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Extending our previous workA.V. Filinov et al, J. Phys. A 36, 5957 (2003], we present a detailed
discussion of accuracy and practical applications of finite-temperature pseudopotentials for two-component
Coulomb systems. Different pseudopotentials are discug$ethe diagonal Kelbg potentialji) the off-
diagonal Kelbg potentialjii ) theimproveddiagonal Kelbg potentialjv) an effective potential obtained with
the Feynman-Kleinert variational principle, agg the “exact” quantum pair potential derived from the two-
particle density matrix. For th@mproveddiagonal Kelbg potential, a simple temperature-dependent fit is
derived which accurately reproduces the “exact” pair potential in the whole temperature range. The derived
pseudopotentials are then used in path integral Monte Carlo and molecular-dyridbigssimulations to
obtain thermodynamical properties of strongly coupled hydrogen. It is demonstrated that classical MD simu-
lations with spin-dependent interaction potentials for the electrons allow for an accurate description of the
internal energy of hydrogen in the difficult regime of partial ionization down to the temperatures of about 60
000 K. Finally, we point out an interesting relationship between the quantum potentials and the effective
potentials used in density-functional theory.
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I. INTRODUCTION On the other hand, in the past decade, static properties

In recent years, there has been growing interest in th§e-9-» equation of stajeof dense hydrogen in thermal equi-
properties of densguantumplasmas, particulary in astro- !Prium have been successfully investigated with “exact
physics, laser plasmas, and condensed matter; see Refilantum-statistical methods, suqh as the_pa_th integral Monte
[1-7] for an overview. In particular, the thermodynamic ¢arlo (PIMC) method[17-2Q. This first-principles numeri-
properties of hot dense plasmas are essential for the descripd! technique is well suited for an accurate treatment of
tion of plasmas generated by strong lasg8s Further, ~Many-particle correlation effects in quantum systems, but un-
among the phenomena of current interest are the higHortunately does not give dynamical characteristics of the
pressure compressibility of deuteriuf8], metallization of ~ plasma(with the exception of those obtained within linear-
hydrogen[9], and the hypothetical plasma phase transitionfesponse theojy The alternative numerical approach for
e.g.[10-14, which occur in situations where bothterac- dense partially ionized plasmas/hich does not have the
tion and quantum effect@re relevant. above shortcomingis a group of methods based upon

While the case of strong degeneracy and the weakab initio quasiclassical molecular-dynamic simulations
coupling limit have been extensively studied theoretically,(MD), e.g., Refs.[21,22, when a real quantum system is
e.g., within the random-phase approximation, plasma propprojected onto a classical one where most of the quantum
erties atintermediate coupling and degeneragyhenI’, the effects are included in some effective interparticle interaction
ratio of the potential energy to the mean kinetic energy, expotentials[23,24, such as the ones proposed by KelB§],
ceeds unity are a hot topic of the present research activity.Deutsch [26], Klakow, Toepffer, and Reinhardi21], and
For an overview of present-day analytical methods, see, e.gnany others, e.g[27-29. These potentials can be derived
Refs.[2,3,5,14. Analytical methods typically use a chemical from the two-particle Slater sum using Morita’s method.
picture where electrons, ions, and bound stéaésms, mol- However, no rigorous comparison of the accuracy of these
ecules, etg. are treated as independent species, and thpotentials has been done yet, which is one of the aims of this
chemical compositiondegree of ionizationis computed paper. Different quantum potentials are compared with an
from a mass action lawnonideal Saha equatiprHowever, “exact” pair potential obtained from the two-particle density
these methods are based on perturbation expansions in theatrix. Furthermore, we introduce pair potentials including
coupling strength and are thus limited to regions of small{particle statistics, e.g., describing interaction between elec-
coupling parameterd; <1 orr <1 (rgis the quantum cou- trons in the singlet and triplet states, and we use them in our
pling parameten; ;=r/ag). Furthermore, the mass action law MD simulations of two-component hydrogen plasmas.
becomes increasingly inaccurate in the region where the This paper is organized as follows. In Sec. Il, we discuss
electrons are degenergtgecause of uncertainty in the mass different methods to obtain an effective quantum pair poten-
action constanjs Also, during rapid pressure ionization tial. In the weak-coupling limit, this potential leads exactly to
around the Mott density, the distinction between free andhe off-diagonal Kelbg potential, the properties of which are
bound particles is an open problem. discussed and compared to its commonly used diagonal ap-
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proximation. We outline two methods for a direct solution of+mj‘1. The diagonal elemertt i’j =r;;) of Eq. (3) is the poten-
the off-diagonal two-body Bloch equation, which are thential derived by Kelbg and co-workei4,25],
used in Sec. Il for numerical comparison with the Kelbg and

improved Kelbg potentials for rigorous assessment of the ®O(x;;) =%{1_e—xﬁ " v’;x--[l—erf(x--)]} (4)
accuracy of the latter. Further, in Sec. IV we present an N ! !

analysis of the accuracy of the diagonal and off-diagonal . _ e .
Kelbg potentials in the PIMC simulations. Section V de- \t,::]rc]:exur;lllrglii)r\]”.tlgf itli(;lbtglljrzzt?hn(:l%;ssicﬁn:;ntaljnﬁ%ri?frgzzstgon
scribes an application of the improved Kelbg potentials toeffect’s and theg uantum Fr)1ature of two- a?ticle interaction at
classical molecular-dynamics simulations of dense hydrogens.m‘,iII distancesq which prevents an dFi)ver ence. From E
Comparing the results to those of PIMC simulations allows,,. . . ’ P Y 9 : nEq.

: : (4), it is also clear that quantum effects become dominant
us to conclude that use of the improved Kelbg potential al-

lows us to significantly extend the range of applicability of I(c?r%(z) thﬁtg;‘gg;uar? ;gtgggggi’f?esiirg)?ghiﬁéafﬁgﬁgou'
classical MD to the region of partial ionization and to tem- PO i =Nij 9 y the. )
peratures as low as approximately one-third of the bindin@eBroglle w_avglength. We will see bel_ow that, In interacting
energy. Section VI discusses another field of potential appIi-yStemS’ this is only a rough approximation, and at strong

o : . : coupling, the expression for the quantum particle “exten-
cability of the quantum potentials, namely densﬂy-funcﬂonalsion,, deviates stronalv from. and needs to be aeneralized
theory. Finally, Sec. VII concludes the paper. gy ! 9 '

To obtain a simplified expression for the rather complex
quantum potential3), one can approximate the off-diagonal
Il. EFFECTIVE QUANTUM PAIR POTENTIALS matrix elements by the diagonal ones. A first possibility is to
. . . . I approximate the integral over by the length of the interval

In this section, we discuss d|fferent poss.'b'“t.'es for ,Ob'multiplied with the integrand in the centéMittelwertsatz
ftalmng effecnv_e quantum potentials describing interactions, hich leads to the so-called KTR potential due to Klakow,
in the two-particle problem. Toepffer, and Reinhard, whicfin the diagonal approxima-

tion) is often used in quasiclassical MD simulatigid],
A. Analytical solution of two-body Bloch equation:
Off-diagonal and diagonal Kelbg potential (rij,rf,B) = 9i9; f( diig\llz))’

(5
The equilibrium pair density matrix at a given inverse

temperature=1/kgT is the solution of the two-particle wheredij(1/2)=%|rij+ri’j|. Alternatively, the integral can be
Bloch equation, simplified by taking the off-diagonal Kelbg potential only at

the center coordinate,

J ~

——p(ri,ry,ri,ri;8) ==Hp(ry,rj,ri,ri;p), ol

9P PO(ryj,rii, B) = Cpﬁ(w,ﬁ)- (6)
H=Ki+Kj+U(r,r,ri,ri). (1) Many authors use thend-pointapproximation(4) for the

Numerical methods to obtain the density matrix of gy ~ effective potentiakb(ry,ry, 8) in the pair density matrix2)

will be considered in Sec. Il C. Here, we concentrate on th&lue to the fact that it is very convenient computationally. The
available analytical solutions in the limit of weak coupling. P&ir potential for interparticle interaction is simply replaced
If the interaction is weak, Eq1) can be solved by perturba- Py an effective potential which has only a dependence on the
tion theory with the following representation for the two- radial variablesr;|, [r|. However, most of the accuracy is

particle density matrix: usually lost in this end-point approximation.
Since the Kelbg potential is obtained by first-order pertur-
_ (mm)3? . m 2 bation theory, its application is limited to weak couplidg,
Pij = (2mh B)3 X ZﬁZIB(ri j) =1, wherel is the ratio of mean potential to kinetic energy.

