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In this paper we study thermodynamic properties of hydrogenand hydrogen-helium mixtures with the help
of the direct path integral Monte Carlo simulations. The results are compared with available theoretical and
experimental methods based, in particular, on chemical picture. We investigate the effects of temperature
ionization in low-density hydrogen plasma. We also presenta number of calculated isotherms for hydrogen-
helium mixture with the mass concentration of heliumY = 0.234 in the range from10

4 K to 2 · 10
5 K.

In the density region where a sharp conductivity rise have been observed experimentally the simulations give
indications for one or two plasma phase transitions, in accordance with earlier theoretical predictions.
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1 Introduction

Many astrophysical problems require the knowledge of thermodynamic properties of hydrogen and helium [1–5].
To understand different effects in stellar structure and evolution one should provide accurate modelling of the
underlying physics including equation of state (EOS) effects. In normal stars where plasma is fully-ionized
and almost ideal the construction of EOS doesn’t reveal particular difficulties. However the investigation of the
giant planets Jupiter and Saturn, and to a lesser extent brown dwarfs demands thermodynamic information for
hydrogen and helium in the approximate range of temperatures103 K < T < 105 K and mass densities0.01 <
ρ < 100 g/cm3. In this region the complexity of an EOS calculation increases considerably when nonideal effects
are compounded with chemical reactions associated with partial pressure dissociation and ionization equilibria
[6–10]. Moreover, in this region the the so-called plasma phase transition (PPT) has been predicted [9, 10].
Significant efforts have been made in the last decades to understand the behaviour of dense fully-ionized and
partially-ionized hydrogen and helium (see, for example, [8] and references therein). In these works mostly the
chemical picture is applied for the calculation of thermodynamic properties. The chemical picture assumes that
bound configurations, such as atoms and molecules, retain a definite identity and interact through pair potentials;
in other words, this model is valid only at weak interparticle interactions. However at densities corresponding
to pressure ionization the electrons in bound configurations become delocalized and bound species lose their
definiteness [11]. Therefore there is a great interest in direct first-principle numerical simulations of strongly
coupled degenerate systems which avoid such approximations.

In this work we use the direct path integral Monte Carlo (DPIMC) method to calculate the thermodynamic
properties of hydrogen and hydrogen - helium mixtures. Thismethod is well established theoretically and allows
the treatment of quantum and exchange effects without any preliminary physical approximations. Using the
results of our simulation we compare them with the model based on the chemical picture [1,2]. We also analyze
the problem of plasma phase transition in dense hydrogen - helium mixtures and discuss several theoretical and
experimental predictions of this phenomenon.
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2 Direct path integral Monte Carlo

Path integral Monte Carlo [12,14] is based upon Feynman’s formulation of quantum-statistical mechanics using
path integrals [15]. For hydrogen plasma one can find exhaustive description of the DPIMC elsewhere [13, 14].
In this work we restrict ourselves by the brief explanation of ideas underlying the DPIMC for hydrogen-helium
mixtures.

We consider the temperature range from104 K to 2 · 105 K and electron particle densities from1020 to
3 · 1024 cm−3. Under such conditions electrons are degenerate while protons andα-particles can be treated as
classical particles because of their relatively large masses. Thus for the case of electro-neutral hydrogen-helium
plasma with volumeV the partition functionZ is given by

Z(Ne, Np, Nα, V, β) =
1

Ne!Np!Nα!

∑

σ

∫

V

dqpdqα dr ρ(qp, qα, r, σ;β). (1)

HereNe, Np, andNα are the numbers of electrons, protons, andα-particles, correspondingly,β = 1/kBT , T
is the temperature,qp ≡ {qp1,qp2, · · · ,qpNp

}, qα ≡ {qα1,qα2, · · · ,qαNα
} are the coordinates of protons and

α-particles, respectively,r ≡ {r1, r2, · · · , rNe
} are the coordinates of electrons, andσ ≡ {σ1, σ2, · · · , σNe

} are
the spin variables of the electrons. The density matrix in (1) is expressed via a path integral:

∫

V

dR(0)
∑

σ

ρ(R(0), σ;β) =
∑

P

∑

σ

(−1)κP
∫

V

dR(0) · · · dR(n)×

ρ(1)ρ(2) · · · ρ(n)S(σ, P̂ σ′)P̂ )ρ(n+1), (2)

whereρ(i) = ρ(R(i−1), R(i); ∆β) ≡
〈

R(i−1)
∣

∣

∣
e−∆βĤ

∣

∣

∣
R(i)

