
Wigner approach to quantum dynamics simulations
of the interacting carriers in disordered systems

V. Filinov*; 1, P. Thomas2, M. Bonitz3, V. Fortov1, I. Varga4, and T. Meier2

1 Institute for High Energy Density, Russian Academy of Sciences, Izhorskay 13/19, Moscow 125412,
Russia

2 Fachbereich Physik, Philipps-Universit�t Marburg, 35032 Marburg, Germany
3 Fachbereich Physik, Universit�t Rostock, Universit�tsplatz 3, 18051 Rostock, Germany
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The new method for solving Wigner–Liouville’s type equations and studying dynamics of quantum
particles has been developed within the Wigner formulation of quantum statistical mechanics. This
approach combines both molecular dynamics and Monte Carlo methods and computes traces and spec-
tra of the relevant dynamical quantities. Considering, as an application, the quantum dynamics of an
ensemble of interacting electrons in an array of random scatterers clearly demonstrates that the many-
particle interaction between the electrons can lead to an enhancement of the electrical conductivity.
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1 Introduction It is well known that molecular dynamics method due to its highly efficiency is
widely used in treatment of dynamic problems of classical statistical physics. The aim of this work is
to develop the ‘straight generalization’ of classical molecular dynamics methods for rigorous consid-
eration of quantum problems. The words ‘straight generalization’ mean that in classical limit the
developed approach should exactly coincide with molecular dynamics method in the phase space. A
generalization molecular dynamics method is possible only in the phase space, so in our work it is
naturally to use Wigner formulation of quantum mechanics. In 1932 Wigner proposed joint position
and momentum (phase space) representation of quantum mechanics and derived quantum analog of
the classical distribution function. This representation contains only the values common both for clas-
sical and quantum mechanics, which is especially convenient when one of two interacting subsystems
is quantum and another – classical. Wigner’s paper has given rise to an extensive literature on formal
aspects of quantum theory in phase space.

Noninteracting electrons in an array of fixed random scatterers are known to experience Anderson
localization at temperature T ¼ 0 in one-dimensional systems [1–3]. However, it is expected that the
many-particle interaction leads to delocalization tendencies which has been confirmed for simple
models [4, 5]. To study the influence of the electron–electron Coulomb interaction on kinetic electron
properties in a random environment we have simulated the quantum dynamics in a one-dimensional
canonical ensemble at finite temperature for both interacting and noninteracting electrons using the
developed Quantum–Dynamics–Monte-Carlo scheme. We discovered that the temporal momentum–
momentum correlation functions and their frequency-domain Fourier transforms strongly depend on
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the electron–electron interaction, clearly demonstrating the delocalizing influence of the many-particle
interaction at densities around Rs ¼ �rr=a0 ¼ 5 (�rr is the mean interparticle distance and a0 the effective
Bohr radius) even at finite temperatures. Our approach also treats the positions of the scattering cen-
ters as dynamical variables. We are, therefore, able to generate various initial conditions.

2 Wigner representation of quantum mechanics The basis of our consideration is the Wigner
representation of the von Neumann equation – the Wigner–Liouville equation (WLE). To derive the
WLE for the full density matrix of the N-particle system qðxN j yNÞ we introduce center of mass and
relative coordinates in standard manner, q � qN � ðxN þ yNÞ=2 and r � rN � xN � yN . The Wigner
distribution function (WF) is defined by [6]

f p; q; tð Þ ¼ 1

ð2p�hÞ6N
ð
q q� r

2
; qþ r

2

� �
eipr=�h dr : ð1Þ

Using this definition it is straightforward to obtain the WLE for the full density matrix [6]
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w s; qð Þ ¼ F qð Þ dd sð Þ
ds

