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Abstract. Spherically symmetric three-dimensional charged particle clusters are analyzed
experimentally and theoretically. Based on accurate molecular dynamics simulations ground
state configurations and energies with clusters for N ≤ 160 are presented which correct previous
results of Hasse and Avilov [Phys. Rev. A 44, 4506 (1991)]. A complete table is given in the
appendix. Further, the lowest metastable states are analyzed.

1. Introduction
Over the last years the investigation of complex (dusty) macroscopic and mesoscopic plasmas
occurring e.g. in astrophysical, laboratory and technical situations has become an important
research field. The theoretical description of complex plasmas is extremely difficult due to their
heterogeneous composition and the drastic differences in the relevant space and times scales,
e.g. [1, 2]. With the help of confinement potentials it has become possible to trap, for long
periods of time, plasmas of a single charge (non-neutral plasmas). By varying the confinement
strength researchers have achieved liquid behavior and even Coulomb crystallization of ions [3]
and dust particles [4, 5]. Such strong correlation phenomena are of exceptional current interest
in many fields.

In general, the formation of extended, three dimensional dust clouds in rf-discharges is
hampered by the dominance of the gravitational force on the dust particles. Only in a narrow
sheath region above the electrode the electric field forces can compensate gravity. Hence, typical
dust clouds are two dimensional (2D) structures trapped in the non-equilibrium conditions of
the boundary sheath which cause the formation of vertical particle chains [6].

Besides electric field forces thermophoresis is capable to compensate gravitation. This has
recently been demonstrated by Rothermel et al. [7], but instead of homogeneous 3D dust
clouds the formation of dust free regions in the center of the discharge was observed. Similar
observations of these so-called voids are made under microgravity conditions [8]. Although in
both situations the electric field force on the particle is directed towards the plasma center, the
outward directed ion flow is assumed to produce a friction force which exceeds the electric field
forces in the center of the discharge and hence creates the void.

This contribution deals with the simulation and analysis of spherically 3D clusters which
were recently first experimentally observed in dusty plasmas [9]. We compare simulation results
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Figure 1. (Color online) Picture of the discharge chamber and a schematic drawing of the
experimental setup (top view). The laser produces a vertical laser fan which illuminates vertical
cross sections of the particle cloud. The camera looks at the illuminated plane under right
angle. Laser and camera are mounted on a common positioning system to allow observation of
arbitrary cross sections of the dust cloud.

to real dust clusters from experiments. In the simulations the dust-dust interaction potential is
modelled by a Coulomb potential [10].

2. Experiments on Coulomb balls
2.1. Experimental Setup
The experiments presented in this paper are performed in a capacitively coupled rf-discharge in
argon. The basic setup is well known from several investigations on 2D plasma crystals [6,11–13].
It consists of two plane parallel electrodes. The rf-power is applied to the lower electrode with
17 cm diameter. The upper electrode is a mesh grid of similar size and is connected to ground.
The distance between the electrodes is 6 cm. Compared to previous investigations two changes
are applied to the setup. First, the temperature of the lower electrode can be controlled in
a range between 20 − 80◦C. With the upper electrode being at room temperature, vertical
temperature gradients of up to 10◦C/cm can be established. Second, a glass tube with square
cross section is placed in the lower half of the discharge on top of the lower electrode.

Typical parameters for the discharge are vertical temperature gradients of 5 Kcm−1, rf-power
below 30 W and neutral gas pressures of 50-150 Pa. For the experiments we use particles with
a diameter of 3.4µm which are injected into the plasma from the top by gently shaking a fine
sieve. The dust particles are illuminated by a vertical laser sheet of less than 500µm width. The
scattered light of the particles is observed with a CCD-camera under right angle (Fig. 1). The
CCD camera is focused to the illuminated plane. Both, camera and laser fan are mounted on
a common frame which can be moved in horizontal direction. Hence images of arbitrary cross
section of the dust cloud can be recorded. In particular, all three coordinates of the particles
can be determined from a systematic scan of the dust cloud.
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Figure 2. (Color online) The schematic drawing (left) shows a spherical particle cloud and a
plane which rotates around an axis through the center of the cloud. The measured positions
of all particles hitting this plane are marked with a dot for a particle cluster with 190 particles
(right). The dashed lines indicate concentric circles around the cloud center.