〉

, ∆β ≡ β/(n+ 1), P̂ is the permutation operator,

κP is the parity of permutation,S is the spin matrix,Ĥ is Hamiltonian of the system,̂H = K̂ + ÛC , K̂ is
the kinetic energy,̂UC is the potential energy, consisting of Coulomb interactionof electrons (e), protons (p),
andα-particles (α): ÛC = Ûp

C + Ûe
C + Ûα

C + Ûep
C + Ûeα

C + Ûpα
C . We denote particle coordinates as follows:

R(i) = (qp, qα, ri), i = 1, · · · , n + 1, R(0) ≡ (qp, qα, r), R(n+1) ≡ R(0), σ′ = σ. Thus electrons participating
in the simulation are represented as fermionic loops withn vertexes:[R] ≡ [R(0);R(1); · · · ;R(n);R(n+1)].
Exchange effects for Fermi statistics are taken into account by the permutation operator̂P and the sum over
the permutations with parityκP . It is possible to reduce the expression (2) to a form in whichthe sum over all
permutations is replaced by the determinant of the exchangematrixψn,1

ab . This technique allows us to improve
the accuracy of simulation for strongly degenerate plasma:

∑

σ

ρ(qp, qα, r, σ;β) =
1

λ
3Np

p λ3Nα
α λ3Ne

∆

Ne
∑

s=0

ρs([R], β),

ρs([R], β) =
Cs

Ne

2Ne
exp {−βU([R], β)}

n
∏

l=1

Ne
∏

m=1

φl
mm det

∣

∣

∣
ψn,1

ab

∣

∣

∣

s
. (3)

Hereλ2
p = 2π~

2β/mp, λ2
α = 2π~

2β/mα, λ2
∆ = 2π~

2∆β/me, mp, mα, me are the masses of proton,α-
particle and electron, respectively. In equation (3)U = Upp +Uαα +Upα +

∑n

l=1{Uee
l +Uep

l +Ueα
l }/(n+ 1)

andφl
mm ≡ exp

[

−π
∣

∣

∣
ξ
(l)
m

∣

∣

∣

2
]

are the functions generated from the kinetic energy densitymatrix,ξ(1), · · · , ξ(n)

are the dimensionless distances between neighbor vertexesof fermionic loops which represent electrons[R] ≡
[R(0);R(0) + λ∆ξ

(1);R(0) + λ∆(ξ(1) + ξ(2)); · · · ]. Elements of the exchange matrixψn,1
ab are defined by the

expression:

∥

∥

∥
ψn,1

ab

∥

∥

∥

s
≡
∥

∥

∥

∥

exp

{

− π

λ2
∆

|(ra − rb) + yn
a |2
}
∥

∥

∥

∥

s

, yn
a = λ∆

n
∑

k=1

ξ(k)
n .
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The indexs stands for the number of electrons with same spin projection.
As a high-temperature density matrix one can use its asymptote in the limitT → ∞. EveryN -particle high-

temperature density matrix is represented as a product of two-particle density matrices. For the two-particle
density matrix there is an analytical solution of the Bloch equation by first-order perturbation theory [17]:

ρ(ra, r
′

a, rb, r
′

b, β) =

mamb

(2π~2β)3
exp

[

− ma

2~2β
(ra − r

′

a)2
]

exp

[

− mb

2~2β
(rb − r

′

b)
2

]

exp
[

−βΦab
]

,

whereΦab(ra, r
′

a, rb, r
′

b, β) — nondiagonal effective two-particle pseudopotential:

Φab(rab, r
′

ab, β) = eaeb

1
∫

0

dα

dab(α)
erf

(

dab(α

2λab

√

α(1 − α)

)

. (4)

Heredab(α) = |αrab + (1 − α)r′ab|, 0 ≤ α ≤ 1, erf(x) = 2/
√
π
∫ x

0 exp(−t2) dt denotes the error function,
λ2

ab = ~
2β/2µab, ea, eb are the charges of particles,ma,mb are the masses of particles,µ−1

ab = m−1
a +m−1

b is the
reduced mass. In the high-temperature limit two-particle nondiagonal effective potential (4) can be approximated
by a half-sum of diagonal pseudopotentials:

Φab(|rab|,∆β) =
eaeb

λabxab

{

1 − exp(−x2
ab) +

√
πxab[1 − erf(xab]

}

, (5)

wherexab = |rab|/λab. It is worth to underline thatΦab(|rab|,∆β) tends to a finite value atxab → 0 and to
the Coulomb potentialeaeb/xab at xab → ∞. It is proved that the pseudopotential (5) coincides with anexact
quantum potential at temperaturesT > 2 · 105 K [18]. Thus,Uaa andUab

l in Eq. (3) are sums of the effective
quantum pair interactions described by theΦab between two charged plasma particlesa andb.

