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Abstract. The classical Klimontovich equation for the microsocopic phase space density is
given a Weyl quantization. As an example of its application, a simple nonequilibrium jellium-
type model for metallic clusters in strong fields is considered and the corresponding quantum
kinetic equation is discussed. The treatment of collective excitations in such an inhomogeneous
plasma is described briefly.

1. Introduction
A central feature of the many contributions of Klimontovich to many-body physics [1, 2, 3]
is his emphasis on the microscopic phase space density as the fundamental variable in terms
of which all other properties, microscopic and macroscopic, could be expressed. In classical
mechanics this density obeys an exact nonlinear Vlasov equation. Remarkably, this constitutes
an exact mapping of Hamiltonian particle dynamics onto a ”simpler” field theory. All of non-
equilibrium statistical mechanics is comprised of a solution to this nonlinear field equation, the
Vlasov equation, and averages over an ensemble for initial values of these fields. The difficult
many-body problem is hidden in this final averaging process [4].

In quantum mechanics a similar mapping is accomplished by the second quantization
representation. The creation and annihilation fields obey Heisenberg equations of motion that
can be expressed as closed equations for the fields and their conjugates. Again, a simple field
theory is supplemented by a difficult averaging over initial conditions. In both classical and
quantum mechanics a formalism for constructing average values and correlation functions has
been developed (e.g., loop or diagram expansion), as a practical means for implementing the
microscopic field equations and averages.

Here, in honor of the memory of Yuri Klimontovich’s innovative contributions to theoretical
physics, we present some of our current studies of metallic clusters in strong electromagnetic
fields [5, 6] in the language of his microsopic phase space density. As the problem is inherently
quantum mechanical, that formalism must be translated to the corresponding quantum version.
In many respects, it will be recognized as an awkward reinvention of second quantization. On the
other hand, the reader will see that many important physical features are exposed more directly
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in this form and perhaps its exposition provides some additional insight for new approximations
in the future. Furthermore, this comparison shows clearly that the classical limit of second
quantization is indeed given by Klimontovich’s microscopic phase space densities which is of
importance for theories of weakly degenerate systems.

The first section below is a translation of the Klimontovich formalism to quantum
mechanics and quantum statistics, using the Weyl quantization rules [9]. Next, our simplified
nonequilibrium model of a metallic cluster is introduced and the class of problems to be addressed
are outlined. The quantum Klimontovich formalism is then applied to write a formal kinetic
theory for electrons in a strong electromagnetic field. Since the confining potential provides an
inherent inhomogeneity, it is appropriate to formulate the kinetic theory in a gauge invariant
representation that will not be sensitive to subsequent spatial gradient expansions. The ensemble
average of this quantum Klimontovich equation provides the basis for a kinetic theory. The
Hartree-Fock contributions are extracted explicitly. The equation is then linearized about a
stationary inhomogeneous solution and its dielectric properties are identified. Some aspects of
collective excitations in the inhomogeneous plasma of the valence electrons are then discussed
briefly.

2. Klimontovich Formalism in Quantum Theory
The most remarkable of the many contributions of Klimontovich was his analysis of transport
and fluctuations in terms of the classical phase space density

f (r,p; t) =
∑
α=1

δ [r − rα (t)] δ [p − pα (t)] . (1)

Here Γ ≡ {rα,pα}, α = 1 . . . N , denote all positions and momenta of the particles of the system
which are the solutions of Hamilton’s equations, while {r,p} denote arbitrary single particle
field points. Such highly singular quantities are familiar from classical electrodynamics where
they are used for a continuum representation of the charge density and current density of point
particles. It was Klimontovich’s idea to add here also the momentum delta functions which has
allowed him to develop an extremely powerful formalism in many-particle physics.

The function f is equivalent to the solution of the full mechanical N -body problem and
depends on the precise knowledge of all initial data which, for a macroscopic system, is not
available. The average of f (r,p; t) over any initial ensemble ρ (Γ) gives the one particle reduced
distribution function

F (r,p, t) = 〈f (r,p; t)〉 =
∫

dΓ ρ (Γ) f (r,p; t) . (2)

Similarly, products of the microscopice phase space density provide all information about
fluctuations in the system considered. It is remarkable that the phase space density obeys
an exact equation of the same form as the nonlinear Vlasov equation, that follows directly from
Hamilton’s equations (here, for simplicity, we consider the case without external fields),(

∂t +
1
m

p · ∇
)

f (r,p, t) =
∫

dr′ n
(
r′, t

)
∇rV (r − r′)·∇pf (r,p, t) , (3)

where V ist the binary interaction potential and the number density n (r, t) is a functional of f

n (r, t) =
∫

dp f (r,p, t) . (4)

At first thought, this is a surprising result. It appears that one needs only to solve the field
equation (3) to obtain f (r,p; t), and that then all other properties are in hand. The flaw in this
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assumption is that the nonlinearity of the field equations makes the final average over initial data
very complicated (fluctuations). Nevertheless, it is a representation that separates nicely the
deterministic dynamics from the effects of fluctuations and which has allowed Klimontovich to
develop a rigorous kinetic theory of nonideal gases and nonideal plasmas, of relativistic systems,
a microscopic theory of fluctuations and so on, e.g. [7].