In unbound and bound states of an electron-proton pair, this

m. , . . e .
xexp[— %(ri _ rj)z] exl- B®; 1, ) results in the following conditions on temperature:
wherei,j are particle indicesp;=p(r;,r;,r{,r{;B), and I'= ?—/ keT=1U kgT = =
Oy =®(ri,rj,r{,ri;p) is the off-diagonal two-particle effec-
tive potential. In the following, we will consider application F=RVKk.T=10 kaT =R 7
of this result to Coulomb systems. As a result of first-order yheT = Bl =RV, ™
perturbation theory, we get explicitly where Ry=Ha/2#?/2ag, andag is the Bohr radius. For the

1 last case, the Kelbg potentighnd any of the simplifying
®r; 1}, B) = q_qf da erf( dij(a)/\j ) 3) approximationy can be valid only for temperatures suffi-
LY o dij(@)  \2Va(1-a)/’ ciently above the atomic binding energy, i.e., for the case of
) . hydrogen,T=Ry/kg~ 158 000 K. We address this point in
where dij(“)f|“rij+(21‘a)ri,j|’ erf(x) is the error function, more detail in Sec. IV, where “exact” binding energies and
erf(x)=(2/Vm) [3dte™, and )\ﬁ=ﬁ2B/2,uij with ,uﬁl=mi‘1 pair correlation functions for an electron-proton pair are
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compared with the results obtained with the potent{@s and temperature. In the present work, following these stud-
and(4). ies, we approach the problem of the pseudopotential with
exchange by using the formalism of two-particle density ma-
trices(DM). The pair DM can be calculated numericalbee
Sec. I Q or expressed in analytical forif2) using the im-
The limitation of the Kelbg potential to describe quantumproved Kelbg potential8).
systems only when there are no bound states has led severalln the case of a pair of electrons, they can be in a singlet
researcherg1,30,3] to introduce and investigate a more or triplet state, and the spatial wave function is symmetric or
generalized form of the quantum potential with an additionalantisymmetric under the exchange of particle indices. Thus,

B. Improved diagonal Kelbg potential

free parametetyij, one can define a binary effective electron-electron interaction
for three different cases,
Fii Fii
, 1- eru/}‘u+\77 (l—el’fi: —IL]) .
(” p) = Fij { Nij ij %J)\ij e‘BUi‘?T) P (rl!rjvrlir B)"'P (rl!rjlrjirliﬂ)
(8) pt(r i1 BTy ’

This potential has the advantage of preserving the correct
. N . . -guf) _ 3.-pul L 1.-pUS
first derivative atr=0 of the original Kelbg potential, e Pt = e i+ e, (13

®(0,8),= q,qJ/)\ﬁ, but at the same time allows the correc-
fion of the height of the Kelbg potential at=0, i.e., whereplt and pl? are the one and two-particle density ma-

S T
®(0,8)=q; qu.,/()\” ¥;) to include bound states. Using the trices, andUy, Uj, andU are the effective interactions in

definition of the effective potential as the smglet statéS? trlplet state(T), and the spin-averaged
potential, respectively.
ePli=g;, 9 If we now approximate the two-particle DM, by Eq.

(2) and factorize it into the DM’s of the center-of-mass and
relative coordinateghe corresponding expressions are given
in Sec. Il C, cf. Eq(27)], then we obtain for the pseudopo-
tential between two electrons being in the singdleiplet)
state and for the spin-averaged potential, respectively,

where §;=S(r;;, B) is the exact binary Slater sum of par-
ticlesi,j. The fit parametery; in Eqg. (8) is related to the
Slater sum at zero interparticle distance according to

N qi9;8 . (10)

\jj In[§;(r; =0,8)]

It is important to note that;; depends both on the tempera-
ture and the type of particles. For example, the binary Slater

sum of two electrons at zero separation has the faneiud- 1

ing the average(*--)” over possible values of the total spin U<e>e: - I[—gm( @ BUedrr) _ 1T n; BUee(r,—r))_ (15)
S=0,1

Yi=~
Us = - %ﬂn(e‘ﬁuee“” + g g PYedr ) (14)

K ee=0,8) = 2\,'77&9]1 ) I_n this expreseio_n, th_e functioh,lef;r T ), is a pseudopoten—
tial between distinguishable particlése., calculated without
exchange effecjs Thus, one can substitute the original

(&) = f x dx (11) Kelbg potential, Eq(4), the improved Kelbg potential, Eq.
F( i ) (8), or any further improved approximation for the binary
interaction. In the case of two electrons, if we use the im-

proved Kelbg potential8) for U{r,r), then the fit param-
etery.e Must be obtained from E@10), where for the binary
Slater sum one should take the two distinguishable particles
with the Coulomb repulsion case,

where the interaction parametgy=q;q;8/\;;.
On the other hand, for an electron-proton pair the Slate
sum can be written as

(Fep= 0,8) = M Téerdi (€op) + \TELZal ey, -
Sollep™0,) = dmlepli(fep) Vbl bep 2V o= 0.8) = M Téeei(£ed). (16)
e It follows from Eg. (15) that an exchange contribution
Z(§) =2 y e, (12)  (effect of particle statistics in the pair interactjarises from

the kinetic energy part of the density matrix and the nondi-

where the last term shows the contribution of the bouncgonal potentialUedr,-r), which in the first order of the
states. perturbation theory can be calculated using &g. A further

The original Kelbg potential was derived for very high simplification (which is crucial for the application of the
temperatures without taking into account exchange betweepseudopotentials in semiclassical MD simulations presented
particles. This work was followed by several studies wherdn Sec. V) can be achieved by approximating the off-
the pseudopotentials for identical particles have been caIcGilagOﬂa| potential by the diagonal termsjcdr,-r)
lated numerically[32,33 or analytically[34—-3§ using ex- 2[U dr,r)+Ugd—r,-1)]=Ucdr,r). Then the above ex-
pansions in a quantum parameter, small-particle separatiopressions are reduced to
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ST 1 122 3.0 r, T — : . i
Ugeo = Uedr,r) = —In{l £ Mee}, (17 e M
B 25} o 1 ]
Pade’ approx.
1 1 2.0
UQQO: Uedr,r) — Eln{l - Ee‘fz’kge} } (18)

We note that in the diagonal approximation for the potential,
the exchange term corresponds to the case of the ideal Fermi 1.0
gas(i.e., exchange without interactignthe exchange term

arising from the interaction is missing. 0.5
Taking in Eq.(17) the limitr — 0, we see that the poten-
H H H H H 00 rara AT PP PUSTREMERTT PRI RTTT! PRI PR
tial of the triplet state shows a logarithmic divergency, 1o e o o e o
2
r r
UleO:Uee(r,r)—ZkBTln{)\—} +o<)\—2>, (19 T(K)

) ) o ee ) ] FIG. 1. Temperature dependence of the fit parameter for the
whereas the singlet and the spin-averaged potential acquirgfary interactions: electron-proton(T), and electron-electron
an additional exchange contribution, (no exchangg yed T). Symbols show they values obtained with

(2 the least-square fit of the IDKP to the “exact” pair potential without
U§é>o: Uedr,r) = kgT In{2} + O(F)- (20) exchange. Solid curves correspond to the Padé approxim@®n
ce and(23).

but the slope of these potentials at the origin is the same as in _
the case without exchange. This means, in the case of Cou- In Fig. 1, we present the temperature dependence of
lomb interaction, the slope is defined by the slope of thePbtained from the least-square (fitll and open symbolsto

original Kelbg potentiakb®, the “exact” pair potential of distinguishable particlg® ex-
&2 5 changé¢ and the Padé approximatig®2) (solid curves. The
— &0 r r most important result is that the corrected Kelbg potential is
= -—+0|l—=|. - ) ) -
Ued:Mr—0= Ped0) A2, O( )\ge) (2Y) now not limited to weak couplings is the original Kelbg

. potential. For the casg;=1, Eq.(8) coincides with Eq(4).