All thermodynamic properties can be expressed through the partition function derivatives. For example, pres-
sure and total energy are given by the formulas:

E = −β∂ lnZ/∂β,

βP = ∂ lnQ/∂V = [η/3V ∂ lnQ/∂η]η=1. (6)

Multiple integrals in (6) are calculated with the help of thestandard Metropolis technique in a cubic cell with
periodic boundary conditions [12]. The accuracyǫ of calculations depends on the number of factorsn in the
equation (2), temperatureT and electron degeneracy parameterχ = neλ

3
e and is given by the expressionǫ ∼

(βRy)2χ/(n + 1), wherene is the particle density of electrons,λ2
e = 2π~

2β/me, Ry = e2/2aB ≈ 13.6 eV.
According to this estimation to simulate a Coulomb system attemperature104 K it is sufficient to choosen = 20.
High temperature density matrix in Eq. (2) relates in this case to temperature higher thanRy.

3 Simulation results

We tested our computational scheme by many ways. First of allwe calculated thermodynamic properties of
ideal hydrogen plasma [20] and found very good agreement up to degeneracy parameterχ = 10. To extend the
range ofχ to higher values we improved the treatment of exchange effects. Unlike the previous version of the
method [12] in this work we take into account exchange effects not only inside the main Monte Carlo cell but also
in the neighboring periodic images. It is necessary to include such procedure into the algorithm if the electron
thermal wavelength is comparable or larger than the size of the Monte Carlo cell. Thus the exchange interaction
was calculated in the nearest33, 53 etc. Monte Carlo cells in accordance with the value of electron thermal
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wavelength. The accuracy of exchange effects treatment wascontrolled by comparing the results of calculations
with analytical dependencies for pressure and energy of ideal degenerate plasma.

We also studied interacting hydrogen plasma in a wide range of temperatures and particle densities [21, 22].
The DPIMC method allowed us to investigate the effects of temperature and pressure dissociation and ionization
ab initio. From the analysis of pair distribution functions we observed the formation and break-up of molecules
and atoms under different conditions. At very high density we also observed the effect of proton ordering indi-
cating the formation of Coulomb crystal. We found rather good agreement with the calculations performed by
other methods at small and medium densities. However at highvalues of plasma density in the region of pressure
ionization no reliable analytical methods exist.

The simulation results for hydrogen plasma in the region of temperatures fromT = 104 K to 106 K and
electron particle densities fromne = 1022 cm−3 to 1024 cm−3 allowed us to calculate the deuterium shock
Hugoniot [23]. It is interesting to note that the resulting curve is located between the experimental data of
Knudsonet al. [24] and Collinset al. [25].

In this work we compare our simulation results with available data on hydrogen and hydrogen-helium mixture
from Refs. [2,7]. This model is based on the chemical picturewith classical statistics for molecules and ions and
Fermi-Dirac statistics for the electrons. It takes into account a lot of physical effects including dissociation and
ionization, interactions between charged particles and neutral atoms and molecules, neutral-neutral interactions,
high-pressure screening effects, excited electronic states of molecules as well as a number of ”second-order”
phenomena. Owing to the complexity of the model [2,7] equations of state for hydrogen and helium are presented
in tabular form [2]. So thermodynamic properties of pure hydrogen or helium can be calculated directly with the
help of relatively simple interpolation code. The properties of hydrogen-helium mixtures can then be obtained
by interpolation in composition between the two pure EOS. Using the so-called ”linear mixing” technique it is
possible to approximate densityρ(P, T ) of the hydrogen-helium mixture with the mass fraction of helium Y at
pressureP and temperatureT :