2.2. Experimental Results
After injection of the particles the formation of a spherical dust cloud is observed. The cloud
is located inside the glass tube close to the geometric center of the discharge arrangement. The
example shown in Fig. 2 is a dust cloud consisting of 190 particles which has a diameter about
5 mm. In contrast to previous investigations [6–8] an important finding is that the dust cloud is
void-free and that the particles show no chain formation. To investigate the spatial structure in
more detail, Fig. 2 shows the particle distribution as a function of the cylindrical coordinates ρ
and z, i.e. the azimuthal dependence is omitted in this plot. Besides the overall spherical shape
of the dust cloud the occurrence of consentric shells is observed (dashed lines). This becomes
evident when the particle position is plotted as a function of radius (spherical coordinates) only.
Fig. 3 shows that the radial particle distribution function is strongly modulated. The prominent
peaks indicate the formation of concentric spherical shells. A more detailed analysis [9] of the
particle arrangement on individual shells shows that the particles arrange in a close hexagonal
packing which includes few pentagonal defects to form a convex surface. The shell occupation
for the 190 particle cluster is 2, 21, 60 and 107 starting with the innermost shell. This is close
to the occupation number [10] found by numerical simulations of Coulomb clusters [20].

The appearance of a highly ordered particle system is further supported by calculations of the
pair correlation function which yields a typical interparticle distance of 0.715 mm. Compared
with the intershell distance of about 0.63 mm a good agreement with hexagonal closed packed
systems is found [18].
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Figure 3. (Color online) Experimental radial particle distribution of a particle cluster with 190
particles.

3. Theory
3.1. Model
To model 3D Coulomb clusters confined in a 3D isotropic harmonic trap we consider N
classical particles with equal charge q and mass m interacting via the Coulomb potential. The
corresponding Hamilton function is

HN =
N∑

i=1

m

2
ṙi

2 +
N∑

i=1

m

2
ω2r2

i +
N∑

i>j

q2

4πε|ri − rj |
, (1)

where ω is the strength of the confinement potential. In what follows below we will
use dimensionless lengths and energies by introducing r0 = (q2/2πεmω2)1/3 and E0 =
(mω2q4/32π2ε2)1/3. The length r0 is the stable distance of two particles confined in the
considered potential, E0 denotes their ground state energy.

3.2. MD-Simulation
Three-dimensional classical Coulomb clusters in a spherical parabolic trap have been investigated
earlier by different authors with different numerical methods. Rafac et al. [15] simulated the
clusters with N ≤ 27 using MC techniques. An extended table with N ≤ 59 was given by Tsuruta
et al. [16]. The work of Hasse et al. [18] the number of charged particles was increased up to a few
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Figure 4. (Color online) Number of particles Ns on shell s vs. N . The 2nd shell is opened at
N = 13, the 3rd shell at N = 58 (and N = 61), the 4th shell at N = 155. Note the reoccurrence
of two shells at N = 60.

thousand. But they did not found the true ground state configurations for N = 28 − 31, 44, 45
and for clusters with more than 63 particles, due to accuracy limited calculation. To find
the ground and metastable states, we used classical molecular dynamics (MD) together with
a suitable simulated annealing method [10]. Starting with a random initial configuration of N
particles, the system is cooled continuously until all momenta are zero and the particles settle in
the minima of the potential energy surface. Depending on the particle number, the cooling down
process was repeated up to several thousand times until every of the computed low energy states
was found more than a given number of times (typically 10 . . . 100) assuring a high probability
that also the ground state has been found. Crucial for a high search efficiency is the use of an
optimized MD time step (it has to be chosen not too small to avoid trapping in local potential
minima). The complete results for N = 2 · · · 160 are given in Table 1 in the Appendix.

3.3. Cluster characterization
At zero temperature (zero particle velocities ṙi,) concentric shells are found with characteristic
closures as well as magic clusters. The stability of clusters is characterized by the binding
energy [16]:

∆2(N) = E(N + 1) + E(N − 1) − 2E(N). (2)

The symmetry within the shells can be analyzed by performing a Voronoi analysis [10], i.e.
by constructing polygons around each particle formed by the lines equally bisecting nearest-
neighbor pairs on the shell. To quantify this topological criterion, we introduce the Voronoi
symmetry parameter defined as
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Figure 5. (Color online) Binding energy ∆2 (Eq. 2) and mean Voronoi symmetry parameter
MVSP (Eq. 4) of the two outermost shells vs. particle number N . Magic clusters are
N = 4, 6, 10, 12, 19, 32, 38, 56 [16] and N = 81, 94, 103, 116 [10].