þ 4

�h 2p�hð Þ6N
ð
d�qq V q� �qqð Þ sin 2s�qq

�h

� �
; ð3Þ

and F qð Þ ¼ �@VðqÞ=@q is the classical force. Obviously, the force term in w exactly cancels the last
term on the lhs of Eq. (2). Retaining these terms allows us to write the WLE as the classical Liouville
equation [lhs of Eq. (2)] plus a quantum correction [all terms on the rhs of Eq. (2)] which vanish for
�h ! 0. This form allows us to identically transform Eq. (2) into an integral Eq. (4),

f p; q; tð Þ ¼ f0ðp0; q0Þ þ
Ðt
0
dt

Ð1
�1

ds f pt � s; qt; tð Þ w s; qtð Þ : ð4Þ

The first contribution describes quantum dynamics and is given by the initial WF
f0 p; qð Þ � f p; q; 0ð Þ, but taken at arguments p0 � �ppð0Þ and q0 � �qqð0Þ, being classical trajectories
pt � �ppðtÞ and qt � �qqðtÞ (solutions of the Hamilton equations associated to the WLE and connecting
points (p; q) at time t and points (p0; q0) at time 0). Notice that even the first term may describe the
evolution of a quantum many-body state if the initial WF f0 p; qð Þ is choosen appropriately and con-
tains the all powers of the Plank’s constant. The integral term in Eq. (4) describes the perturbation of
the classical trajectories due to quantum effects, for details we refer to Ref. [7].

The structure of Eq. (4) suggests to construct its solution iteratively, starting with f0. Let us, there-
fore, rewrite Eq. (4) in the following compact form, f t ¼ f t0 þ Kt

tf
t, where the superscript on the WF

denotes the time argument and Kt2
t1

denotes the time integral in Eq. (4). Then, the iteration series has
the form:

f t ¼ f t0 þ Kt
t1
f t10 þ Kt

t2
Kt2
t1
f t10 þ Kt

t3
Kt3
t2
Kt2
t1
f t10 þ . . . ; ð5Þ

where the first term describes the evolution of an initial (classical or quantum) WF f0 (it may contain
any order of Planck’s constant). The remaining terms systematically take into account all dynamic
quantum corrections [trajectories with momentum jumps arising from the shifted momentum argu-
ments in the WF under the integral in (2)] including e.g. tunneling effects and correctly accounting
for the Heisenberg uncertainty principle. Thus, the solution of Eq. (5) can be understood as a properly
weighted sum of classical and quantum phase space trajectories [7].

Using the solution f t we can compute averages of arbitrary operators in standard way and obtain
any dynamic macroscopic property of the correlated quantum particles without approximations on the
potential interaction. Naturally, the true particle number N is replaced by a greatly reduced number
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Nsim which is of the order 50–100 in the MC cell with periodic boundary conditions. The solution
scheme is a combination of Quantum Monte Carlo and classical Molecular Dynamics methods: Quan-
tum MC is used to generate the correlated initial state, MD generates the p–q trajectories and Monte
Carlo methods are applied to perform an importance sampling of the dominant terms of the iteration
series (trajectories with momentum jumps).

3 Wigner representation of time correlation functions According to the Kubo formula the con-
ductivity is the Fourier transform of the current–current correlation function. Our starting point is the
general operator expression for the canonical ensemble-averaged time correlation function [8]:

CFAðtÞ ¼ Z�1 Tr fF̂F eiĤHt�c=�h ÂA e�iĤHtc=�hg ; ð6Þ
where ĤH is the Hamiltonian of the system expressed as a sum of the kinetic energy operator, K̂K, and
the potential energy operator, ÛU. Time is taken to be a complex quantity, tc ¼ t � i�hb=2, where
b ¼ 1=kBT is the inverse temperature with kB denoting the Boltzmann constant. The operators F̂F and
ÂA are quantum operators of the dynamic quantities under consideration and Z ¼ Tr fe�bĤHg is the
partition function. The Wigner representation of the time correlation function in a u-dimensional
space can be written as

CFAðtÞ ¼ ð2p�hÞ�2u Ð Ð dm1 dm2 Fðm1Þ Aðm2ÞWðm1; m2; t; i�hbÞ ; ð7Þ

where we introduce the short-hand notation for the phase space point, mi ¼ ðpi; qiÞ; ði ¼ 1; 2Þ, and p
and q comprise the momenta and coordinates, respectively, of all particles in the system.
Wðm1; m2; t; i�hbÞ is the spectral density expressed as

Wðm1; m2; t; i�hbÞ ¼ Z�1
ð ð

dx1 dx2 e
i
p1x1
�h 1ei

p2x2
�h � q1 þ
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2

� ���� eiĤHt�c=�h q2 �
x2
2

����
�

q2 þ
x2
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x1
2

����
�
;

ð8Þ

and AðmÞ denotes Weyl’s symbol [6] of operator ÂA :AðmÞ ¼
Ð
dx e�i px�h q� x

2

� ���� ÂA qþ x

2

����
�
; and similarly

for the operator F̂F. Hence the problem of the numerical calculation of the canonically averaged time
correlation function is reduced to the computation of the spectral density.