The quantum version of the microscopic phase space density [8] can be constructed by the
Weyl quantization rules [9]. The recipe is to first Fourier transform the classical function of
coordinates and momenta to be quantized. Then this Fourier transform is inverted with the
coordinates and momenta in a single exponent. To this end, the phase space variables are
replaced by their quantum-mechanical operators, {rα,pα} −→ {r̂α, p̂α}. Functions of rα and
pα become functions of the corresponding operators, and it must be assured that the result
does not depend on the ordering of the (non-commuting) coordinate and momentum operators.
Specifically for the phase space density

f̂ (r,p, t) = (2π)−6
∫

dλdη
∑
α=1

e−i[λ·̂rα(t)+η·p̂α(t)] f̃α (r,p; λ, η, t) , (5)

f̃α (r,p; λ, η, t) =
∫

drαdpα eiλ·rαeiη·pαf (r,p) = eiλ·reiη·p, (6)

where operators are denoted by a caret on top. The identities

e−i[λ·̂rα(t)+η·p̂α(t)] = e−i 1
2
h̄λ·ηe−iλ·̂rα(t)e−iη·p̂α(t) = ei 1

2
h̄λ·ηe−iη·p̂α(t)e−iλ·̂rα(t), (7)

which follow trivially by series expansion of the exponents, lead to several equivalent forms of
the quantum operator for the phase space density

f̂ (r,p, t) = ei 1
2
h̄∇r·∇p

∑
α=1

δ (r − r̂α) δ (p−p̂α) = e−i 1
2
h̄∇r·∇p

∑
α=1

δ (p−p̂α) δ (r − r̂α) . (8)

The second equality also establishes f̂ (r,p, t) as a Hermitian operator which guarantees that
the definition of the quantum phase space density does not depend on the ordering of coordinate
and momentum operators.

This is the desired generalization of Klimontovich’s microscopic phase space density to the
quantum case. It is instructive to rewrite this result as a series

f̂ (r,p, t) =
∞∑
l=0

(
ih̄

2
∇r · ∇p

)l

f (r,p, t) , (9)

from which the classical limit is recovered as the first term (l = 0), and quantum effects arise
from the non-zero l-values as gradient corrections to the classical limit.

The important properties of the classical phase space density are preserved in this quantum
representation. For example, integration over one field variable leads to the expected density
operator for the remaining variable∫

dr f̂ (r,p, t) =
∑
α=1

δ (p−p̂α) , (10)∫
dp f̂ (r,p, t) =

∑
α=1

δ (r−r̂α) = n̂ (r, t) . (11)

Finally, the ensemble average of f̂ (r,p, t) is the usual Wigner phase space density in quantum
mechanics [10] where ρ̂ is the density operator of the system in the initial state

F (r,p, t) =
〈
f̂ (r,p; t)

〉
= Tr ρ̂f̂ (r,p; t) . (12)
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This is easily established by writing (8) in second quantization representation

f̂ (r,p, t) = (2πh̄)−3
∫

dx e
i
h̄
x·p ψ†

(
r−1

2
x, t

)
ψ

(
r+

1
2
x, t

)
, (13)

as is shown in Appendix A. The average of this operator gives the usual definition of the Wigner
function.

The Heisenberg equations of motion for f̂ (r,p, t) can be transformed into field equations, i.e.
defined over the field variables with the result(

∂t +
1
m

p · ∇
)

f̂ (r,p, t) =
∫

dr′ n̂
(
r′, t

) 2
h̄

sin
(

h̄

2
∇r · ∇p

)
V

(
r − r′

)
f̂ (r,p, t) , (14)

which is the quantum Vlasor (or Hartree) equation. Clearly, the classical Vlasov equation (3)
is recovered in the limit h̄ → 0, whenever this limit exists. A more practical form without the
differential operators on the right side of (3) is obtained in Appendix A(

∂t +
1
m

p · ∇
)

f̂ (r,p, t) =
∫

dr′′dp′′
∫

dp′ f̂
(
r′′,p′′, t

)
K(r − r′′,p − p′)f̂

(
r,p′, t

)
, (15)

with

K(r,p) =
2
h̄

(2πh̄)−3
∫

dr′V
(
r +

r′

2

)
sin

(
r′ · p

h̄

)
. (16)

In summary, the formal structure of the classical Klimontovich formalism in terms of the
microscopic phase space density extends naturally to quantum mechanics and quantum statistics
as well. The analysis of transport and fluctuations can be accomplished in much the same way.
The next few sections illustrate an application of those ideas.

