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Abstract. When electrons in a solid are excited to a higher energy band they
leave behind a vacancy (hole) in the original band which behaves like a positively
charged particle. Here we predict that holes can spontaneously order into a regular
lattice in semiconductors with sufficiently flat valence bands. The critical hole to
electron effective mass ratio required for this phase transition is found to be of
the order of 80.

Motivation. More than seven decades ago Wigner predicted the existence of a
crystalline state of the electron gas in metals at low densities – the electron Wigner
crystal [1]. Since then, there has been an active search for this strong correlation
phenomenon in many fields. Finally, crystallization of electrons was observed on the
surface of helium droplets [2], and it is predicted to occur in semiconductor quantum
dots [3]. There are also predictions of electron crystallization in semiconductor
heterostructures in the presence of a strong magnetic field (which acts in favor of
electron localization) but there is so far no conclusive confirmation. The necessary
condition for the existence of a crystal in these one-component plasmas (OCP) is
that the mean Coulomb interaction energy, e2/r̄ (r̄ denotes the mean inter-particle
distance), exceeds the mean kinetic energy (thermal energy 3

2kBT or Fermi energy
EF in classical or quantum plasmas, respectively) by a large factor Γcr which, in a
classical OCP is given by 175 [2, 4]. In a quantum OCP at zero temperature the
coupling strength is measured by the Brueckner parameter, rs ≡ r̄/aB (aB denotes
the effective Bohr radius), the critical value of which is rcr

s ≈ 100 [5].
On the other hand, Coulomb crystallization has been observed in neutral two-

component plasmas (TCP), e.g. in colloidal and dusty plasmas [6–9]. Besides these
classical TCP crystals it is thought that in the interior of white dwarf stars and in the
crust of neutron stars there exist crystals of bare carbon, oxygen and iron nuclei which
are embedded into an extremely dense degenerate Fermi gas of electrons, see e.g. [10].
No such quantum TCP crystals have been observed in the laboratory, despite early
suggestions [11]. It is, therefore, of high interest to analyze the necessary conditions
for the existence of Coulomb crystals in a two-component plasma to understand in
which other TCP systems crystallization is possible, which is the aim of the present
paper.
Criterion for the occurence of a hole crystal. A qualitative phase diagram which
shows the location of the mentioned TCP crystals is shown in Fig. 1. Note that these
Coulomb crystals are very different from the common crystals observed in classical



Hole crystallization in semiconductors 2

ionic systems like salts (e.g. NaCl) or metals which cannot be described in terms
of a simple coupling parameter. The properties of the latter systems depend on the
microscopic structure of the ionic constituents (electronegativity, in the case of salts,
and band structure, in the case of metals etc.). Here we will concentrate on plasma-like
systems which involve pointlike ions (not containing deeply bound electrons).

Figure 1. (Color online) Location of the classical and quantum TCP crystals
and of the hole crystal in the density-temperature plane (qualitative picture).

We consider a locally neutral macroscopic system of electrons (e) and holes (h).
The equilibrium state is characterized by the dimensionless electron temperature
Te = 3kBT/2EB and the mean inter-electron distance rse = r̄e/aB , where EB =

e2

4πε0εr

1
2aB

denotes the exciton binding energy, aB = h̄2

mr

4πε0εr

e2 is the exciton Bohr
radius, εr and mr are the background dielectric constand and the reduced mass
m−1

r = m−1
h (1 + M)]. The dimensionless density is given by na3

B = 3/(4πr3
se). In

addition to these parameters which also characterize an OCP, the state of the electron-
hole plasma is characterized by the mass ratio M = mh/me.

The condition for a hole crystal in a TCP follows from the OCP crystal condition,
rsh ≥ rcr

s , after rescaling r̄ and aB by taking into account the charge and mass ratio
yielding (M +1)rse ≥ rcr

s . This Coulomb crystal of holes will survive in the presence
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Figure 2. (Color online) PIMC simulation results for the electron-hole bound
state fraction (including excitons and biexcitons) in a 3d semiconductor (M = 40)
vs. inverse density for several temperatures given in the figure.

of electrons only if holes do not form bound states, as this would drastically reduce
the correlation energy of the holes, thus eventually reducing the coupling strength
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below the critical level necessary for crystallization. At zero temperature, bound
states break up due to pressure ionization at densities above the Mott density, i.e.
rse ≤ rMott

s ≈ 1.2. This has been confirmed by first principle path integral Monte
Carlo (PIMC) simulations [12]. As the numerical data in Fig. 2 confirm, at rse ≤ 1.2
less than 10% of the holes are bound in excitons and biexcitons. With increasing
temperature, ionization becomes possible at lower density which we indicate by a
monotonically decreasing function 1/rMott

s (Te) which vanishes when Te → 1 because
there thermal ionization prevails.
Critical mass ratio for the hole crystal. Combining the above expression for
rse with the existence of pressure ionization yields the criterion for the existence of a
TCP crystal in the presence of a neutralizing background of quantum electrons as