GM =
1

NM

NM∑

j=1

1
M

∣∣∣∣∣

M∑

k=1

eiMθjk

∣∣∣∣∣. (3)

Here NM denotes the number of particles on the shell, each of which is surrounded by a Voronoi
polygon of order M (M nearest neighbors), and θjk is the angle between the j-th particle and
its k-th nearest neighbor. A value G5 = 1 (G6 = 1) means that all pentagons (hexagons) are
perfect, the reduction of GM below 1 is a measure of their distortion. The Voronoi symmetry
parameter GM gives a measure for the symmetry of the Voronoi polygons of order M . To
quantify the symmetry of the whole shell we introduce the mean Voronoi symmetry parameter
(MVSP). We define the mean Voronoi symmetry parameter 〈G(s)〉 of the s-th shell of the cluster
as

〈G(s)〉 =
1

Ns

∑

M

NMG
(s)
M , (4)

where Ns denotes the number of all particles on shell s. The MVSP allows to compare clusters
with the same shell configuration because this parameter is very sensitive to the position of the
particles within the cluster.
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Figure 6. (Color online) Number NM of Voronoi polygons with M edges in the two outermost
shells vs. total particle number N . The top figure shows the first (outermost) shell and the
bottom figure the second shell.

3.4. Analysis of 3D Coulomb Clusters
Figure 4 shows the number of particles on different shells of the Coulomb clusters as a function
of the total particle number. The figure is easy to understand. For N ≤ 12 all particles occupy
one shell. With N = 12, the shell is filled completely (closed shell). The 13th particle opens a
new shell, i.e. one particle from the outer shell goes inside. Analogously, the 2nd shell is closed
when it contains 12 particles (for N = 57), and the 3rd shell is closed for N = 154, see table 1.

The existence of the shell structure is a marked peculiarity of mesoscopic Coulomb systems,
and is, of course, caused by the spherical confinement potential. With increasing N the structure
of a macroscopic system emerges gradually, see also Ref. [19]. The effect of the confinement is
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strongest at the cluster boundary, i.e. in the outer shell, whereas the inner shells are partially
shielded from the trap potential by the surrounding particle shells. Therefore, bulk properties
start to emerge in the center. This trend is, in fact, clearly seen already for N ≤ 200 by
comparing the widths of the shells [10], see table 1.

For the clusters (N = 2 . . . 160) Fig. 5 shows the binding energy ∆2 (Eq. 2) of the clusters
and the MVSP (Eq. 4) of the two outermost shells vs. the particle number. With the help of
these two quantities one can identify the so-called magic clusters, which are particularly stable.
The combination of these quantities (a peak in ∆2 and a higher MVSP in the shells) allows us
to identify magic clusters: N = 4, 6, 10, 12, 19, 32, 38, 56 [16] and N = 81, 94, 103, 116 [10].

Now we analyze the symmetry of the clusters in more detail. Figure 6 shows the number
of Voronoi polygons with M edges on the two outermost shells vs. total particle number. The
dashed line in the figures gives the number of particles on the shell. With increasing size the
particle number in the shell is increasing too. For smaller particle numbers in the shell we
observe polygons with M = 3, 4. With increasing particle numbers one can see an increase of
the number of polygons with M = 6, the number of polygons with M = 5 grows up to 12 and
is then nearly constant. In each case Euler’s theorem

∑
M(M≥3)

(6 − M)NM = 12 is fulfilled.

3.5. Cluster Fine Structure
An interesting observation is that the simulations frequently yield for the same shell configuration
different values of the total energy, see e.g. [10]. The differences are much larger than the
simulation error, moreover, the energies are reproducible. Obviously the state of a cluster is
not completely determined by its shell configuration (contrary to the 2D case). There exist
further (excited) states, which have the same shell configuration as the ground state, but a
different particle arrangement and symmetry within one shell. This can be called fine structure.
To understand the differences in the structure of these states with same shell configuration we
analyze the intrashell symmetry by a Voronoi analysis, i.e. by constructing polygons around a
given particle formed by the planes equally bisecting nearest-neighbor pairs on the shell (cf. the
example of N = 17 shown in Fig. 7). Interestingly, both states do not differ with respect to the
number of polygons of each kind in the outer shell: there are N5 = 12 pentagons and N6 = 4
hexagons. Rather the arrangement of the polygons is different. In one case, the four hexagons
form a perfect tetrahedron ABCD and are separated from each other by pentagons, cf. Fig. 7
(left), in the other case two pairs of hexagons touch, see Fig. 7 (right) and the tetrahedron is
distorted (Fig. 8). Two edges remain practically constant (AB ≈ CD ≈ 1.63), but the edge
AB rotates with respect to the first case by an angle of 34 degrees resulting in a reduction of
edges BC and AD to about 1.24 while AC and BD increase to 1.94. Comparing the energies
of the two configurations we conclude that the state with the more symmetric arrangement of
the Voronoi polygons, i.e. (Fig. 7, left), has the lower energy.