3. A Simple Model for Metallic Clusters in an External Field
3.1. Model Hamiltonian
The following model for metallic clusters has been described in more detail elsewhere, in the
context of a Green’s function formulation of the kinetic theory [6]. Only an outline of the
model is presented here. The system of interest is a bound collection of ions and electrons,
neutral or charged, comprising the cluster. It is assumed that the constituents are such that the
bound electronic distribution is comprised of tightly bound electrons with the ions and weakly
bound “valence” electrons [11, 12, 13]. Our interest here is to describe the dynamical response
of these weakly bound electrons to an external laser field. Accordingly, the ions and tightly
bound electrons are replaced by a model confining potential for the valence electrons, and no
further attention is given to possible transitions or response of the tightly bound subsystem.
The model therefore is a collection of N electrons in a local weakly-confining potential plus a
possibly strong, time dependent, external photon field. The Hamiltonian for this system is

H =
N∑

α=1

(
1

2me

(
pα − e

c
A (rα, t)

)2

+ φ (rα, t) + Vc (rα)

)
+

1
2

N∑
α=1

N∑
β=1

V (|rα − rβ|) (17)

The first term is the Hamiltonian for the electrons coupling to the external vector and scalar
electromagnetic fields, A and φ, and to the confining potential Vc. The second term describes
the Coulomb interactions among the electrons.

The objective here is to describe the response of the electrons to strong external laser fields
via a kinetic equation for their distribution in position and momentum. An appropriate starting
point therefore is the Klimontovich equation (2). The initial formal analysis does not require
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specification of the confining potential. However, it is useful to have in mind the simplest
case of a uniformly distributed ion charge density within a sphere of size determined by the
overall cluster density. This is the familiar jellium model, for which the ground state valence
electron distribution can be calculated to good approximation. The excited state dynamics of
this distribution is the problem addressed here.

3.2. Gauge Invariant Klimontovich Equation
The clusters of interest can be quite large, extending to several hundred ions. In that case the
confining potential is extended in space and in some cases the cluster approaches a bulk solid of
finite geometry. The spatial inhomogeneity is then weak and approximations based on gradient
expansion can be considered. However, such expansions depend on the particular gauge chosen
for the external electromagnetic field. Consequently, it is desirable to formulate the analysis in
a gauge invariant representation [14, 15].

A change of gauge corresponds to the replacements

A′ (r, t) = A (r, t) + ∇χ (r, t) , φ′ (r, t) = φ (r, t) − 1
c
∂t χ (r, t) , (18)

where χ (r, t) is arbitrary. As Maxwell’s equations are invariant under this transformation the
physical state is unchanged. This gauge transformation is generated in quantum theory by the
unitary transformation

Ĝ′ = ei e
h̄c

χ Ĝ e−i e
h̄c

χ, χ =
N∑

α=1

χ (rα, t) , (19)

where Ĝ is an arbitrary operator not explicitly dependent on A or φ. Now consider first a
different unitary transformation described by

Ĝ = e−i e
h̄c

B[A] Ĝ ei e
h̄c

B[A], B [A] =
∫ 1

0
dλ

N∑
α=1

rα · A (λrα, t) . (20)

Under a gauge transformation this becomes

Ĝ′ = ei e
h̄c

χe−i e
h̄c

B[A′] Ĝ ei e
h̄c

B[A′]ei e
h̄c

χ, (21)

where

B
[
A′] =

∫ 1

0
dλ

N∑
α=1

rα · A′ (λrα, t) =
∫ 1

0
dλ

N∑
α=1

rα · (A (λrα, t) + ∇λrαχ (λrα, t))

= B [A] + (χ − Nχ (0, t)) . (22)

Therefore, the operator Ĝ is seen to be invariant under the gauge transformation

Ĝ′ = e−i e
h̄c

B[A] Ĝ ei e
h̄c

B[A] = Ĝ. (23)

A special case of this is the gauge invariant Klimontovich phase space density operator

F̂ (r,p, t) ≡ e−i e
h̄c

B(A) f̂ (r,p, t) ei e
h̄c

B(A). (24)

The Klimontovich equation for F̂ follows directly from that for f̂ by the unitary transformation
in (3). In the remainder of this discussion attention will be limited to spatially homogeneous
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fields (more precisely, the dimensions of the cluster are small compared to the wavelength of the
laser field). Since gauge is no longer a concern, it is convenient to use the Coulomb gauge

φ = 0, E(t) = −1
c
∂tA (t) , (25)

where E(t) is the external electric field. The Klimontovich equation for F̂ then becomes

(
∂t + eE(t) · ∇p +

1
m

p · ∇r

)
F̂ (r,p, t) −

∫
dp′ Kc(r,p − p′) F̂

(
r,p′, t

)
=

∫
dr′′dp′′dp′ K(r − r′′,p − p′) F̂

(
r′′,p′′, t

)
F̂

(
r,p′, t

)
. (26)