1

ρ(P, T )
=

1 − Y

ρH(P, T )
+

Y

ρHe(P, T )
.
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Fig. 1 The DPIMC (triangles and circles) and theoretical (solid and dashed lines) [2,7] isochors for pressure (a) and energy
(b) in hydrogen plasma vs. temperature. Calculations: 1 — isochorne = 10

20 cm−3; 2 — isochorne = 10
21 cm−3. EOS

calculations [2]: 3 — isochorne = 10
20 cm−3; 4 — isochorne = 10

21 cm−3; 5, 6 — relative number concentration of
hydrogen atoms (b, right axis) along the isochorne = 10

20 cm−3 andne = 10
21 cm−3, correspondingly

In Fig. 1 it is shown pressure and energy dependencies vs. temperature along two isochorsne = 1020 and
1021 cm−3 of hydrogen plasma. The agreement with hydrogen EOS [2] is very good for pressure at all tempera-
tures (Fig. 1a) and for energy at temperatures higher than3 · 104 K (Fig. 1b). The relative number concentration
of hydrogen atoms shown in Fig. 1b by dash-dotted and dotted lines indicate that hydrogen atT = 104 K and
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ne = 1020 ÷ 1021 cm−3 consists mainly of atoms. The fact that at104 K in our calculations we have higher ab-
solute energy values than in the theoretical model can be connected with the difficulties of correct interpretation
of bound states both in the DPIMC and in chemical picture. Therefore this problem needs further investigation.
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Fig. 2 Pressure (a) and energy (b) in a hydrogen-helium mixture with the mass concentration of heliumY = 0.234. Shown
are isotherms calculated with the help of DPIMC method (symbols and symbols with lines) and related isotherms computed
with the help of EOS [2, 7] (lines). DPIMC ( [2, 7]) calculations: 1(6) — 200 kK, 2(7) — 100 kK, 3(8) — 50 kK, 4(9) —
40 kK. 5 — 100 kK isotherm for ideal plasma.

Besides hydrogen plasma, we also carried out calculations of thermodynamic properties of hydrogen-helium
mixture with a composition corresponding to that of the outer layers of the Jovian atmosphere. During the
mission of the Galileo spacecraft the helium abundance in the atmosphere of Jupiter was determined asY =
mHe/(mHe +mH) = 0.234 and was close to the present-day protosolar valueY = 0.275. As the model of the
Jupiter is significantly determined by its composition and EOS, it was interesting to simulate the thermodynamic
properties of the mixture with such composition in the region of pressure dissociation and ionization where
traditional chemical models of plasma fail.
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Fig. 3 Pressure (a) and energy (b) in a hydrogen-helium mixture with the mass concentration of heliumY = 0.234. Shown
are isotherms calculated with the help of DPIMC method (symbols with lines). DPIMC calculations: 1 — 30 kK, 2 — 25 kK,
3 — 20 kK, 4 — 10 kK. EOS calculations [2,7] (a): 5 — 30 kK

Calculations were fulfilled in the region of temperatures fromT = 104 K to 2 · 105 K and electron densities
from ne = 1020 cm−3 to 3 · 1024 cm−3. The results of comparison are shown in Fig. 2 and 3. The agreement
between our calculations and the model [2] along the isotherms T = 4 · 104, 5 · 104, 105, and2 · 105 K is
quite good and becomes better with the increase of temperature. The smaller values of pressure on the DPIMC
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isotherm3 ·104 K near the particle density value1023 cm−3 can be explained by a strong influence of interaction
and bound states in this region; these effects are taken intoaccount only approximately in the model [2]. The
formation of atoms and molecules is also the reason of the pressure and energy reduction along the105 K isotherm
with respect to the isotherm of non-interacting hydrogen-helium mixture (see Fig. 2).