4. Summary and Outlook
In this contribution we have presented numerical simulation results for spherical Coulomb
clusters with N ≤ 160. The observed lowest energy states for N ≥ 60 are, in most cases,
lower than those previously reported and should be reliable baring points for experiments with
classical Coulomb balls in dusty plasmas or ultracold ions. Moreover, the shell configurations
detected are expected to be important also for quantum Coulomb clusters (e.g. in quantum dots)
in the strong coupling limit, as for 2D systems it was found that in most cases they have the same
shell configuration as their classical counterpart [14, 17]. In addition we performed an analysis
of the lowest excited states of small clusters. Besides metastable states with a shell structure
different from the ground state we identified fine structure states which are characterized by
different particle arrangement within the shells. These states have a lower symmetry which is
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Figure 7. (Color online) Voronoi construction for the cluster N = 17. The two energetically
lowest states with shell configuration N = {1, 16} are shown. White (dark) areas are hexagons
(pentagons) – indicating the number of nearest neighbors of the corresponding particle. Left:
ground state, right: first excited (fine structure) state. Above the figures the energies, radius of
the shell r1 and the symmetry parameters are given.

Figure 8. (Color online) Arrangement of the four particles surrounded by hexagons – the two
states differ by rotation of the edge AB. Dark (bright) circles corresponds to the configuration
shown in Fig. 7, left (right).
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linked to higher values of the total energy. Despite the decreasing values of the excitation energy
with increasing N , knowledge of the lowest metastable states is important for understanding
the dynamic properties of mesoscopic clusters.

From the experemental point of view creation of spherical particle clouds consisting of a
relatively large number of charged particles (of order 100 and higher) is rather easily achieved.
Creation of small clusters with a predefined number of particles is still under implementation
in the experiment. On the other hand, computer simulations become very time consuming
for N > 200. First preliminary comparisons of experiments and theory show good qualitative
agreement of the shell structure of the cluster N = 190. The agreement is further improved
if a statically screened Coulomb potential (i.e. Yukawa potential) is used instead of the bare
Coulomb interaction [20]. However, extensive further comparisons for various N are necessary.
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Appendix

Table 1. Ground state shell configurations, energy per particle, mean shell radii r1,2,3,4 and
widths σ1,2,3,4

N Config. E/N r1 r2 σ1 σ2

2 (2) 0.5 0.500(0) - 0.000(0) -
3 (3) 1.310370(7) 0.660(9) - 0.000(0) -
4 (4) 1.785826(2) 0.771(5) - 0.000(0) -
5 (5) 2.245187(2) 0.865(1) - 0.010(0) -
6 (6) 2.654039(0) 0.940(6) - 0.000(0) -
7 (7) 3.064186(0) 1.010(6) - 0.013(5) -
8 (8) 3.443409(4) 1.071(4) - 0.000(0) -
9 (9) 3.809782(0) 1.126(9) - 0.006(3) -
10 (10) 4.164990(0) 1.178(3) - 0.005(5) -
11 (11) 4.513275(4) 1.226(5) - 0.010(1) -
12 (12) 4.838966(4) 1.270(0) - 0.000(0) -
13 (12, 1) 5.166798(3) 1.365(9) - 0.000(0) -
14 (13, 1) 5.485915(4) 1.403(3) 0.007(1) 0.005(8) -
15 (14, 1) 5.792094(2) 1.438(3) 0.000(0) 0.005(6) -
16 (15, 1) 6.093421(3) 1.471(9) 0.000(0) 0.005(2) -
17 (16, 1) 6.388609(9) 1.504(2) 0.000(0) 0.006(2) -
18 (17, 1) 6.678830(3) 1.535(3) 0.000(0) 0.000(6) -
19 (18, 1) 6.964146(0) 1.565(4) 0.000(0) 0.004(0) -
20 (19, 1) 7.247181(0) 1.594(6) 0.000(2) 0.006(9) -
21 (20, 1) 7.522377(7) 1.622(6) 0.000(0) 0.003(4) -
22 (21, 1) 7.795468(9) 1.649(9) 0.000(7) 0.006(3) -
23 (21, 2) 8.063575(4) 1.707(7) 0.530(2) 0.030(2) -
24 (22, 2) 8.326802(8) 1.732(6) 0.526(0) 0.029(4) 0.009(2)
25 (23, 2) 8.588360(7) 1.757(0) 0.526(2) 0.026(3) 0.000(0)
26 (24, 2) 8.844236(2) 1.780(5) 0.524(1) 0.026(3) 0.000(8)
27 (24, 3) 9.097334(6) 1.830(5) 0.689(8) 0.036(9) 0.009(6)
28 (25, 3) 9.348367(8) 1.852(5) 0.688(9) 0.036(4) 0.001(6)
29 (25, 4) 9.595435(1) 1.899(2) 0.798(7) 0.037(4) 0.011(9)
30 (26, 4) 9.838964(7) 1.919(7) 0.796(1) 0.034(7) 0.018(0)
31 (27, 4) 10.079511(0) 1.939(9) 0.792(6) 0.038(3) 0.007(1)
32 (28, 4) 10.318678(8) 1.959(6) 0.793(5) 0.033(8) 0.000(0)
33 (29, 4) 10.556587(1) 1.979(1) 0.791(4) 0.034(6) 0.010(7)
34 (30, 4) 10.790841(9) 1.998(0) 0.790(1) 0.035(8) 0.000(0)
35 (30, 5) 11.022731(0) 2.038(1) 0.885(9) 0.041(0) 0.038(0)
36 (30, 6) 11.251922(6) 2.077(5) 0.958(2) 0.035(3) 0.000(0)
37 (31, 6) 11.478747(2) 2.094(7) 0.958(5) 0.035(8) 0.017(8)
38 (32, 6) 11.702951(6) 2.111(9) 0.954(9) 0.039(4) 0.000(0)
39 (33, 6) 11.928322(8) 2.128(9) 0.954(9) 0.035(2) 0.012(0)
40 (34, 6) 12.150162(9) 2.145(3) 0.954(7) 0.038(0) 0.011(8)
41 (35, 6) 12.370791(5) 2.161(8) 0.953(8) 0.035(4) 0.006(4)
42 (35, 7) 12.589139(3) 2.196(1) 1.026(0) 0.040(6) 0.050(7)
43 (36, 7) 12.805545(2) 2.211(9) 1.025(2) 0.037(4) 0.045(6)
44 (36, 8) 13.020077(9) 2.245(4) 1.084(5) 0.038(0) 0.013(2)
45 (37, 8) 13.232901(2) 2.260(3) 1.084(5) 0.038(0) 0.034(0)
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Continuation of Table 1