In our previous papefil], we reported on the temperature one clearly sees the deviation of, from unity for T
dependence of the fitting parametgy for the electron-  — 106 K which shows that the quantum extension of par-
electron and electron-proton interactions. There, two types ofcjes has started to be influenced by interaction effects and is
calculations have been presented. The values(Bj were fthe order ok =\ instead of th iainal th |
obtlﬁined, first, I(by a least-square f;[ of the improved diag?nagg\évfggIieevgz;vglre?]giﬁ?:ij ”Tyﬁijlsnsweit?] tr?e Pz(;)érlgf:j(l)r;r?mlaegrg;a
Kelbg potentialIDKP), Eq. (8), to the “exact” pair potentia N ' ) .

U [see Eq(27)], and second, from Eq10) by evaluating the and(23), we have obtained an analytical fit for the quantum

. tension of the scattering particles.
values of the binary Slater sums. It has been found that botf* 3 L
methods agree Wit)r/ﬂn statistical uncertainty. The Pade approximation®2) and (23) have been suc-

: . . full in iclassical molecular-dynami imula-
Extending our earlier results, we now present a Padé a gessfully used in quasiclassical molecular-dynamics simula

proximation which contains an analytical temperature deper&—'ons of two-component hydrogen plasmas. As we show in

dence of the parametetg which will be useful for practical Sec. V, they enable accurate resglts for partial hyd.rc(gen .
applications, other quantum systems of oppositely charged particles with

bound states
X, + X5 Finally, we note that, in the MD simulations of quantum

Ye T) = 1+ag,x,+ X? (22) plas_mas, it can be advantageous to h_ave spin-dependent po-
P tentials for the electron subsystem defined by #¢) or Eq.
T 0+ 2 (17). The spin-resolved approximation allows for refined
YedT) = Yed T — 8ecl1 Xl, (23) modeling; for example, it allows for the description of mol-

2 . . . . . .
1+x7] ecule formation, spin density waves, spin-flip processes in

where Xl:\s“m (with the Hartree energy Ha=2 Ry the presence of a magnetic field, and so on.

=315775 K, a,;=1.09014), and a,e=0.181). The limit C. Effective potentials from numerical solution
value, y.d{ T— 0), has been obtained from EQG.0) by evalu- of the two-body Bloch equation
ating the zero-temperature limit of the binary Slater sum

In this section, we briefly describe the numerical methods

1 . ) .
(16), which have been used to solve the two-particle problem in
2.4 1 order to obtain the “exact” quantum pair potentials. These
Yed T—0) =~ - \_;X |n{g)~(4/\;;} -2’ (24) results have been used to obtain the analytical fit in the im-

proved Kelbg potential. Furthermore, they will be used to
with X=(|7&d/2)1. The excellent accuracy of the Padé ap-test the accuracy of various analytical approximations for the
proximation is demonstrated in Fig. 1. guantum pair potentials in Sec. Il below.
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Let us factorize the full two-particle density matrix into a ) c , .
center-of-masgc.m) term and a density matrix of relative p(r, e = dr” py(rx" 7 2)p(r"r "5 712). (29)
0

coordinates,
el o) = . ' This is the basic equation of thmatrix-squaring method
P ITB) = pem(RREBP(LITEE), (25 which allows the calculation of the function at a given
where R=(myrj+myr;)/(mj+m;), and r=r;-r;, and analo- temperature 1# from the same function at a temperature
gously forR’,r’. For the relative DM in analogy with Eq. twice as high. Squaring the density matkiximes results in

(2), we define the effective pair potential as a lowering of the temperature by a factor df Each squar-
. ing involves only a one-dimensional integration which, due
p(r.r";B) = pyin(r,r'; e PUA), (26)  to the Gaussian-like nature of the integrand in B§), can

be performed quite accurately and efficiently by standard nu-

merical procedures. To start the matrix-squaring iterations,

1 Eq. (29), one needs a known accurate high-temperature form

U(r,r’;p) =~ E'”[P(r,r';B)/Pkin(r,r';ﬁ)], (27)  for the density matrix. A convenient choice is the semiclas-
sical approximation,

which results in the following expression:

wherep(r,r’; B is the kinetic energy DM.

One of the possibilities to get the relative density matrix . o . T r’
p(r,r'; B) is to directly solve the corresponding one-particle p(r,r’ ) =p(r,r';7) X exp - —|r —r] V(x)dx |,
Schrédinger equation and calculate the DM as a contribution '
from bound and continuum states. This procedure is advan- (30)
tageous when the Schrodinger equation can be solved ana- Y .
lytically and we know analytical expressions for contribu- Wherepi(r.r’;7) is the partial-wave component of the free-
tions of scattering and bound states, as, for example, for thearticle density matrix. _ _
Coulomb potential, e.g{36]. But if that is not the case, a  ©Once the pair density matripg(r,r’; 7) is computed for
separate calculation of each matrix element for each ne€ desired value of, it is substituted into Eqs(28) and
value of end points andr’ will be required, which is not (29), an(_j a sumr_nahon over partial waves readily yields the
efficient and a time-demanding procedure. In principle, sucffull relative density matrix.
calculations can be done in advance witfr ,r’; 8) stored o )
in the tables of the potential, but one still needs to solve the 2. Variational perturbation approach

Schrédinger equation many times for each value of quantum As a second method for solving the off-diagonal Bloch
numbers and also for wave functions of continuum states. equation' we used thariational perturbation expansiode-

Itis possible to approach this problem from the other side/eloped by Feynman and Kleind&8]. In this procedure, the
and calculate the DM directly without solving the jnitial density matrix is presented in the form of a trial path
Schrédinger equation. In this work, we apply two efficientintegral which consists of a suitable superposition of local
methods, namely thmatrix squaring techniquéd2,37 and  harmonic-oscillator path integrals centered at arbitrary aver-
the Feynman-Kleinervariational approach[38,39. In Sec.  age positionsx,,, each with its own frequency squared

Ill, we will compare the accuracy of the pseudopotentialsn?(x ). One starts from decomposing the action in the den-
obtained with these methods. sity matrix as

1. Matrix squaring technique

The exact off-diagonal pair density matrix can be calcu- p(r,r';B) = Dx e Xt (31)
lated efficiently by the method introduced by Storer and (r.0—(" )
Klemm [32]. For the case of spherical symmetry of the in-
teraction potential, the relative pair density matrix in E2f) AIX] = Ag [X]+ AndX], (32)
is expanded in terms of partial waves. This expansion reads, m

for the two- and three-dimensional cases, with Aq, [X] being the action of a trial harmonic oscillator

1 _ with the potential minimum located at,, andD being the
p?o(r r';B) = Py > p(r.r';pe'®, functional integral over all trajectories. The interaction part
TNIT ==
1B )
L AnlX] = f o VIX(3)] = 31 Qx(m) = X?], (33)
pP(rr’ ;@) =——2 (21 + 1) X p(r,r'; B)P,(cos®), 0
47Trr 1=0

is defined as the difference between the original potential

(28) V(x) and the displaced harmonic oscillator. TQ8 term in
where® is the angle between andr’. Each partial-wave Eg.(33) compensates for the contribution A,  [X] in Eq.
component satisfies the 1D Bloch equation for a single par¢32). Now one can calculate the density matf®d) by treat-
ticle in an external potential given by the interaction poten-ing the interaction33) as a perturbation, leading to a mo-
tial and also a convolution equation, ment expansion
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1000 000 K 250 000 K 62 500 K