The effects of the confinement potential and the Coulomb interactions induce momentum changes
through the functions Kc(r,p) and K(r,p), respectively

Kc(r,p) =
2
h̄

(2πh̄)−3
∫

dr′ Vc

(
r+

r′

2

)
sin

(
r′ · p

h̄

)
, (27)

K(r,p) =
2
h̄

(2πh̄)−3
∫

dr′ V
(
r+

r′

2

)
sin

(
r′ · p

h̄

)
. (28)

Equation (26) is formally exact and fully equivalent to the N particle Heisenberg equations
of motion. The left side of this equation describes the dynamics of non-interacting electrons
confined locally and in the presence of the homogeneous, time dependent external field. The
Coulomb interactions among these electrons is described by the bilinear functional of F̂ on the
right side. All correlations and quantum statistics result from averages of this equation, as
illustrated in the next section.

4. Kinetic Theory
The kinetic equation for the gauge invariant Wigner function follows directly from an ensemble
average of the Klimontovich equation (26). However, while the Klimontovich equation is closed
and deterministic its average does not provide a closed equation for the Wigner function. This
is due to the nonlinearity inducing correlations. The bilinear average can be analysed to obtain
approximate kinetic equations and correlation functions, as has been described in the books
of Klimontovich. The mean field or Hartree-Fock contributions, can be isolated explicitly to
characterize screening and dielectric response as described in the next section.

The average of (26) over some initial ensemble gives(
∂t + eE(t) · ∇p +

1
m

p · ∇r

)
F (r,p, t) −

∫
dp′ Kc(r,p − p′)F

(
r,p′, t

)
=

∫
dr′′dp′′

∫
dp′ K(r − r′′,p − p′)

〈
F̂

(
r′′,p′′, t

)
F̂

(
r,p′, t

)〉
, (29)

where
F (r,p, t) ≡

〈
F̂ (r,p, t)

〉
. (30)

The correlation function on the right side can be written as〈
F̂ (r1,p1, t) F̂ (r2,p2, t)

〉
= F (r1,p1, t)F (r2,p2, t)

− (2πh̄)−3
∫

dY
∫

dp3dp4 δ (p1+p2 − p3 − p4) e
i

2h̄
Y·(p2−p1)e

i
h̄
(r1−r2)·(p3−p4)

×F
[
1
2

(
r1 + r2 −

Y
2

)
,p3, t

]
F

[
1
2

(
r1 + r2 +

Y
2

)
,p4, t

]
+ C (r1,p1, r2,p2, t) . (31)
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The first term on the right results from neglecting all correlations and gives rise to the Hartree
mean field contributions. The second term is due to exchange correlations alone and gives the
Fock contributions. Finally, C (r1,p1, r2,p2, t) represents the remaining correlations due to the
interactions among the electrons (scattering effects).

The exact kinetic equation therefore has the form(
∂t + eE(t) · ∇p +

1
m

p · ∇r

)
F (r,p, t) −

∫
dp′ Keff(r,p − p′;F)F

(
r,p′, t

)
= IF (r,p, t;F) + IC (

r,p, t′;F
)
, (32)

where Keff(r,p) describes the contributions from both the confining potential and the Hartree
Coulomb terms

Keff(r,p) =
2
h̄

(2πh̄)−3
∫

dr′ sin
(

r′ · p
h̄

)
Veff

(
r +

1
2
r′

)
, (33)

Veff(r) ≡ Vc(r) +
∫

dr′′ n
(
r′′, t

)
V (r − r′′). (34)

The remaining two terms, IF (r,p, t) and IC (r,p, t) are the correlation effects due to Fock
exchange and Coulomb correlations. The Fock exchange term can be given explicitly

IF (r,p, t;F) = −
∫

dr1dr2dp1dp2G(r1, r2,p1,p2)F (r1 + r,p1 + p, t)F (r2 + r,p2 + p, t) ,

(35)
where the kernel G(r1, r2,p1,p2) is given in Appendix C. Finally, the Coulomb correlation
contributions require further analysis to describe collisional effects. This can be accomplished
in the Klimontovich formalism through closures analogous to those used in the classical case,
or via more systematic Green’s function methods. These results are still formally exact. In
particular no compromise has been made with respect to the quantum diffraction, degeneracy,
or exchange effects.