N Config. E/N r1 r2 r3 σ1 σ2 σ3

46 (38, 8) 13.444601(5) 2.275(1) 1.084(2) - 0.036(4) 0.037(3) -
47 (38, 9) 13.654458(5) 2.306(6) 1.139(1) - 0.034(0) 0.048(8) -
48 (39, 9) 13.862762(0) 2.321(0) 1.137(9) - 0.033(0) 0.036(2) -
49 (40, 9) 14.069919(9) 2.335(1) 1.137(1) - 0.034(1) 0.035(4) -
50 (41, 9) 14.275728(5) 2.349(0) 1.137(2) - 0.036(8) 0.026(7) -
51 (41, 10) 14.480101(0) 2.378(8) 1.187(7) - 0.035(2) 0.029(8) -
52 (42, 10) 14.683192(6) 2.392(2) 1.187(5) - 0.034(0) 0.029(4) -
53 (43, 10) 14.885283(9) 2.405(5) 1.187(2) - 0.037(5) 0.029(5) -
54 (44, 10) 15.085702(8) 2.418(6) 1.187(2) - 0.035(2) 0.024(5) -
55 (43, 12) 15.284702(6) 2.461(8) 1.277(3) - 0.031(8) 0.010(1) -
56 (44, 12) 15.482144(4) 2.474(3) 1.278(0) - 0.036(9) 0.010(1) -
57 (45, 12) 15.679350(2) 2.486(9) 1.276(3) - 0.036(3) 0.007(2) -
58 (45, 12, 1) 15.875406(2) 2.512(6) 1.376(5) 0.005(2) 0.046(3) 0.004(3) -
59 (46, 12, 1) 16.070103(4) 2.524(7) 1.376(4) 0.000(0) 0.048(0) 0.000(0) -
60 (48, 12) 16.263707(3) 2.523(6) 1.275(5) - 0.036(0) 0.003(6) -
61 (48, 12, 1) 16.455812(8) 2.548(8) 1.375(1) 0.004(2) 0.045(1) 0.002(4) -
62 (48, 13, 1) 16.647519(7) 2.573(8) 1.413(4) 0.016(3) 0.044(3) 0.023(5) -
63 (48, 14, 1) 16.837694(0) 2.598(8) 1.447(3) 0.004(6) 0.039(3) 0.024(7) -
64 (49, 14, 1) 17.027288(9) 2.610(1) 1.447(8) 0.001(9) 0.037(3) 0.023(7) -
65 (50, 14, 1) 17.215360(8) 2.621(2) 1.447(7) 0.000(0) 0.049(5) 0.018(8) -
66 (50, 15, 1) 17.402891(3) 2.645(3) 1.480(5) 0.005(9) 0.043(2) 0.026(6) -
67 (51, 15, 1) 17.589347(4) 2.656(3) 1.480(3) 0.004(6) 0.043(0) 0.024(3) -
68 (51, 16, 1) 17.774874(4) 2.679(7) 1.512(3) 0.003(4) 0.034(5) 0.031(1) -
69 (52, 16, 1) 17.959432(2) 2.690(3) 1.512(6) 0.001(0) 0.039(3) 0.034(3) -
70 (53, 16, 1) 18.143338(3) 2.701(0) 1.511(9) 0.002(3) 0.041(1) 0.031(7) -
71 (54, 16, 1) 18.326281(9) 2.711(6) 1.511(8) 0.008(3) 0.041(2) 0.028(0) -
72 (54, 17, 1) 18.508444(3) 2.734(2) 1.542(3) 0.005(9) 0.035(3) 0.020(1) -
73 (55, 17, 1) 18.689729(4) 2.744(5) 1.542(2) 0.004(7) 0.037(5) 0.020(4) -
74 (56, 17, 1) 18.870167(9) 2.754(6) 1.542(3) 0.008(8) 0.042(2) 0.017(8) -
75 (56, 18, 1) 19.049742(1) 2.776(5) 1.571(7) 0.005(5) 0.037(2) 0.031(8) -
76 (57, 18, 1) 19.228600(2) 2.786(5) 1.571(4) 0.000(0) 0.037(2) 0.025(3) -
77 (58, 18, 1) 19.406816(5) 2.796(4) 1.571(4) 0.003(3) 0.038(5) 0.031(4) -
78 (59, 18, 1) 19.584175(2) 2.806(3) 1.571(5) 0.004(6) 0.039(8) 0.027(1) -
79 (60, 18, 1) 19.760799(9) 2.816(1) 1.570(9) 0.005(0) 0.040(2) 0.027(4) -
80 (60, 19, 1) 19.936689(9) 2.837(0) 1.600(2) 0.003(0) 0.038(4) 0.038(4) -
81 (60, 20, 1) 20.111592(4) 2.857(7) 1.627(1) 0.006(4) 0.031(1) 0.040(6) -
82 (61, 20, 1) 20.286103(1) 2.867(1) 1.627(4) 0.005(0) 0.031(1) 0.040(6) -
83 (61, 20, 2) 20.459834(2) 2.886(6) 1.688(6) 0.544(7) 0.039(0) 0.061(9) 0.044(5)
84 (61, 21, 2) 20.632758(9) 2.906(4) 1.714(0) 0.542(6) 0.034(1) 0.069(2) 0.003(3)
85 (62, 21, 2) 20.804907(5) 2.915(6) 1.713(5) 0.542(2) 0.038(6) 0.063(9) 0.021(7)
86 (63, 21, 2) 20.976517(8) 2.924(7) 1.713(8) 0.540(3) 0.041(2) 0.061(4) 0.009(6)
88 (64, 22, 2) 21.317682(0) 2.953(2) 1.737(8) 0.538(5) 0.033(9) 0.059(1) 0.005(7)
89 (65, 22, 2) 21.487369(1) 2.962(1) 1.737(8) 0.537(5) 0.034(4) 0.057(0) -
90 (66, 22, 2) 21.656403(7) 2.970(9) 1.737(6) 0.535(9) 0.037(4) 0.057(5) -
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Continuation of Table 1