To obtain the integral equation for W let us introduce a pair of dynamic p; q-trajectories
f�qqtðt; p1; q1; tÞ; �pptðt; p1; q1; tÞg and f~qqtðt; p2; q2; tÞ; ~pptðt; p2; q2; tÞg starting at t ¼ t from the initi-
al condition fq1; p1g and fq2; p2g propagating in ‘negative’ and ‘positive’ time direction:

d�ppt
dt

¼ 1
2
F �qqtðtÞ½ � ; d�qqt

dt
¼ �pptðtÞ

2m
;

with

�pptðt ¼ t; p1; q1; tÞ ¼ p1; �qqtðt ¼ t; p1; q1; tÞ ¼ q1 ;

d~ppt
dt

¼ � 1
2
F ~qqtðtÞ½ � ; d~qqt

dt
¼ � ~pptðtÞ

2m
;

with

~pptðt ¼ t; p2; q2; tÞ ¼ p2 ; ~qqtðt ¼ t; p2; q2; tÞ ¼ q2 ;

where F qð Þ � �r ~UU with ~UU being the total potential, i.e. the sum of all pair interactions Uab. Then, as
has been proven in [9], W obeys the following integral equation

W m1; m2; t; i�hbð Þ ¼ �WWð�pp0; �qq0; ~pp0; ~qq0; i�hbÞ þ 1
2

Ðt
0
dt

Ð
dsWð�ppt � s; �qqt; ~ppt; ~qqt; t; i�hbÞ$ðs; �qqtÞ

� 1
2

Ðt
0
dt

Ð
dsWð�ppt; �qqt; ~ppt � s; ~qqt; t; i�hbÞ$ðs; ~qqtÞ ; (9)
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where $ðs; qÞ ¼ 4
ð2p�hÞu�h

ð
dq0 ~UUðq� q0Þ sin 2sq0

�h

� �
þ FðqÞ rdðsÞ; and dðsÞ is the Dirac delta func-

tion. Equation (9) has to be supplemented by an initial condition for the spectral density at t ¼ 0:
W m1; m2; 0; i�hbð Þ ¼ �WW m1; m2; i�hbð Þ � �WW . The t-integrals connect the points �ppt; �qqt; ~ppt; ~qqt at time t of
the mentioned above dymamic p; q-trajectories with the points p1; q1; p2; q2 at time t whereas in �WW
the trajectories are to be taken at t ¼ 0. The function �WW can be expressed in the form of a finite
difference approximation of the path integral [7, 9, 10]:

�WW m1; m2; i�hbð Þ �
Ð Ð

d~qq1 . . . d~qqn
Ð Ð

dq01 . . . dq
0
n Y m1; m2; ~qq1; . . . ; ~qqn; q

0
1; . . . ; q

0
n; i�hb

� 	
; (10)

with
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ð11Þ

where j p; q0; q00ð Þ � 2l2
� 	u=2

exp � 1
2p

pl
�h

þ ip
q0 � q00

l

���� pl�h þ ip
q0 � q00

l

� �
 �
; and hx j yi denotes

the scalar product of two vectors x; y. In this expression the original (unknown) density matrix of the
correlated system e�bðK̂KþÛUÞ has been decomposed into 2n factors, each at a 2n times higher tempera-
ture, with the inverse E ¼ b=2n and the corresponding high temperature DeBroglie wave length
squared l2 � 2p�h2E=m. This leads to a product of known high-temperature (weakly correlated) density
matrices, however, at the price of 2n additional integrations over the intermediate coordinate vectors
(over the ‘‘path”). This representation is exact in the limit n ! 1, and, for finite n, an error of order
1=n occurs. The function Y has to be generalized to properly account for spin-statics effects. This
gives rise to an additional spin part of the density matrix and antisymmetrization of one off-diagonal
matrix element. To improve the accuracy of the obtained expression, we will replace Uab ! Ueff

ab
where Ueff

ab is the proper effective quantum pair potential. For more details on the path integral con-
cept, we refer to Refs. [11]–[13].