. ol 8 [N
— ODKP
--- DKP

1
p(r,r'; ) = pgm(r,r’ ;ﬁ)<1 - Z<Aim[><]>?r’xfm

2ﬁ2<Alnt[X]>?;)§m - )

di2
T\NQX
(2%2) ’ (39
with the definition
x,_ d sinhipg0 ul)
WA =28 npa T 2 sinnip0
><[(FZ+?’2)coshﬁﬂQ—2r'F’]
(="

——E A XD o, (35

:Bnl n!A"

whered is the space dimensionality amdlthe order of the
approximation. The functionpg'xm(r ,r') is the trial
harmonic-oscillator density matriX=(r =x,,), T'=(r' =Xy,

and the expectation value of the interaction action on the|

right-hand side of Eq(35) is given by 0 ! 2 ,
r'ag
n 1B
Im[x])r om= Slx f DXH f dr FIG. 2. The “exact” off-diagonal density matri(r,r’; ¢) for
m(r r’) an electron-proton pair vs the density matrix calculated with the

diagonal(DKP) and off-diagonalODKP) Kelbg potentials. In all
X Vi dX (1) _,_Xm]e{—(llh)Aﬂvme“me]} ) figures, results for three angular values are givenpa® (upper
curvey, ¢=/2 (middle), and =7 (lower curve$. The proton is
(36) located at the origin, and the vector (initial electron positioh is
fixed, |r'|=0.25; 1.0; 2.0. The vectar (final electron positiopis
The functionWi”m can be identified as agffective quantum  varied; ¢ is the angle between the vectorandr .
potentialwhich is to be optimized with respect to the varia-
tional parameterfQ?(r,r’; 8),Xu(r ,r'; B)}. Note that, in the  eral temperature valugg=1 000 000, 250 000, and 62 500
high-temperature limit, this effective potential goes over toK) and several angular distandes=0,7/2,m) between the
the original potentiaV/(r). The optimal parameter values are vectorsr =r;, r'= ri; (in each of the figures, the top curves
determined from the extremity conditions correspond to the case of parallel vectaps,0, and the low-
" , " ) est curves to antiparallel vectorg=). Also, for reference,
W3 B) 0o I3 B) —0. (37 We give the off-diagonal density matrix obtained from the
a0? ’ I Xm ' “exact” solution of the Bloch equation, cf. Sec. Il C 1. At
. . . . . . high temperaturesl =250 000 K, the Kelbg density matrix
The perturbation serie@5) is rapidly converging, in most does not exhibit large deviations from the exact result. At

cases already in the first-order approximatiafi*m for the
effective potgntial and gives a Fe%sonablﬂstimate of thlﬁ-] 1000000 K(left column of Fig. 3, the ODKP density
. NN atrix practically coincides with the exact solution, whereas
desired quantities. the DKP approximation shows small deviations. In these
cases, the perturbation expansion applies,0.15. With de-

lll. COMPARISON OF THE PAIR POTENTIALS AND creasing temperature, the deviations from the exact results

THEIR TEMPERATURE DEPENDENCE grow (see the middle columnTo better understand the de-
tails of the deviations, we magnified the effect by including
results forT=62 500 K, which is far beyond the scope of the
perturbation theoryT =0.4 Ry kg, i.e.,I'=2.5. Here we ob-
serve that, at the origin, the density matrix of the Kelbg
potential is three times less than the exact one. The largest
errors were found for the DKP, in particular, in the case when
the vectors,r’ have the opposite directiap=).

In Fig. 2, we show the angular dependence of the full The behavior of the full density matrix can be understood
off-diagonal two-particle density matrix calculated with the from the following considerations. The density matrix results
off-diagonal Kelbg potential, ODKI3), and its diagonal ap- from contributions of kinetic and potential energy operators,
proximation, DKP(4). The density matrix is shown at sev- cf. Eq. (1). At small distancegr’=0.25, the Coulomb at-

We will now compare the accuracy of the pair potentials
discussed aboveéor two-particle density matrices corre-
sponding to these potentiglgheir temperature dependence,
and range of applicability.

A. Full density matrix of electron-proton pair
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00 - ' 1 00 - - mann factore V#), this function is a good estimate for the
- = binding energy(E;,) of an electron-proton pair. In the case of

a bound state, the main contribution to the energy comes
from the region of small interparticle distance= 3ag.
Therefore, the behavior of BU(B)/dB] near the origin de-
termines the accuracy of the calculations of the energy and
other thermodynamic quantities. As we can see from the
curve for 5000 K in Fig. &), the depth of the DKP is much
less than that o), and, therefore, it gives too low a bind-
ing energy ofE,~0.16 Ha, i.e., a factor of 3 too low com-
pared with the true ground-state enel@ﬂFO.S Ha.

As was already discussed in Sec. Il B, the accuracy of the
DKP can be improved with the additional fit parameggr In
. ) S Figs. 3a and 3b), this potential is denoted aBye,g. One
FIG. 3. (a) Diagonal effective electron-proton potentiad units -5 see that at all considered temperatulgg,, practically

of Ha) for several cases: the DKPY(r; §) (4), the improved DKP (i ciges WithU 5. Even in the case of strong couplifig
d(r;B) (8), variational potentlc’;ﬂ/\l‘f’Xm (35), and pair potentiall, =5000 K), the agreement is very good.

(27) corresponding to the “exact” density matrix. Each potential is . . e . s
given at three temperature values: 5000, 40 000, 125 000, and The_ next FX’Ot?”“a' showr_1 in this figure is _the varla_tlor_lal
320 000 K.(b) The functionU(8)+BdU(B)/ B for the same ap- potential, W**m, introduced in Sec. Il C 2: This potential is
proximations and temperatures. The ovals include a set of curve"?snore ‘:’}Ccurat? than t.he DKP "?md qualitatively reproduces the
corresponding to the denoted temperature. exact” effective pair potentialU,y, for temperaturesT

=125000 K, 320 000 K, and its derivatijsee Fig. 8)].
. : he key point is that theariational perturbation theory38]
traction between an electron and a proton dominates an eplaces the perturbation expansion linwhich does not

therefore, thg density matrix.sho.ws an expoqential decay. Aéonverge for"= 1) into another expansion, EG@4), which
the largest distance ' =2.0), kinetic and potential energy are does not have this restriction. The results of this approach

of the same order and g G?us?an-hke_ frehe-%artlcle Id?ns'té(an be improved by taking into account higher-order terms in
matrix emerges, as can be clearly seen in the bottom left pagq_ (34) (the results shown in the figure include only the first

of Fig. 2. term, n=1). The convergence of Eq34) extends even to

From this first comparison, we can conclude that both th : P
DKP and the ODKP show satisfactory agreement with theﬁglrg tﬁé%?g(;;ummg and has been successfully applied in

exact result in the cases where perturbation theory applies
T=2 Ry. At lower temperatures, there is only qualitative

agreement. The strongest deviations arise for small interpa icular, the “exact” pair potential was compared with the re-

ticle dlstances{_r 1"}, and th's' as will be shown b_EIOW' '€ sults of Barkel33] (the calculations of the pair potential by
sglts from the incorrect height of the Kelbg potential at Zeroiha direct eigenfunction summatipand the Deutsch poten-
distancer =0. tial. Good agreement has been found with the data of Barker
[33], while the deviations of the Deutsch potential turned out
to be slightly larger than that of the Kelbg potential. The
reason for this difference is that the Deutsch potential has an
In Figs. 3a) and 3b), we show and compare the accuracy incorrect spatial derivative),, for r < 3ag.
of several effective electron-proton potentials and their tem- Next, in Fig. 4, we compare pair distribution functions
perature derivatives obtained by various methods. As an “ex¥DF) of two electrons in singlet and triplet states for differ-
act” reference potential to which the accuracy of other poent temperatures, obtained from the expression with the ef-
tentials is compared, we ug,,;; obtained from the electron- fective potential,
proton pair density matrix calculated with the matrix
squaring technique. g(r) o< e AU, (38)
First, we note from Fig. @) that, at given temperatures
T<2 Ry, the original Kelbg potential shows the largest de-Due to the Pauli principle in Fig.(4), the PDF goes to zero
viations from the “exact” resultJ,;. While the spatial de-  asr,.— 0. On the other hand, for electrons in a singlet state
rivative of the DKP coincides with that &f ., @ systematic  [Fig. 4(b)], this happens only if the temperature is decreased
offset of the DKP compared td,,; is observed at the origin to 31 250 K, where the potential energy dominates the ki-
r =0, which increases when the temperature is lowered. Thgetic energy. The three lines in Figa#show three caseg)
agreement is satisfactory only for the curve corresponding t@nd(ii) when as an effective potential in E(L5) we substi-
T=320 000 K. The accuracy of the Kelbg potential becomesyte the “exact” pair potential and the Kelbg potentiaii;)
worse for quantities involving its temperature derivative. Forwhen in Eq(17) we substitute the Kelbg potential. In the last
example, for the total energy one has to compute the therm@ase, the exchange contribution from the potential function is
dynamic average of the functioi8U(8)/3Bllu=ag_, . This  neglected. This, as shown in Fig(a} becomes important
function is shown in Fig. @). If multiplied by the Boltz- only for the temperature 31 250 K and below. Similarly, in