N Config. E/N r1 r2 r3 σ1 σ2 σ3

91 (66, 22, 3) 21.824823(2) 2.989(1) 1.791(6) 0.705(0) 0.043(4) 0.066(7) 0.004(0)
92 (67, 22, 3) 21.992541(8) 2.997(9) 1.791(1) 0.705(2) 0.044(4) 0.064(9) 0.015(2)
93 (66, 24, 3) 22.159489(7) 3.026(0) 1.836(1) 0.701(9) 0.035(8) 0.078(1) 0.013(0)
94 (67, 24, 3) 22.325841(4) 3.034(7) 1.835(6) 0.700(1) 0.034(9) 0.068(3) 0.019(6)
95 (67, 24, 4) 22.491878(2) 3.052(2) 1.884(8) 0.808(9) 0.035(3) 0.067(7) 0.021(5)
96 (68, 24, 4) 22.657270(6) 3.060(6) 1.884(6) 0.808(3) 0.040(8) 0.067(5) 0.033(0)
97 (69, 24, 4) 22.822032(2) 3.068(7) 1.884(9) 0.809(5) 0.046(1) 0.067(8) 0.029(9)
98 (69, 25, 4) 22.986199(1) 3.086(4) 1.905(5) 0.808(1) 0.035(7) 0.075(0) 0.028(0)
99 (70, 25, 4) 23.149758(0) 3.094(5) 1.905(6) 0.807(1) 0.043(0) 0.072(2) 0.027(9)
100 (70, 26, 4) 23.312759(3) 3.111(7) 1.925(9) 0.805(5) 0.041(7) 0.074(0) 0.022(6)
101 (70, 27, 4) 23.475164(4) 3.129(1) 1.945(0) 0.802(8) 0.030(1) 0.073(1) 0.005(8)
102 (72, 26, 4) 23.637044(1) 3.128(0) 1.924(8) 0.805(2) 0.043(3) 0.071(0) 0.018(9)
103 (72, 27, 4) 23.798274(3) 3.145(1) 1.944(3) 0.801(7) 0.037(7) 0.071(2) 0.008(2)
104 (72, 28, 4) 23.959361(3) 3.161(7) 1.964(1) 0.802(1) 0.034(5) 0.078(1) 0.001(9)
105 (73, 28, 4) 24.120222(9) 3.169(6) 1.964(1) 0.802(0) 0.036(3) 0.076(8) 0.010(2)
106 (74, 28, 4) 24.280223(2) 3.177(3) 1.964(2) 0.802(3) 0.038(7) 0.077(2) 0.009(2)
107 (75, 28, 4) 24.439665(7) 3.185(0) 1.964(0) 0.801(0) 0.040(4) 0.074(4) 0.006(7)
108 (76, 28, 4) 24.598713(7) 3.192(7) 1.964(0) 0.800(7) 0.041(0) 0.072(3) 0.005(3)
109 (77, 28, 4) 24.757151(3) 3.200(5) 1.963(8) 0.800(6) 0.040(6) 0.070(5) 0.003(4)
110 (77, 28, 5) 24.915153(9) 3.216(3) 2.006(3) 0.896(1) 0.043(5) 0.076(3) 0.041(5)
111 (77, 29, 5) 25.072584(2) 3.232(2) 2.024(9) 0.896(9) 0.040(9) 0.081(7) 0.030(3)
112 (76, 30, 6) 25.229492(1) 3.255(4) 2.085(7) 0.967(0) 0.035(8) 0.095(0) 0.041(7)
113 (77, 30, 6) 25.385842(0) 3.263(7) 2.083(1) 0.964(0) 0.036(8) 0.073(2) 0.016(9)