5. Linear Kinetic Theory
5.1. Equilibrium States
In the absence of a time dependent driving field Eq. (32) supports a stationary (equilibrium)
distribution

1
m

p · ∇rF0 (r,p) −
∫

dp′ K0eff(r,p − p′)F0
(
r,p′) = IF (r,p;F0) + IC (r,p;F0) , (36)

K0eff(r,p) =
2
h̄

1
(2πh̄)3

∫
dr′ sin

(
r′p
h̄

) {
Vc

(
r +

r′

2

)
+

∫
dr′′n0

(
r′′, t

)
V

(
r +

r′

2
− r′′

)}
. (37)

This equilibrium state is inhomogeneous due to the confining potential and possibly
inhomogeneous initial conditions. The solution to this equation is a formidable task except
in the high temperature classical limit. The mean field approximation, obtained by neglecting
IC (r,p;F0) is indeterminate with many solutions. In that case additional information must
be supplied (e.g., the known limiting form for non-interacting particles). In the following it is
assumed that IC (r,p;F0) has been specified to good approximation and that the solution F0

is known.
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5.2. Excitations About Equilibrium
Consider the case of small perturbations of the equilibrium state due to a (weak) external field
and/or initial perturbations. The system response is then described by the linearization of (32)
about this equilibrium state(

∂t +
1
m

p · ∇r − I0

)
δF (r,p, t) −

∫
dp′ K0eff(r,p − p′) δF

(
r,p′, t

)
(38)

−
∫

dp′ K1(r,p − p′ δF)F0
(
r,p′, t

)
= −eE(t) · ∇pF0 (r,p) , (39)

where I0 is an operator representing the linearized contributions from IF (r,p, t;F) and
IC (r,p, t′;F), and

K1(r,p) =
2
h̄

(2πh̄)−3
∫

dr′ sin
(

r′ · p
h̄

) ∫
dr′′ δn

(
r′′, t

)
V

(
r +

1
2
r′ − r′′

)
. (40)

This equation is linear and therefore its formal solution can be written directly. However,
translational invariance is broken by the confining potential so the physics of this inhomogeneous
electron gas is quite complex.

To expose some of the inherent collective effects a special solution is sought by separating the
dependence on space through the reference density n0(r) from the remaining spatial variations.
The basic assumption in this is that the primary direct effect of the confining potential is to
establish the localization of the valence electrons in the cluster. Accordingly, the solution is
written in the form

δF (r,p, t) = δF [r,p, t; n0(r)] , (41)

and the kinetic equation becomes

δ

δn0
δF (r,p, t; n0)

1
m

p · ∇rn0(r) −
∫

dp′ δF [r,p, t; n0(r)] K0eff(r,p − p′)

+
(

∂t +
1
m

p · ∇r |n0 −I0

)
δF (r,p, t)

−
∫

dp′ K1(r,p − p′; δF)F0
(
r,p′) = −eE(t) · ∇pF0 (r,p) . (42)

The first two terms involve the direct dependence on the reference density n0(r), and the
confining potential Vc. In the case of long wavelength perturbations these two terms cancel
approximately,

δ

δn0
F (r,p, t; n0)

1
m

p · ∇rn0(r) −
∫

dp′δF (r,p, t; n0(r)) K0eff(r,p − p′) ≈ 0. (43)

The remaining space dependence is determined from(
∂t +

1
m

p · ∇r |n0 −I0

)
δF (r,p, t)

−
∫

dp′K1(r,p − p′; δF)F0
(
r,p′, t

)
= −eE(t) · ∇pF0 (r,p) . (44)

Since the space derivative now is taken at constant n0 (the space dependence appears only as
a parameter) this equation is formally similar to that for a homogeneous electron gas, which
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may be solved by Fourier-Laplace transformation. The result is given by (D.6) and (D.7) of
Appendix D,

δñ (k, z) = ε−1 (z,k; r)
∫

dp
(

z +
1
m

ik · p − I0

)−1 [
δF̃ (k,p, t = 0)

−e (2π)3 δ (k) Ẽz · ∇pF0 (r,p)
]
. (45)

The dielectric function ε (z,k; r) is given in terms of the polarization function Π (z,k; r)

ε (z,k; r) = 1 − Ṽ (k) Π (z,k; r) , (46)

where

Π (z,k; r) =
∫

dp
(

z +
1
m

ik · p − I0

)−1 i

h̄

{
F0

(
r,p +

1
2
h̄k, t

)
−F0

(
r,p − 1

2
h̄k, t

)}
, (47)

resembles the Lindhard (RPA) polarization function [16] which, in fact, was derived by
Klimontovich and Silin before [17]. The result (47), however, is more general than the RPA
polarization since it contains collision effects via the linearized collision integral I0, a formal
expression also obtained by Klimontovich. The use of such a linearized term has recently been
demonstrated to preserve conservation laws and sum rules [18] and allows to selfconsistently
study plasma oscillations in the presence of collisions [19].

It is easily verified that the usual classical form of the polarization, i.e. the Vlasov
polarization, is recovered by neglecting I0 and expanding (47) to leading order in h̄k. The
effects of the confining potential are incorporated here, so the result applies for strong spatial
inhomogeneity (large wavelength compared to the cluster size). Similarly, the result applies to
a time-dependent stationary state if only it evolves slowly, i.e. on time scales larger than one
plasma oscillation period. There is no limitation on the time dependence of the applied field;
only its amplitude must be small.