UB) (Ha)
U(E)+BAU(B)/AB (Ha)

' We mention that comparison with other effective poten-
tials has been performed in our previous papigr In par-

B. Effective interaction of electron-proton
and electron-electron pairs
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o = free energy bounded from below. The inclusion of quantum
) _U;e fluctuations in the Euclidean action of the Feynman path
T P pieces smoothes the singular Coulomb potential, producing

an effective potential that is finite at the origin, apdth
collapseis avoided. This again shows the importance of ef-
fective potentials, specifically, in “quasiclassical’ simula-
tions (classical Monte Carlo and molecular-dynamics meth-
odg. Of great importance are potentials which have a closed
analytical form. In this case, for many thermodynamic quan-
tities it is possible to obtain analytical solutions.

For simulations of correlated quantum many-body sys-
tems which are based dirst principles,the initial many-
body Hamiltonian with the true singular Coulomb energy
operator is considered and solved to find some effective

FIG. 4. Pair distribution function for a pair of electroria) Ina ~ Many-body interaction potential. For this approach, it is im-
triplet state(parallel spins,S=1). Cases compared are E@.4), Portant that in the high-temperature limit thieparticle den-
using forU the “exact” pair potentimgme—ﬁule’ the Kelbg poten- sity matrix can be gxpgnded in terms of two—pgrtmle_, t_hree—
tial, g[xe_/;(pl:e’ and Eq.(17) with the Kelbg potentialgoce‘ﬁ‘l’leo. pgmcle, etc., contr!but!ons. If the temperature is sufﬂmently
(b) In a singlet statqantiparallel spinsS=0), Eq. (14) with the _hlgh, then all contr|bqt|ons except the first one, W_hlch takes
“exact” pair potential,goce‘BUSe, and Eq.(17) with the Kelbg po- into account two-particle correlations, can be omitted. As a

i _0S T i result, the following approximation for thé-particle density
tential, go- e #®ee0, The pair distribution functions are shown for

0} 1000000K
X

2?0 000 K

matrix holds:
temperaturesT =31 250, 125 000, 250 000, and 1 000 000 K.
. NP e~ T e P rr i)
Fig. 4b) we compare two curvegases(i) and (iii) of Fig. p(R.R";7) =~ [I p™(rir{ ;011 O o e o7
4(@)] corresponding to the “exact” pair potential and the i <k PGP (NerG )
Kelbg potential. +0(pl3), (39)

One can note that the overall accuracy of the Kelbg po-
tential for description of two particles with the same chargewhereR={r,,...,r\} specifies coordinates of dl particles,
(even without improving its value at the origin with) is  andpl*(pl?)) is the single{two-) particle density matrix. The
significantly bettefcompared to the results with the “exact” abovepair approximation is usually used in PIMC simula-
pair potentia) than for particles with opposite charge, cf. Fig. tions [37]. The N-particle density matriy() contains com-

3. This is due to the absence, in this case, of contributiongjete information about the system with the observables
from bound states. given by

In Sec. V, these pair correlation functions will be com-

pared with those for a hydrogen plasma obtained by -
molecular-dynamics simulations, see Fig. 9. . T )] de<R|O P(BIR)

In the next section, we discuss application of quantum (0) = Ap = (40)
pair potentials in thermodynamic calculations using Feyn- Trlp(B)] de(R|“(,8)|R)
man trajectories in imaginary timg@IMC). P

Due to the exponential form, thé-particle density operator

p(B)=€e"P" can be factorizedin analogy to the matrix squar-
ing method aboveas p(B8)=[p(7)M with M=g/r. Conse-

It is well known (see, for example, the discussion in quently, theN-particle density operatqs(B) is expressed in
Chap. 12 of[38]) that the singularity of the attractive Cou- terms of density operators at &h times higher temperature
lomb potential causes difficulties in the Euclidian path inte-1/7=MkgT. If M is chosen sufficiently large, then one can
gral. The energy of the path can be lowered indefinitely byapply the pair approximatio(89). Thus, accurate results for
an almost stretched configuratiga path is presented as a the quantum pair potentials and, consequently, the pair den-
straight line along an imaginary time axisvhich corre-  sity matrix will allow the calculation of the density matrix of
sponds to a slowly moving particle sliding down to the#+  the wholeN-particle system. Here we are not interested in
abyss. This phenomenon is callpdth collapse. the investigation of the accuracy of the approximation given

One possibility to prevent this effect is to use a modifiedin Eqg. (39) but concentrate on the two-body problem where
“regularized” Coulomb potential which has a cutoffrat0. Eqg. (39) is exact.

This procedure, however, is quite arbitrary, and the results It is clear that the observablg40) computed with the
are sensitive to the chosen cutoff parameters. Of course, iapproximate pair-density matrlm{z] contain an error of the
nature, these difficulties are prevented by quantum fluctuaerderO(1/M?). Below, we will investigate the convergence,
tions which equip the path with a configurational entropy.as a function ofM, of the main thermodynamic properties
The latter must be sufficiently singular to produce a regulagtotal energy an@-p pair distribution) for an electron-proton

IV. QUANTUM PAIR POTENTIALS IN THE PATH
INTEGRAL MONTE CARLO METHOD
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0.0 05 1.0 05 1.0 FIG. 6. PIMC results for the internal energy of the proton-
r/ag r/ag electron pair using “exact” pair density matrix, DKP, ODKP, and

Improved Kelbg potentiallDKP) vs different number of factoriza-

FIG. 5. Proton-electron pair correlation functiomgy(r), from tion factorsM.

PIMC simulations with the “exact” pair density matrigiamonds,

the DKP(dots, and the ODKRfull line). Temperature values are as of a bound state again. Thus, this simulation captures the

indicated in the figure part§’=5 208, 10 416, 31 250, and 62 500 region of partial ionization. As the temperature is increased,

K. For comparisonT=0 “GST" denotes the pair correlation func- the jonization probability also increases, leading to a signifi-

tion (shown by crossgscorresponding to the ground state of a cant drop in the height of the proton-electron pair distribu-

hydrogen atom. tion function at the origin compared to the ground-state prob-
ability function W3(r) (see Fig. 5, plots foT=31 250 K and

pair using for the pair density matrip?! results computed T=62 500 K).