114 (78, 30, 6) 25.541848(2) 3.271(1) 2.082(9) 0.964(0) 0.036(6) 0.074(5) 0.009(6)
115 (77, 32, 6) 25.697308(2) 3.294(9) 2.116(2) 0.963(0) 0.026(6) 0.077(4) 0.004(4)
116 (78, 32, 6) 25.852252(8) 3.302(2) 2.115(9) 0.963(3) 0.021(8) 0.076(0) 0.004(5)
117 (79, 32, 6) 26.007089(4) 3.309(4) 2.115(8) 0.962(2) 0.032(4) 0.075(3) 0.005(0)
118 (80, 32, 6) 26.161426(8) 3.316(7) 2.115(5) 0.961(3) 0.028(6) 0.068(5) 0.007(1)
119 (81, 32, 6) 26.315442(5) 3.323(7) 2.115(6) 0.962(4) 0.036(8) 0.069(8) 0.003(1)
120 (82, 32, 6) 26.468996(0) 3.330(8) 2.115(7) 0.962(0) 0.037(4) 0.070(2) 0.004(0)
121 (83, 32, 6) 26.622118(4) 3.337(9) 2.115(4) 0.961(4) 0.038(1) 0.067(6) 0.002(8)
122 (84, 32, 6) 26.774879(2) 3.344(9) 2.115(5) 0.962(0) 0.039(8) 0.068(5) 0.003(7)
123 (83, 34, 6) 26.927194(9) 3.367(2) 2.149(3) 0.962(5) 0.036(7) 0.085(6) 0.004(3)
124 (84, 34, 6) 27.079019(5) 3.374(1) 2.149(1) 0.962(7) 0.034(4) 0.086(7) 0.009(6)
125 (84, 34, 7) 27.230457(6) 3.388(4) 2.185(0) 1.034(0) 0.035(9) 0.085(2) 0.062(7)
126 (84, 35, 7) 27.381438(1) 3.402(7) 2.200(9) 1.034(1) 0.036(9) 0.089(2) 0.067(6)
127 (85, 35, 7) 27.532034(0) 3.409(4) 2.201(4) 1.034(0) 0.040(1) 0.091(0) 0.042(8)
128 (85, 35, 8) 27.682123(2) 3.423(5) 2.235(8) 1.092(2) 0.040(7) 0.083(2) 0.036(8)
129 (85, 36, 8) 27.831888(6) 3.437(9) 2.250(2) 1.091(9) 0.032(8) 0.081(5) 0.034(1)
130 (86, 36, 8) 27.981234(3) 3.444(5) 2.250(1) 1.091(7) 0.035(2) 0.083(2) 0.048(8)
131 (87, 36, 8) 28.130244(0) 3.451(3) 2.249(8) 1.090(9) 0.034(2) 0.078(5) 0.030(5)
132 (87, 37, 8) 28.278862(5) 3.465(1) 2.264(9) 1.090(5) 0.034(4) 0.081(8) 0.014(0)
133 (88, 37, 8) 28.427061(5) 3.471(8) 2.264(2) 1.091(2) 0.035(5) 0.085(7) 0.013(4)
134 (88, 37, 9) 28.574953(4) 3.485(5) 2.297(0) 1.144(0) 0.031(2) 0.071(5) 0.054(1)
135 (88, 38, 9) 28.722421(1) 3.499(2) 2.311(0) 1.143(6) 0.030(2) 0.073(9) 0.048(8)
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Continuation of Table 1