Let us now come back to the integral Eq. (9). For the discussion we note that the integral Eq. (9)
can be exactly converted into an iteration series (which is obtained by successively replacing W ! �WW
under the integrals). This series is, however, not a perturbative expansion in the interaction, neither in
the electron–scatterer nor in the electron–electron interaction. It rather is an expansion in terms of
corrections to classical trajectories of fully interacting electrons and electrons with scatterers. So mul-
tiple scattering effects are fully included. Physically the second order and other terms of the iteration
series include corrections to the classical electron trajectories (momentum jumps related to the uncer-
tainty principle between momentum–coordinate and energy-time). A detailed investigation of the con-
ditions for which the contribution of the these terms of the iteration series should be taken into
account is presented in [9, 14–16].

As mentioned above, the first term �WW describes propagation of a correlated quantum initial state
along the characteristics of the classical Wigner–Liouville equation. This term, containing all
powers of Planck’s constant, is the coherent sum of complex-valued contributions of a trajectory
ensemble related to �WW . This term allows to describe quantum coherent effects such as Anderson
localization, while other terms of iteration series describe deviations from the classical trajectories:
the trajectories are perturbed by a finite momentum jump s occuring at arbitrary times t, 0 � t � t
[7]. These terms are essential for the recovery of tunneling effects, we expect that they do not give
dominant contributions to coherence and localization phenomena. With increasing quantum degener-
acy (i.e. decreasing temperature or/and increasing density) the magnitude of these terms will grow.
The time correlation functions are linear functionals of the spectral density, for them the same
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series representation holds,

CFAðtÞ ¼ ð2p�hÞ�2u Ð Ð dm1 dm2 fðm1; m2ÞWðm1; m2; t; i�hbÞ � f j Wtð Þ

¼ f j �WWtð Þ þ f j Kt
t1
�WWt1

� �
þ f j Kt

t2
Kt2
t1

�WWt1
� �

þ f j Kt
t3
Kt3
t2
Kt2
t1

�WWt1
� �

þ . . . ð12Þ

where fðm1; m2Þ � Fðm1Þ Aðm2Þ and the parentheses . . . j . . .ð Þ denote integration over the phase spaces
fm1; m2g, as indicated in the first line of the equation.

Our numerical results below refer to finite temperature and moderate degeneracy nele ¼ 0:2 . . . ; 7.
We, therefore, will include in the following numerical analysis only the first term in this series.

4 Quantum dynamics As an application, in this work we will consider a system composed of
heavy particles (called scatterers) with mass ms and negatively charged electrons with mass me. To
avoid bound state effects due to attraction we consider in this case study only negatively charged
scatterers, assuming a positve backgroud for charge neutrality. The influence of electron–scatterer
attraction will be studied in a further publication.

The possibility to convert a iteration series into a form convenient for probabilistic interpretation
allows us to apply Monte Carlo methods to its evaluation. According to the general theory of Monte
Carlo methods for solving linear integral equations, e.g. [17], one can simultaneously calculate all
terms of the iteration series. Using the basic ideas of [17] we have developed a Monte Carlo scheme,
which provides domain sampling of the terms giving the main contribution to the iteration series cf.
[9]. For simplicity, in this work, we take into account only the first term of iteration series, which is
related to the propagation of the initial quantum distribution according to the Hamiltonian equation of
motion. This term, however, does not describe pure classical dynamics but accounts for quantum
effects [14] and, in fact, contains arbitrarily high powers of Planck’s constant. The remaing terms of
the iteration series describe momentum jumps [9, 15] which account for higher–order corrections to
the classical dynamics of the quantum distribution, which are expected to be relevant in the limit of
high density.

This approach allows us to generate, in a controlled way, various kinds of quantum dynamics and
initial conditions of the many-body system, in particular (i) those which are characteristic of the fully
interacting system [i.e. including scatterer–scatterer (s–s), electron–scatterer (e–s), and electron–elec-
tron (e–e)] and (ii) those which result if some aspects of these interactions are ignored.