In Fig. 3 the dependence of pressure and energy vs. electron density along isotherms are shown. At temper-
atures 30 and 25 kK the isotherms have no peculiarities. However along the isothermT = 2 · 104 K there is a
region forne > 3 · 1023 cm−3, where the pressure strongly fluctuates and even becomes negative. Also along
the isothermsT = 104 K andT = 1.5 · 104 K there are two such regions1022 cm−3 < ne < 1023 cm−3 and
ne > 3 · 1023 cm−3. Earlier we found a similar effect for pure hydrogen atT = 104 K in the region of pressure
ionization and showed that in the transition region a numberof large clusters (droplets) were formed [26, 27].
In this region of pressure ionization the PPT was predicted by many authors [6, 7, 9–11, 28–30] and moreover a
sharp electrical conductivity rise was measured in [31]. The instabilities in our calculations indicate the existence
of PPT in dense hydrogen. Later [14] we found the PPT and the formation of clusters in electron-hole plasma of
germanium semiconductor at low temperature and found good agreement with experimental phase diagram [32].
The presence of clusters (droplets) in plasma decreases thetotal energy of the system as can be seen in Fig. 3. The
region of existence of bound states is determined by deep minima on isotherms. The analysis of pair distribution
functions reveals that the part of hydrogen molecules increases with the temperature drop. At low temperatures
T = 104 and2 · 104 K we can observe the formation of large clusters of atoms and molecules.
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Fig. 4 The DPIMC (lines with squares and triangles) and theoretical [2, 7] isotherms for pressure in a hydrogen-helium
mixture with the mass concentration of heliumY = 0.234 vs. density. DPIMC calculations: 1 — 10 kK, 2 — 20 kK. EOS
calculations: 3 — 10 kK, 4 — 20 kK. Experiment [35]: 5 — quasi-isentrope of hydrogen-helium mixture,T ∼ 5000 K, 6 —
electrical conductivity of hydrogen-helium mixture alongthe quasi-isentrope (right axis). 7 — phase boundaries of PPT in
hydrogen [2, 7], 8 — undercritical metastable isothermT = 1.2 · 10

4 K andY = 0.308 [30], 9 — critical point of PPT in
hydrogen-helium mixture withY = 0.308 [30]

The problem of PPT in a hydrogen-helium mixture is significantly determined by the composition of the mix-
ture [2,7,30]. From shock-wave experiments one can estimate the range of temperature and density where a sharp
electrical conductivity rise takes place. In quasi-isentropic compression the transition from a low-conductivity
state to a high-conductivity one for hydrogen occurs atT ∼ 3−15 kK andρ ∼ 0.4−0.7 g/cm3 [31,33] whereas
for helium atT ∼ 15 − 40 kK and ρ ∼ 0.7 − 1.25 g/cm3 [34]. However it is not enough to determine the
region of existence of the PPT. According to theoretical equations of state the critical point of the PPT in pure
hydrogen isTcrH

∼ 12 − 19 kK, PcrH
∼ 0.2 − 0.9 Mbar [2, 7, 30, 36]. In pure helium the critical point was

found to beTcrHe
∼ 17 kK [30] or TcrHe

∼ 35 kK [36] andPcrHe
∼ 7 Mbar [30, 36]. For hydrogen-helium

mixture with a mole fraction of hydrogen 0.93 the critical temperature was found to be∼ 35 kK [36], however
the dependence of critical parameters on the plasma composition has not been investigated. In accordance with
the quantum-statistical equation of state [30] at helium mass concentrationY < 0.93 and temperature less than
both critical temperatures the properties of hydrogen-helium mixture are determined mostly by hydrogen and
only one PPT exists. At high values ofY > 0.93 both the hydrogen and helium PPT can occur. In our DPIMC
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simulations we have observed one region of instability withnegative pressure atT = 2 · 104 K and two regions
of instability atT = 104 K even atY = 0.234. The results of our simulation are shown in Fig. 4 together with
experimental data and theoretical predictions.

Along the isothermT = 2 ·104 K we found the region with bad convergence in the range of densities between
0.5 and 5g/cm3. Along the isothermsT = 1.5 ·104 K andT = 104 K such region is even wider and begins from
0.38g/cm3. Surprisingly there was another region where pressure became negative: from 0.015 to 0.19g/cm3.
The physical reason of this phenomenon is connected with formation of many particle clusters and requires
further consideration. From Fig. 4 it can be easily seen thatother predictions of PPT in hydrogen or hydrogen-
helium mixtures [2, 30] with low mass concentration of helium are located in the beginning of the region where
DPIMC simulation fails to converge. The sharp rise of electrical conductivity of hydrogen-helium mixture along
the quasi-isentrope with the initial stateT = 77.4 K andP = 8.1 · 10−3 GPa is also observed experimentally
in the range of densities 0.5–0.83g/cm3 [35], see line with crosses in Fig. 4. Unfortunately the DPIMC in its
current formulation can not give reliable information about the location and properties of PPT both in hydrogen
and in hydrogen-helium plasmas. We plan to investigate these problems in our future work.
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