6. Plasma Oscillations in an Inhomogeneous System
The normal excitations ω(k) of the plasma are obtained from the zeroes of the complex dielectric
function

ε (z = iω(k),k; r) = 0,

where, in general, ω(k) is complex, the imaginary part reflecting the damping of the oscillations,
e.g. [20, 21]. For a homogeneous system the long wavelength expansion of the dielectric function
leads directly to plasmon excitations with the plasma frequency which are undamped,

Re ε (iω(k),k) = 1 −
ω2

p

ω2
, ω2

p =
4πne2

me
.

Before deriving such dispersion relations for general inhomogeneous systems, the result for the
plasma frequency of small homogeneous spherical particles embedded in a dielectric medium
is illustrated. The familiar boundary conditions are that the tangential components for the
electrostatic field and the normal components of the displacement field should be continuous
across the surface of the particles. In terms of the scalar electrostatic potential and a spherical
particle of radius R with dielectric constant ε2 embedded in another medium with dielectric
constant ε1 this gives

φ (R+) = φ(R−), ε1
∂φ (r)

∂r
|R+= ε2

∂φ (r)
∂r

|R− , (48)
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where it has been assumed that no charges are accumulated on the particle surface. The solutions
to Laplace’s equation that are well-behaved at the origin and vanishing at infinty are

φ (r) =

{
A� r� Y�m (θ, φ) , r < R

B� r−(�+1) Y�m (θ, φ) , r > R
, (49)

and correspond to dipole (� = 1), quadrupole (� = 2), and higher multipole oscillations. The
boundary conditions give B�/A� = R2�+1 and ε2/ε1 = − (� + 1) /�. Taking as an example a rigid

metal sphere with ε2 (ω) = 1 − ω2
p

ω2 embedded in a dielectric medium with ε1 = εd this gives

ω2 =
ω2

p

1 + (�+1)εd

�

. (50)

For the special case of εd = 1 (vacuum) and � = 1 these are the Mie plasmons, ω2 = ω2
p/3.

Return now to the description of plasma oscillations in media with a general spatial
dependence on the dielectric properties. Only longitudinal excitations will be considered. The
electrostatic potential can be written

φ (r, t) =
∫

dr′
ρ (r′, t)
|r − r′| = φext (r, t) −

∫
dr′

1
|r − r′|∇

′ · P
(
r′, t

)
, (51)

where φext (r, t) is the potential due to external charges, and P (r, t) is the macroscopic
polarization

P (r, t) =
1
4π

{ε (r, t) − 1}E (r, t) = − 1
4π

{ε (r, t) − 1}∇φ (r, t) . (52)

Substitution of (52) into (51) and integration by parts twice leads to [22]

ε (r, t)φ (r, t) = φext (r, t) − 1
4π

∫
dr′φ

(
r′, t

) (
∇′ 1

|r − r′|

)
· ∇′ε

(
r′, t

)
, (53)

which makes explicit the dependence on the spatial variation of the dielectric properties.
In the long wavelength limit ε (r, t) for the model here of electrons in a metal cluster can be

estimated from

ε (r, t) → 1 − lim
k→0

Ṽ (k) Π (iω,k; r, t) ≈ 1 −
ω2

p (r, t)
ω2

, (54)

ω2
p (r, t) =

4πn0 (r, t) e2

me
. (55)

In the absence of external charges (53) now gives the general dispersion relation [23]

(
ω2 − ω2

p (r, t)
)

φ (r, t) − e2

me

∫
dr′φ

(
r′, t

) (
∇′ 1

|r − r′|

)
· ∇′n0

(
r′, t

)
= 0. (56)

This result is quite general, without any assumptions regarding the electron density profile
n0 (r, t) . An expansion of φ (r, t) in spherical harmonics gives the various multipole excitations.
In particular, for a profile with a sharp boundary the bulk and Mie plasmon excitations are
recovered. Under nonequilibrium conditions the electron distribution may change with time
leading to a time evolution of the density profile n0(r). Thus, equation (56) has to be solved
together with the quantum kinetic equation for F(r,p, t; n0).
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7. Conclusions
The Klimontovich equation for the classical microscopic phase space density has been quantized
for its corresponding operator equation for quantum mechanical applications. This is a suitable
starting point to formulate a kinetic theory for its mean value (the Wigner function) as well as
for correlation functions and fluctuations. The advantage of the exact Klimontovich equation is
its structural simplicity, having the same form as the mean field approximation to its average.
This complexity of the many-body problem is transferred to an analysis of averages, since the
equation is nonlinear. It would be interesting to translate some of the simple approximations
using the classical Klimontovich equation to the corresponding quantum case.