N Config. E/N r1 r2 r3 σ1 σ2 σ3

136 (89, 38, 9) 28.869526(8) 3.505(4) 2.311(2) 1.144(0) 0.031(5) 0.078(7) 0.043(7)
137 (90, 38, 9) 29.016328(0) 3.511(9) 2.311(0) 1.144(0) 0.033(4) 0.078(9) 0.040(2)
138 (90, 39, 9) 29.162701(3) 3.525(4) 2.325(1) 1.143(3) 0.029(9) 0.080(5) 0.037(0)
139 (91, 39, 9) 29.308773(6) 3.531(6) 2.325(1) 1.143(0) 0.034(2) 0.085(7) 0.034(9)
140 (91, 40, 9) 29.454518(1) 3.544(9) 2.339(1) 1.142(9) 0.029(5) 0.084(2) 0.042(4)
141 (92, 40, 9) 29.599899(6) 3.551(4) 2.338(7) 1.141(7) 0.033(5) 0.075(1) 0.038(4)
142 (92, 40, 10) 29.744962(8) 3.564(4) 2.368(9) 1.193(0) 0.034(1) 0.070(0) 0.045(4)
143 (93, 40, 10) 29.889733(5) 3.570(7) 2.368(9) 1.193(2) 0.031(4) 0.071(4) 0.032(2)
144 (94, 40, 10) 30.034090(4) 3.576(9) 2.368(8) 1.193(1) 0.033(1) 0.070(7) 0.055(2)
145 (94, 41, 10) 30.178106(2) 3.589(8) 2.382(5) 1.192(0) 0.035(8) 0.071(2) 0.034(8)
147 (95, 42, 10) 30.465219(1) 3.608(7) 2.395(7) 1.192(3) 0.029(9) 0.079(4) 0.039(4)
148 (96, 42, 10) 30.608238(9) 3.614(8) 2.395(5) 1.192(3) 0.030(6) 0.078(8) 0.036(7)
149 (96, 43, 10) 30.750998(2) 3.627(3) 2.409(0) 1.192(6) 0.032(3) 0.085(3) 0.037(6)
150 (96, 42, 12) 30.893383(1) 3.639(5) 2.454(1) 1.281(6) 0.034(8) 0.079(5) 0.010(3)
151 (96, 43, 12) 31.035390(0) 3.652(4) 2.465(9) 1.281(4) 0.027(1) 0.068(5) 0.014(6)
152 (96, 44, 12) 31.177075(2) 3.664(9) 2.478(3) 1.281(1) 0.031(1) 0.067(4) 0.016(5)
153 (97, 44, 12) 31.318527(6) 3.670(8) 2.478(1) 1.281(1) 0.028(2) 0.067(3) 0.012(9)
154 (98, 44, 12) 31.459632(1) 3.676(9) 2.477(7) 1.281(0) 0.026(3) 0.062(5) 0.014(4)

Continuation of Table 1

N Config. E/N r1 r2 r3 r4

155 (98, 44, 12, 1) 31.600488(0) 3.688(7) 2.504(2) 1.384(6) 0.002(2)
156 (98, 45, 12, 1) 31.741100(1) 3.700(6) 2.516(9) 1.383(8) 0.012(7)
157 (100, 44, 12, 1) 31.881320(7) 3.700(4) 2.503(8) 1.383(9) 0.004(3)
158 (100, 45, 12, 1) 32.021293(6) 3.712(2) 2.516(6) 1.383(4) 0.004(3)
159 (101, 45, 12, 1) 32.161014(1) 3.718(0) 2.516(4) 1.383(7) 0.005(3)
160 (102, 45, 12, 1) 32.300404(8) 3.723(8) 2.516(1) 1.383(3) 0.007(3)

N σ1 σ2 σ3 σ4

155 0.030(1) 0.079(9) 0.009(0) -
156 0.033(3) 0.087(1) 0.006(2) -
157 0.034(0) 0.076(2) 0.006(5) -
158 0.032(7) 0.085(2) 0.006(3) -
159 0.031(0) 0.088(1) 0.005(9) -
160 0.034(1) 0.082(2) 0.005(2) -
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