with the off-diagonal and the diagonal Kelbg potential. In Fig. 6, we analyze the convergence of the internal en-
ergy in PIMC simulations with a varying number of high-

temperature factordd. In particular, we compare indepen-
Comparison of the diagonal and the off-diagonal Kelbg dent simulations with the diagonal and off-diagonal Kelbg
potential in the example of a hydrogen atom density matrices, respectively. The “exact” energy value for
the considered temperatures is given by the solid line and is
obtained from PIMC simulations using the “exact” pair den-
sity matrix, cf. Sec. Il C 1. The internal energy was obtained
using the thermodynamic estimatdg)=—-(4/dB)In Z, where
Z is the partition function. Comparing tretagonal and off-
. o diagonal cases, one can note that the ODKP density matrix
from the atomic grounq state. F|rst., in Fig. 5 we showefe shogws much better and faster convergence to the exact en-
pair (g|str|but|on functions(normalized to the volumelV ergy value. The improved diagonal Kelbg potential gives the
=4t °dr). exact result only for the diagonal density mattike special
For temperature$=5208 K and 10 416 K, the hydrogen c4se wherM =0, and the density matrix is not factorized
atom does not decay into free particles during the duration ofq any finite number of factor$l =1, one makes an error
a typical simulation run~10¢° Monte Carlo steps In the  in Eq. (2) by substituting the off-diagonal potential with its
figures, the “exact” pair correlation function is compareddiagonal approximation. This error decreases with the in-
with the one obtained with the off-diagonal and diagonalcrease of temperatur@r, equivalently, with the number of
Kelbg potentials, respectivelgthe number of factorization factorsM) because, as the temperature increases, the particle
factors for the density matrix was chosen toMde400. We  extension(given by the deBroglie wavelengths reduced,
found that the best accuracy is achieved for the off-diagonaand the difference in the potential at pointandr’ vanishes.
Kelbg potential andV =200; in this case the ODKP pair This explains why the improved Kelbg potential for a small
correlation function practically coincides with the exact re-number of factors &M < M, shows an increasing deviation
sult (T=0 “GST" curve in the two upper panels of Fig).5 and for M> Mg, converges toward the “exact” result. The
At elevated temperature$=31 250 K and 62 500 K, ion- value of M, (largest deviatiopis in the range of 1 --- 100,
ization of the hydrogen atom occurs, but due to the periodiavhere the smalllarge) number corresponds to higliow)
boundary conditions, the free particles cannot go to infinitytemperature, cf. Fig. 6.
but, when reaching the boundary, are returned back in the A simple estimate shows that the relative error of the total
simulation box and have a finite probability for a formation energy, in the diagonal approximation, depends on factoriza-

We consider a hydrogen atom in a box with periodic
boundary conditiongbox sizeL=20ag) at several tempera-
tures, T=31 250-62 500 K, when the hydrogen atom can
ionize into free particles, as well as for the case
T<10 000 K, when there is essentially only the contribution
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siderations, there is no ad hoc proof that they will necessarily
be accurate for the description of dynamical behavior as well
(in particular under strong nonequilibrium conditipngVe,
therefore, concentrate in the present analysis on correlated
partially ionized hydrogen irthermodynamic equilibrium.
The results obtained below confirm that, indgatl least in
equilibrium), the quantum pair potentials are well suited for
use in the interparticle force terms in classical MD.

Classical MD simulations incorporate all interparticle col-
lision processes and are thus not restricted with respect to the
coupling parametel in a classical system. With the use of

s . I . L N . ! . I effective quantum pair potentials, we expect, in addition, to
0 2 4 6 8 10 capture dominant features of the quantum nature of micro-
1/r= (MkgT)/Ha particles, such as quantum diffraction and spin effects. Thus,

these simulations could be called “semiclassical” MD. Hav-

FIG. 7. Relative error in the internal energy of the proton- ing access not only to improved electron-ion potentials but
electron pair from PIMC simulations with the diagonal, off- 3|50 to spin-dependent electron-electron potentials allows us
diagonal and improved Kelbg potentidDKP) vs temperature ar- to consider also spin effects by simulating electrons with
gument in the two-particle density matrix 4./ different spin projections as two independent particle spe-
cies. While in this paper no spin-flip processes are consid-

tion numberM as SE/E= y72, 7=B/M. In contrast, using €red[40], our model is capable of treating spin as an addi-
the off-diagonal potential, the error converges much fastettional degree of freedom. In particular, it should allow us to
SE/E=~ y7. This fact is illustrated in Fig. 7, where the loga- describe spin polarization, spin interaction with magnetic
frithm of the relative error, lo@E/E), is shown as a function fi€lds, spin density waves, and so on. In this paper, we focus
of the inverse of the temperature used in the highOn Static properties, such as internal energy, and radial dis-
temperature factors, ¥/ In this figure, we compare the be- tribution functions. Investigation of dynamical properties and

. . of spin density fluctuation is the aim of a forthcoming paper.
havior (_)f the error for the same set of temperatures as in Fig. We consider a dense, degenerate hydrogen plasma at two
6. In Fig. 6, we also add simulation results using the

. : - . densities corresponding to the Brueckner parameter

proved diagonaKelbg potential(solid ling). Its accuracy is =tlag=4 andr.=6 and temperature3=31 250, 50 000,
better than that of the ODKP at low temperatuiemall g3 500, 125 000, and 166 670 K. These parameter values
values ofM), but at high temperatures both are Comparablecorrespbnd, respéctively, 5=2.53, 1.58. 1.26, 0.63, and

The main conclusion that can be drawn from the pre|) 47 forr,=4; andI'=1.68, 1.05, 0.84, 0.42, and 0.32 for
sented PIMC results is that, at an equal number of factorizar —g,
tion faCtOI‘SM, simulations with the Oﬁ:'diagonal Kelbg pO' The simulation box of our System, with the |eng[h
tential are significantly more accurate in reproducing the:[n/(Np+NL+Né)]1’3, contains N, =200 protonS1N£:100
“exact” thermodynamic results of a hydrogen atom. Besidesg|ectrons with spin up and an equal number of electrons, and
the full off-diagonal density matrix contains valuable infor- Né:loo with spin down. We keep the condition of the elec-
mation about the spatial electron distribution around the protroneutrality by taking\lp:Ng+ Nl_ Details of the numerical
ton, which is lost in the end-point approximation. Further, wealgorithm can be found in Ref22].
expect that the best results will be obtained usamgim- Since MD, in contrast to PIMC, involves only diagonal
proved off-diagonaKelbg potential, which has the correct interaction potentials, we choose the following expressions:
zero-point value and contains the complete angular deperior the interaction between electrons and protons, protons
dence of the pair density matrix which, however, is beyondand protons, and electrons with opposite spin, we use the

the scope of the present paper. improved Kelbg potential, Eq8), with the fit parameters
given by Egs.(22) and (23), respectively. The interaction
V. MOLECULAR-DYNAMICS SIMULATIONS between electrons with the same spin projection is described

by the diagonal antisymmetric potential, E7). Further, to

In this section, we apply the improved Kelbg potentials inproperly account for the long-range character of the poten-
classical molecular-dynamics simulations of dense hydrogenials, we used the standard Ewald procedure as outlined in
Classical MD simulations of dense plasmas have been peRef.[22]. However, in contrast to the rather involved expres-
formed by many authors before, where the classical collapssions of Ref[22] for a one-component plasma, here we re-
of an electron into a proton is usually avoided by some cutofktrict the potential energy sum to the proper sum onlsead
or “regularization” of the Coulomb potential at small dis- space(due to an additional partial screening of the interac-
tances. By using the effective quantum pair potentials obtion between particles of the same charge by particles of
tained from the exact solutions of the Bloch equations, weopposite charge We do not reproduce these lengthy expres-
expect to have the correct pair interactions at short distancesions here, but mention that the value of the parameter
This should not only prevent any collapse, but also correcthdefined in Ref[22] was chosen to be=5.6/L, and we take
reproduce the formation of hydrogen atoms and thus allowFive vectors in every direction ithe reciprocal spaceThis
us to obtain improved MD simulation results. However, gives some computational-cost advantage in the computation
since these potentials are derived from pure equilibrium conef the forces compared to RgR2].
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energy per hydrogen atom at densitigs 4,6 vs temperature. The | .

results of restricted PIMC simulations by Militz¢41] are shown b /4 5 8

for comparison(dashed lines Symbols indicate the five tempera- g ey

tures for which MD simulations have been performé&e:31 250, . o

50 000, 62 500, 125 000, and 166 670(¥0lid lines. The pair ' FIG. 9._ Electron-electron and proton-proton radlal_ pair distribu-
tion functions for a correlated hydrogen plasma witlx4 (left

i ot )
;F;pre(:]ﬂrrg? ion breaks down around 50 000 K at the molecule bmdrow) andr =6 (right row) for T=125000, 61 250, and 31 250 K

(from top to botton.

