teor. Fiz. 47 1279
[6] Rohde K, Kelbg G and Ebeling W 1968 Ann. Phys., Lpz. 28 1
[7] Storer R G 1968 J. Math. Phys. 9 964

Barker A A 1969 Phys. Rev. 179 129
[8] Zelener B V, Norman G E and Filinov V S 1974 Teplophys. Vyss. Temp. 12 267

http://dx.doi.org/10.1063/1.1664666
http://dx.doi.org/10.1103/PhysRev.179.129


The method of effective potentials in the quantum-statistical theory of plasmas 4317

[9] Zamalin V M, Norman G E and Filinov V S 1977 The Monte Carlo Method in Statistical Mechanics (Moscow:
Nauka) (in Russian)

[10] Deutsch C 77 Phys. Lett. A 60 317
[11] Hansen J P, Mc Donald I R and Pollock E L 1975 Phys. Rev. A 11 1025

Hansen J P and Mc Donald I R 1981 Phys. Rev. A 23 2041
[12] Kleinert H 1995 Path Integrals in Quantum Mechanics, Statistics and Polymer Physics 2nd edn (Singapore:

World Scientific)
[13] Filinov A, Bonitz M and Ebeling W 2003 J. Phys. A: Math. Gen. 36 5957
[14] Filinov A, Golubnychiy V, Bonitz M, Ebeling W and Dufty J W 2004 Phys. Rev. E 70 046411
[15] Klimontovich Yu L et al 1973 J. Exp. Theor. Phys. 36 476

Klimontovich Yu L et al 1974 Teor. Mat. Fiz. 19 364
[16] Klakow D et al 1994 Phys. Lett. A 192 55

Klakow D et al 1994 J. Chem. Phys. 101 10766
[17] Filinov V S, Fortov V E, Bonitz M and Levashov P R 2001 JETP Lett. 74 384

Filinov V S, Fortov V E, Bonitz M and Levashov P R 2001 Plasma Phys. Control. Fusion 43 743
[18] Trigger S A, Ebeling W, Filinov V S, Fortov V E and Bonitz M 2003 J. Exp. Theor. Phys. 96 465
[19] Ceperley D M 1995 Rev. Mod. Phys. 67 279
[20] Ortner J, Schautz F and Ebeling W 1997 Phys. Rev. E 56 4665

Ortner J, Schautz F and Ebeling W 1998 Phys. Scr. T 75 93
[21] Ebeling W, Norman G E, Valuev A A and Valuev I 1999 Contrib. Plasma Phys. 39 61
[22] Ortner J, Valuev I and Ebeling W 2000 Contrib. Plasma Phys. 40 555
[23] Golubnychiy V, Bonitz M, Kremp D and Schlanges M 2001 Phys. Rev. E 64 016409
[24] Golubnychiy V 2004 PhD Thesis Kiel University
[25] Bonitz M et al 2005 Contrib. Plasma Phys. 45 450
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