M ≥ M cr(Te) =
rcr
s

rMott
s (Te)

− 1, (1)

which exists in a finite electron density range [n(1), n(2)] given by

n(1)(Te) =
3
4π

[
1

rMott
se (Te)

]3

, n(2)(Te) = n(1)(Te)K3, (2)

where K = (M +1)/(M cr +1). The crystal exists below a maximum temperature T ∗,
which is estimated by the crossing point of the classical and quantum asymptotics of
an OCP crystal [3] T ∗ = 6(M + 1)/(Γcrrcr

s ). According to Eq. (1), the critical hole
to electron mass ratio is given by 83 at zero temperature. This value decreases with
increasing temperature (due to the lower Mott density).

Of course, the critical mass ratio and the density and temperature limits carry
some uncertainty arising from the uncertainty of the Mott density and the critical
value of the Brueckner parameter. In fact the transition from an exciton gas to a hole
crystal may involve many intermediate states with liquid-like behavior, e-h droplets
(phase separation), e.g. [13], an analysis of which is beyond the present work. We
estimate that these effects give rise to an uncertainty of the minimum density (Mott
density), n(1), of the order of 30%. Further, the error of rcr

s is about 20% [5], thus
the critical parameters carry an uncertainty of about 50%. For particular systems,
more accurate predictions are possible if the Mott parameter rMott

s is known, e.g. from
computer simulations.

Simulation results. Note that the complex processes of interest pose an extreme
challenge to the simulations: They must self-consistently include the full Coulomb
interactions, exciton and biexciton formation in the presence of a surrounding plasma,
pressure ionization and the quantum and spin properties of electrons and holes. We
therefore have performed extensive direct fermionic path integral Monte Carlo (PIMC)
simulations of a 3d e-h plasma which are based on our previous results for dense
hydrogen-helium plasmas [14], e-h plasmas [13] and electron Wigner crystallization [3].
While the so-called sign problem prohibits PIMC simulations of the ground state of
a fermion system, here we restrict ourselves to temperatures at the upper boundary
of the hole crystal phase, i.e. Te = 0.06 . . . 0.2. Studying mass ratios in the range of
M = 1 . . . 2000 and densities corresponding to rse = 0.6 . . . 13 the simulations cover a
large variety of 3d Coulomb systems – from positronium, over typical semiconductors
to hydrogen.

Our main results concern the relative distance fluctuations of holes shown in
Fig. 3. Here we have fixed density and temperature in such a way that bound state
formation is not possible and vary the mass ratio from hydrogen to e-h plasmas. At
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M = 2000 the distance fluctuations are small and they remain almost unchanged
when M is reduced. Around M = 100 a drastic increase is observed which is a clear
indication of spatial delocalization of the holes. In fact, analyzing the microscopic
configuration in the simulation box and the pair distribution functions [15] clearly
confirms this interpretation. At large M the holes form a crystal which is embedded
into a high-density delocalized electron gas. This crystal vanishes (melts) between
M = 100 and M = 50 which is in very good agreement with the estimate of Eq. (1).
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Figure 3. Mean-square relative hole-hole distance fluctuations (normalized to
the mean interparticle distance) as a function of the mass ratio M for Te = 0.096
and rs = 0.63. Symbols are simulation results, the line is the best fit.

The predicted critical mass ratio is larger than in most conventional semiconduc-
tors. However, similar mass ratios have already been reported in intermediate valence
semiconductors, such as Tm[Se,Te] [16]. For example, for M = 100 (using εr = 20)
the parameters are n

(1)
e (0) = 1.2 · 1020cm−3, n

(2)
e (0) = 2.1 · 1020cm−3 and T ∗ ≈ 9K.

Hole crystallization could be verified experimentally by means of neutron scattering.
Discussion. Let us briefly mention earlier discussions of the possibility of hole crys-
tallization. This effect was first mentioned by Halperin and Rice, e.g. [11] who mention
that the original suggestion is due to C. Herring. First rough estimates of the critical
hole to electron mass ratio were given by Abrikosov who found M = 100, e.g. [17]
and M = 50 in his text book [18]. This estimate is, apparantly, based on assuming a
hole lattice constant of one exciton Bohr radius. In our first-principle simulations no
such assumptions are made, but the results are surprisingly close (we find a maximum
lattice constant of about 0.9aB [15]. Abrikosov also stresses the favorable conditions
a hole crystal would have for superconductivity. This is certainly one of the most
interesting future questions, although our predictions for the critical temperature for
the hole crystal seem to limit the prospects for high-temperature superconductivity
in these materials.
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