In Fig. 8, we plot the internal energy per atom as a func-
tion of temperature for two densities and compare it to the If the temperature is lowered below approximatély
path integral Monte Carlo results of Militzg¢d41]. One can =50 000 K, we observe a strong increase in molecule forma-
note that for high temperatures, the energies of MD andion and even an aggregation of many molecules into clusters
PIMC simulations coincide very well and lie within the lim- with an interparticle distance close tagl This turns out to
its of statistical errors. This is an important test for the simu-be the reason for the observed very low energy because the
lation, and this agreement was expected due to thattractive Coulomb interaction contributions are becoming
asymptotic character of the Kelbg potential as a rigorouglominant in the total energy. Of course, this behavior is not
weak-coupling result. Moreover, we observe good agreemersurprising: while all pair interaction processes are modeled
between MD and PIMC results at temperature as low as apsorrectly even at low temperatugehich is assured by the fit
proximately 50 000 K, corresponding to a coupling param-parameters in the improved Kelbg potentjalas soon as
eterI'=3. This is a remarkable extension of “semiclassical’three or more particles are close together, three-particle and
molecular dynamics into the regime of moderate couplinghigher-order correlations are stroftpey, in particular, ac-
and moderate degeneracy. count for the formation of the larger bound-state complexes

Below a critical temperature of about 50 000 K, devia-described aboyeHowever, in the derivation of the quantum
tions from the PIMC results start to grow rapidly; the MD potentials, it was assumed that three-particle and higher cor-
results for the energy are lower than the PIMC results. It igelations could be neglected that formed the basis for the use
very interesting to analyze the reasons for these deviationsf pair potentials in modeling the wholg-particle system.
as this may suggest directions for further improvementsWhile molecular dynamics, of course, includes any level of
These deviations are not due to a failure of the quantum paitorrelations, the use of the present potentials means that
potentials. The quantum pair potentials remain exact in theuuantum corrections to three-body (and higher-order) inter-
whole temperature range. In contrast, the observed deviactionsare not adequately captured. Therefore, it is no sur-
tions of the MD results from the PIMC data arise as a con-rise that this approximation breaks down at sufficiently low
sequence of many-particle effects, i.e., correlations. This extemperature, and that this breakdown occurs around the tem-
planation is confirmed by a detailed inspection of theperature corresponding to the binding energy of hydrogen
microscopic particle configurations in the simulation box. Atmolecules. From this we can conclude that molecule forma-
high temperatures, the particle trajectories are those of a fullfion sets the limit of the applicability of the present semiclas-
ionized classical plasma. At temperatures below 1 Ry, wesical MD simulations.
observe an increasing number of electrons undergoing strong Let us now turn to a more detailed analysis of the spatial
deflections on protons and eventually performing quasiboundonfiguration of the particles in the MD simulations.
trajectories. Most of these electrons remain “bound” only for In Fig. 9, the radial pair distributions between all particle
a few classical orbits and then leave the proton again. Averspecies with the same charge are plotted at two densities.
aged over a long time, our simulations are able to reveal th€onsider first the case af=125 000 K (upper pangl For
degree of ionization of the plasma. At the same time, weboth densities, all functions look qualitatively the same,
observe occasional events when three or more particles ashowing a depletion at zero distance due to Coulomb repul-
close to each other for the duration of one or more orbitssion. Besides, there are differences which arise from the spin
reflecting the appearance of hydrogen moleculgstblecu-  properties. Electrons with the same spin show a slightly
lar ions H,", etc. broader “Coulomb hole” around=0 than the protons, be-
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FIG. 11. Electron-proton radial pair distribution functions mul-
FIG. 10. Electron-proton radial pair distribution functionsrat tiplied by r2. Same data as in Fig. 10.
=4 (left figure) and rg=6 (right figure) and five temperaturest

=166 667, 125 000, 62 500, 50 000, and 31 250 K. leads to the formation of a shoulder at aroundag, vhich is

due to the formation of hydrogen atoms. This conclusion is
cause the Pauli principle yields an additional repulsion of theconfirmed by inspection of the corresponding quasibound
electrong(this effect is much weaker for two protons due to electron trajectories, as discussed above. At the lowest tem-
their much smaller deBroglie wavelengtiThis trend is re-  perature(T=50 000 K) shown in Fig. 11, the observed most
versed at lower temperatu¢eee middle panglwhich is due  probable electron distance is noagl as in the case of the
to the formation of hydrogen atoms; see also Fig. 11 belowhydrogen ground state, but is larger as a consequence of the
In this case, the electron trajectories are “spread out” aroundonsiderable kinetic energy of the particles. We expect that at
the protons, giving rise to an increased probability of closeeven lower temperatures, the most probable radius would
encounters of two electrons in different atoms compared téend towards &g, but this temperature range is not realisti-
two protons. cally modeled due to molecule and cluster formation.

Now, let us compare electrons with parallel versus anti- While the description of correlated complexes of more
parallel spins. In all cases, we observe a significantly inthan two particles is certainly beyond the present pair ap-
creased probability to find two electrons with opposite spinproximation model, several features of partially ionized and
at small distances below one Bohr radius, which is due to theartially dissociated hydrogen plasmas are reproduced cor-
missing Pauli repulsion in this case. This trend increases a®ctly. At 62 500 K and ;=6 (right center part of Fig. P the
the temperature is lowered because of quantum effects argimulations show the first weak signature of molecule
thus convincingly confirms that spin effects are correctly reformation—see the maximum of thg-p pair distribution
produced in our MD simulations. function aroundr =2ag and the maximum of the pair distri-

It is interesting to compare the electron PDF'’s of Fig. 9bution function of electrons with antiparallel spins around
with the results of the QMC calculation, see, e.g., the curves=1.5g. Further lowering of the temperature by a factor of
for 125 000 K in Fig. 4. The general trend is that, at small2 (lower panel of Fig. 9 confirms this trend: the-p func-
distances, corresponding tes 4ag, the MD curves are sig- tions exhibit a clear peak very close ite-1.4ag—the theo-
nificantly higher than the QMC results. The reason for thisretical p-p separation in B molecules. At the same time, the
increase of the probability to find two electrons at small dis-e-e functions have a clear peak around0.5ag, in the case
tances is easy to understand: the QMC results correspond & opposite spins, and=1.2ag, for parallel spin projections.
an isolated pair of electrons. In contrast, the MD simulationsThe first case comes rather close to the true quantum-
yield the two-electron correlation in the presence of the surmechanical H-H bound statsingled with the electron wave
rounding plasma particles. These plasma particles partialljunction predominantly concentrated between the two pro-
screen thee-e repulsion. This effect is reduced when the tons. On the other hand, this electron peak should extend to
density is lowered frommg=4 tor =6 (Fig. 9). In the limit of  the right of thep-p peak, and no such pronounced peak is
zero density, the PDF is given by the QMC result. expected for electrons with the same spin.