5 Numerical results We now apply the numerical approach explained above to the problem of an
interacting ensemble of electrons and disordered scatterers in one dimension. In all calculations times,
frequencies and distances are measured in atomic units. The average distance between electrons,
Rs ¼ 1=ðnea0Þ, was varied between 12:0 and 0:55, with the densities of electrons and heavy scatterers
taken to be equal. The results obtained were practically insensitive to the variation of the whole num-
ber of the particles in MC cell from 30 up to 50 and also of the number of high temperature density
matrices (determined by the number of factors n), ranging from 10 to 20. Estimates of the average
statistical error gave the value of the order 5–7%. We studied two different temperatures:
kBT=jVes

0 j ¼ 0:45 and 0:28, corresponding to lee=a0 � 2:2 and lee=a0 � 3:5, respectively.
According to the Kubo formula [8] our calculations include two different stages: (i) generation of

the initial conditions (configuration of scatterers and electrons) in the canonical ensemble with prob-
ability proportional to the quantum density matrix and (ii) generation of the dynamic trajectories on
the time scale t0 in phase space, starting from these initial configurations. The results presented below
are related to two different cases: 1. with e–e interaction included in the dynamics (‘‘interacting
dynamics”) and 2., without e–e interaction (‘‘noninteracting dynamics”). In both cases, the initial state
fully includes all interactions.

Figure 1 presents for our model the real part of the diagonal elements of the electrical conductivity
tensor versus frequency (real part of the Fourier transform of the temporal momentum–momentum
correlation functions) which characterizes the Ohmic absorption of electromagnetic energy and has the
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physical meaning of electron conductivity. To compare influence of electron interactions conductivities
are given on Fig. 1 in the same arbitrary units. The first observation is that, in all cases, the conductiv-
ity for the non-interacting dynamics (2) has a maximum at some finite frequency related to the co-
herent oscillations in the time domain and vanishes at low frequency [18]. The latter clearly indicates
Anderson localization. The effect of the e–e interaction is, as shown by curves 1, a reduction of the
maximum (damping of the coherent oscillations) and, in most cases, an increase of the zero-frequency
conductivity. Thus, our calculations confirm the delocalizing effect of the interactions (Figs. 1a, b, d)
at the considered densities. Interestingly, Fig. 1c is an exception: even with interactions included, the
localization behavior persists. The large oscillations in Fig. 1c are not result of numerical noise, they
exist inspite of very long simulation duration.

The reason for the observed behavior is an interplay of varying strength of the e–e-interaction
(which is weakened with reducing Rs, i.e. from top to bottom figures) and of the magnitude of quan-
tum effects (which grow with temperature reduction, i.e. from right to left figures). Thus, the delocali-
zation tendency observed from Figs. 1c to d is due to thermal activation which, similarly as the inter-
action, destroys coherence phenomena.

Our simulations qualitatively confirm analytical predictions for the low-frequency and zero tempera-
ture limit of the 1D conductivity [19]. Yet our computer power allows us to generate dynamic trajec-
tories up to times t0 equal 100 . . . 200 in atomic units. Thus for small frequencies of the order 10�2,
large fluctuations of the conductivity appear [18], and the accuracy is not yet sufficient to extract an
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Fig. 1 (online colour at: www.interscience.wiley.com) Real part of the Fourier transform of the
temporal momentum–momentum correlation functions for dynamics with (1) and without (2) e–e
interaction. Figure parts are for two densities (a, b: Rs ¼ 5:5; c, d: Rs ¼ 1:2) and temperatures
(a, c: kBT=jVes

0 j ¼ 0:28; b, d: kBT=jVes
0 j ¼ 0:45).
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asymptotic frequency behavior. On the other hand, the advantage of our computational method is that
it allows to study systematically the influence of finite temperature and of electron correlation effects
on localization phenomena in a wide range of densities. We note that we have also performed simula-
tions at lower densities and found that the delocalizing effect of the e–e-interaction has also been
observed at lower density up to Rs ¼ 12. At even lower densities, we expect that future simulations
will yield a pinned electron Wigner crystal at weak disorder [20] and Coulomb glass behavior at
strong disorder.

In summary, we have presented numerical results on the influence of Coulomb interaction on An-
derson localization in a one-dimensional system. At low density (Rs ¼ 5:5) the interaction is compara-
tively strong and localization is destroyed. With increasing density Rs ¼ 1:2, localization is found to
persist even in the presence of Coulomb interaction. For a full understanding of the physical processes
additional investigations are needed which are presently under way.
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