In this brief presentation no such detailed analysis of the fluctuations was possible. Instead,
the Hartree-Fock contributions to the mean value kinetic equation were identified explicitly as a
means to discuss collective excitations. The Klimontovich equation retains a classical language,
being expressed in terms of the phase space variables of position and momentum. The valence
electrons in metallic clusters are perhaps best described in this language, but clearly require a
quantum treatment. In addition, the experimentally interesting case of probing such clusters
with intense fields poses the problem of an inhomogeneous electron gas possibly driven far from
equilibrium. The basis for a kinetic theory applicable to this problem follows quite simply from
the Klimontovich equation, as illustrated here. In particular, the effects of spatial confinement
on the collective excitations was presented as a non-trivial application.
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Appendix A. Second Quantization Representation
Consider the first form of the Weyl quantization given by Eq. (8)

f̂ (r,p, t) = ei 1
2
h̄∇r·∇p

N∑
α=1

δ [r − r̂α(t)] δ [p−p̂α(t)] . (A.1)

The second quantized form of this operator is

N∑
α=1

δ (r − r̂α) δ (p−p̂α) =
∫

dr1dr2 ψ† (r1, t)ψ (r2, t) 〈r1| δ (r − r̂α) δ (p−p̂α) |r2〉

=
∑
p′

∫
dr1dr2 ψ† (r, t)ψ (r2, t) δ (r − r1)

〈
r|p′〉 δ

(
p − p′) 〈

p′|r2
〉

=
1

(2πh̄)3

∫
dr2 e−

i
h̄
(r−r2)·p ψ† (r, t)ψ (r2, t) . (A.2)

Consequently

f̂ (r,p, t) = ei 1
2
h̄∇r·∇p

1
(2πh̄)3

∫
dx e

i
h̄
x·p ψ† (r, t)ψ (r + x, t)

=
1

(2πh̄)3

∫
dxψ†

(
r+i

1
2
h̄∇p, t

)
ψ

(
r+i

1
2
h̄∇p + r2, t

)
e

i
h̄
x·p

=
1

(2πh̄)3

∫
dx e

i
h̄
x·pψ†

(
r−1

2
x, t

)
ψ

(
r+

1
2
x, t

)
, (A.3)
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which is the result (13) quoted in the text.
The result (A.3) can be inverted to give the operator of the density fluctuation

ψ† (r1, t)ψ (r2, t) =
∫

dp e
i
h̄
(r1−r2)·p f̂

(
r1 + r2

2
,p, t

)
. (A.4)

This expression is used in Appendix C to identify the Hartree-Fock approximation.

Appendix B. Alternative form of Klimontovich Equation
The operator valued Klimontovich equation given by Eq. (14) is formal due to the differential
operators occurring on the right side. An alternative, equivalent form is obtained by rewriting

sin
(

h̄

2
∇r · ∇p V

(
r − r′

))
f̂ (r,p, t) = Im exp

(
i
h̄

2
∇r · ∇p

)
V

(
r − r′

)
f̂ (r,p, t)

= ImV

(
r+i

h̄

2
∇p − r′

)
f̂ (r,p, t)

= Im (2πh̄)−3
∫

dp′ Ṽ (p′) exp
{
− i

h̄

(
r+i

h̄

2
∇p − r′

)
· p′

}
f̂ (r,p, t)

= (2πh̄)−3
∫

dp′dr1 V (r1) sin
2 (r1 − r + r′) · p′

h̄
f̂

(
r,p + p′, t

)
= (2πh̄)−3

∫
dp′dr1 V

(
1
2
r1 + r − r′

)
sin

r1 · (p′ − p)
h̄

f̂
(
r,p′, t

)
.

With this result (14) becomes(
∂t +

1
m

p · ∇
)

f̂ (r,p, t) =
∫

dr′dp′dp′′ Kc(r − r′,p − p′′)f̂
(
r′,p′, t

)
f̂

(
r,p′′, t

)
, (B.1)

where the kernel Kc(r,p) is

Kc(r,p) =
2
h̄

(2πh̄)−3
∫

dr1V

(
1
2
r1 + r

)
sin

(
r1 · p

h̄

)
. (B.2)

Appendix C. Hartree - Fock Approximation
The required two point function in second quantized form is

〈
f̂ (r1,p1, t) f̂ (r2,p2, t)

〉
= (2πh̄)−6

∫
dx e

i
h̄
x·p1

∫
dx′ e

i
h̄
x′·p2

×
〈

ψ†
(
r1−

1
2
x, t

)
ψ

(
r1+

1
2
x, t

)
ψ†

(
r2−

1
2
x′, t

)
ψ

(
r2+

1
2
x′, t

)〉
, (C.1)

where (A.3) has been used. The Hartree-Fock approximation is therefore〈
ψ†

(
r1−

1
2
x
)

ψ

(
r1+

1
2
x
)

ψ†
(
r2−

1
2
x′

)
ψ

(
r2+

1
2
x′

)〉
−→

〈
ψ†

(
r1−

1
2
x
)

ψ

(
r1+

1
2
x
)〉 〈

ψ†
(
r2−

1
2
x′

)
ψ

(
r2+

1
2
x′

)〉
±

〈
ψ†

(
r1−

1
2
x
)

ψ

(
r2+

1
2
x′

)〉 〈
ψ†

(
r2−

1
2
x′

)
ψ

(
r1+

1
2
x
)〉

, (C.2)
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where the plus (minus) sign refers to bosons (fermions). Substitution into (C.1) and use of
(A.4) gives the Klimontovich form of the Hartree-Fock approximation. In the gauge invariant
representation it is〈

F̂ (r1,p1, t) F̂ (r2,p2, t)
〉

= F (r1,p1, t)F (r2,p2, t)

± (2πh̄)−3
∫

dY
∫

dp3dp4 δ (p1+p2 − p3 − p4) e
i

2h̄
Y·(p2−p1)e

i
h̄
(r1−r2)·(p3−p4)

×F
(

r1 + r2

2
− 1

4
Y,p3, t

)
F

(
r1 + r2

2
+

1
4
Y,p4, t

)
. (C.3)

The first term on the right is the Hartree approximation, and the second gives the Fock
contributions.

The Hartree-Fock contributions to the kinetic equation are

IH (r,p, t;F) =
∫

dr′dp′dp′′ Kc(r − r′,p − p′′)F
(
r′,p′, t

)
F

(
r,p′′, t

)
, (C.4)

IF (r,p, t;F) =
∫

dr1dr2dp1dp2 G(r1 − r, r2− r,p1−p,p2 −p)F (r1,p1, t)F (r2,p2, t) . (C.5)

with

G(r1, r2,p1,p2) = ±e
i
h̄
(r1+r2)·(p1−p2)e−

i
h̄
(p1+p2)·(r1−r2)

(
2

h̄π

)3 ∫
dp′ Kc(−r1−r2,p′)e2 i

h̄
(r2−r1)·p′

.

(C.6)

Appendix D. Solution to the Linear Kinetic Equation
The Fourier-Laplace transform of Eq. (44) is

(
z +

1
m

ik · p − I0

)
δF̃ (k,p, z) −

∫
dr eik·r

∫
dp′ K1(r,p − p′; δF)F0

(
r,p′)

= δF̃ (k,p, t = 0) − e

c
Ez · ∇p

∫
dr eik·rF0 (r,p) . (D.1)

The second term on the left side can be simplified to∫
dr eik·r

∫
dp′ K1(r,p − p′; δF)F0

(
r,p′, t

)
=

1
ih̄

(2π)−3
∫

dk2 δñ (k2, z) Ṽ (k2)

×
∫

dr ei(k−k2)·r
{
F0

(
r,p +

1
2
h̄k2, t

)
−F0

(
r,p − 1

2
h̄k2, t

)}
. (D.2)

For consistency, the dominant space dependence of F0 (r,p) is assumed to occur through the
density field n0. Since the spatial transform is taken with n0 held constant, we have∫

dr eik·rF0 (r,p) ≈ (2π)3 δ (k)F0 (r,p) . (D.3)

and (D.2) becomes ∫
dr eik·r

∫
dp′ K1(r,p − p′; δF)F0

(
r,p′, t

)
≈ δñ (k, z) Ṽ (k)

1
ih̄

{
F0

(
r,p +

1
2
h̄k, t

)
−F0

(
r,p − 1

2
h̄k, t

)}
, (D.4)
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and the formal solution to the kinetic equation reads

δF̃ (k,p, z) = δñ (k, z) Ṽ (k)
(

z +
1
m

ik · p − I0

)−1

×
{

1
ih̄

[
F0

(
r,p +

1
2
h̄k

)
−F0

(
r,p − 1

2
h̄k

)]
(D.5)

+δF̃ (k,p, t = 0) − e

c
(2π)3 δ (k) Ẽz · ∇pF0 (r,p)

}
. (D.6)

Integrating this over p allows explicit solution for the Fourier-Laplace transformed density

δñ (k, z) = ε−1 (z,k; r)
∫

dp
(

z +
1
m

ik · p − I0

)−1 {
δF̃ (k,p, t = 0)

−e

c
(2π)3 δ (k) Ẽz · ∇pF0 (r,p)

}
. (D.7)

The dielectric function ε (z,k; r) is given in terms of the polarization function Π (z,k; r)

ε (z,k; r) = 1 − Ṽ (k) Π (z,k; r) , (D.8)

where

Π (z,k; r) =
∫

dp
(

z +
1
m

ik · p − I0

)−1 i

h̄

(
F0

(
r,p +

1
2
h̄k, t

)
−F0

(
r,p − 1

2
h̄k, t

))
. (D.9)

Finally, substitution of (D.7) into (D.6) gives the solution to the kinetic equation.
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