Before analyzing the lowest temperature in Fig. 9, let us We conclude that even the formation and spatial dimen-
consider the electron-proton pair distributions which aresion of hydrogen molecules appear to be captured surpris-
shown in Fig. 10. As the temperature is lowered, we observéngly well in these simulations. The main difficulty appears
a strong increase in the probability of finding an electronto arise not on the level of four-particle correlations but on
close to a proton. In contrast to the classical case of a cokhe level of six-particle correlations: in the simulations, noth-
lapse(see above here the probability is finite. Multiplying ing prevents two “bound” atoms from binding to a third and
these functions by? gives essentially the radial probability, more atoms. The overall attractive Coulomb interaction
which is plotted in Fig. 11. Here, lowering the temperaturemakes it, below 50 000 K, energetically favorable to form
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large clusters consisting of more than two atoms, explaininglistinguish the quantum operator from its corresponding
the strong decrease of the internal energ§=a81 250 K, cf.  function. In general, each species may have a different form
Fig. 8. In reality, complexes of two molecules do exist, butfor the coupling to the external sources. The potential also
they have a very low binding energy which is due to subtlecan be written in terms of the density operators for each
compensation effects arising from repulsive exchange interspecies,

action between the electrons which go far beyond the level N
of pair interactiong42]. = f SV A0, =S ar-q.). (42)

VI. USE OF THE QUANTUM PAIR POTENTIALS IN a i=1

DENSITY-FUNCTIONAL THEORY The details of the remainder of the Hamiltonian are not im-

The effective quantum potentials have been introduced t@ortant at this point. For this many-body system with exter-
represent the equilibrium two-particle density matrix andnal sources, the theorems of density-functional theory apply
subsequently generalized to incorporate many-body Cotin the following form. First, a functional of the average den-
lomb coupling effects. There are other many-body couplingsities, fi(r), averaged over an equilibrium grand-canonical
effects due to degeneracy or exchange correlations. For song@semble is constructethe generalization to other equilib-
applications, it may be useful to incorporate these directly injum ensembles has been carried)otthis is done in two

the effective pair potentials to extend their validity to still steps. First, the equilibrium grand potential for the system is
lower temperatures, as was demonstrated in the example ghnsidered formally,

classical MD above.
In this section, we describe the usefulness of the effective BQe=- InY, Tr e‘B(H‘iﬂa”a). (43)
quantum potentials for a completely different theoretical ap- {ngt

proach, namely density-functional theaFT). In doing SO,  The density for the various species is obtaigiedmally) by
the role of effective quantum potentials with degeneracy efynctional differentiation with respect to the potentials,
fects is illustrated as well.

DFT is a formal structure in which nonperturbative ap- = 0, - V. e
proximations can be introduced to describe strong-coupling e ellita™ Yall o= VoD
effects[43]. Although there are both classical and quantum ) L
versions of DFT, the classical form does not apply to a sys "€ density equation is invertéébrmally) to get the exter-
tem of electrons and positive ions due to Coulomb divernal potentials as functionals of the average densities,
gence. One possibility is to postulate classical statistical me- V=V, (rline.}), (45)
chanics using the effective quantum potentials described
above, which allows the removal of the singularity. Alterna-and a Legendre transformation is performed to construct the
tive|y' the proper quantum formulation can be used from théree energy as a functional of the densities rather than the
outset and the effective quantum potentials “derived” as &hemical potentials,
toql in the process of co_mputing properties of inter@sf]. F({ne)) = Qu{u, - Vo))

This second approach will be used here.

In essence, DFT is a variational means to derive an equa-

tion for the charge density induced by an external poten(tqial. > J drlpta = Va(r {Nep)) Inea(r). (46)

If that potential is taken to be the same as the potential of one “

of the charges in the system, the resulting density is in facThe crucial second step is to extend this functionautioi-
formally identical to the equilibrium pair correlation func- trary density fields,

tion, or diagonal element of the two-particle density matrix.

The density obeys a known nonlinear integral equation—a F{ne) — Fn}). (47
generalization of the Boltzmann-Poisson equation. HoweveiThe main task of density-functional theory is now to con-
in practice, the direct solution of this equation is seldomstruct the density functional

attempted. Instead, an equivalent set of self-consistent one-

particle Schrédinger equations, the Kohn-S.ham equat.ions Qy({nh) = F({n})_fdr[lu‘a_va(r)]na(r)! (48)
[45], are solved to construct the charge density. Yet it might

be very usefL_JI to recall the exis_tenge of an alter_native direc\I}vhere, in this definition)V/,(r) is not considered to be a
approach which becomes practical if an appropriate quantum

i votential is introduced. This is illustrated | detail unctional of the density. The main theorem of density-
pair potential 1S introduced. This 1s lllustrated in more detallg otional theory is then that this functional has an extremum

n9a(r) == (44)

as follows. T :
Consider a quantum system in the presence of externrilalt the equilibrium density,
sources that can be described by an additive potential, oQy({n}) _ SF({n})
=0= =[pa=Va(r)],
A No on on
V= E 2 Va(qia) . (41)
a i=1 O n=ng,. (49

Here a denotes a species angl, is the position operator of Furthermore, the value of the functional at the equilibrium
particlei of speciesw. The caret on the potentials is used to density is clearly the equilibrium grand potential
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Qy({n}) =0 ue = Vo). is specifiedguesseyl Eq. (51) provides a set of closeclas-

_ ] _ _ sical integral equations for the equilibrium densities. As will
written and Eq(49) is solved to obtain the equilibrium den- Boltzmann-Poisson representation in terms of semiclassical
sity. This density is then used to evaluate the equilibriumpotentials. The primary technical difficulty in this prescrip-
grand potential and determine all equilibrium thermody-tion s the determination 0f%(r |n). Kohn and Sham noted
namic properties. Structural properties can be obtained ag,¢ £q (51) defines an effective single-particle potential and
well by choosing the external potential to be the same as thaferefore is formally equivalent to an ideal gas in this effec-
for interaction among the system particles. In other wordsye potential. Therefore, the solution can be constructed by
the source is chosen to be a particle of the same type as thoggying the one-particle Schrédinger equation whose poten-
comprising the many-body system. The densifigsbecome 5 is the right side of Eq(51), and calculating the densities

equilibrium pair correlation functions. from the associated forrf52) self-consistently,
How should the functionalF({n}) be constructed? There

is clearly a part associated with an ideal gas, and an energy n(r)= <r|(eﬁ[(p2/2ma)+\7a-#a] +1)7Yr)
due to the direct Coulomb interactions. These can be identi- ¢

fied explicitly. In addition, there are the more difficult parts = (eBlaaHa) + D) Y (r))?. (549
due to exchange and correlations. Consequently, it has be- i

come standard practice to write the free energy as This avoids the difficult problem of finding the functional

1 Vf)(r |n) but at the cost of having to solve a set of self-
F[n]=F({n}) + EE f drdr’ Vo, (r =r")ny(rny(r’) consistent Schrodinger equations.
@ Consider instead an approximate evaluation of the poten-
+F,.({n}), (50) tial V(f)(r|n) in terms of an effective quantum potential
whereF©@({n}) is the free energy for the noninteracting sys- U(r) defined by
tem, the second term is the contribution from the direct Cou- dp )
lomb interaction, andF,.({n}) denotes the remaining contri- n,(r)= f (2—7%)3(#3[(p 12mg)+U o1 =10l 4 1)1
butions due to interactions from exchange and correlations.
Then the extremum conditiof#9) becomeg44] - <r|(eﬁ[(ﬁ2/2ma)+{/£¥0)—;¢a] +1)74r). (55)
V<°)(r|{n D=V () +> Jdrdr’v (r =r"n,(r') The f_irst equality i_s simil_ar to a finite—temperature Thomas-
“ i “ = a0 7 Fermi representation, with a local chemical potential given
by u,(r)=u,—U,(r). An important difference discussed be-
+M (51) low is that U,(r)#V,(r). The functional relationship of
on,(r) n,(r) to u,(r) and hence t&J (r) is that for an ideal gas and

with V(f)(r|n) denoting the functional4s) for an ideal gas. is well known. The second equality of E¢p5) defines the

. . . (0) . (O)
Determination of this functional is the central issue of theSEMi-classical potentlaan(r((l)Va ) as a functional ofV,".
discussion here, and we will show that it is closely related tol Nis relationship ofU,(r[V,’) to V" is more difficult to
the Kelbg potential analyzed in the bulk of this paper. unfold. However, it is straightforward to discover it for weak
The definition of the functional’%(r |n) is straightfor- ~ €oupling of the system to the perturbing potential. The analy-
ward from the representation of tﬁe density for iaeal sis is similar to the derivation of the Kelbg potential and will

Fermi gasin the external potentials, not be repeated here. Formally make the replacem’éoﬁt
iy ) . .
2 e _ —>)\V(f in Eq. (55) with the corresponding dependence)on
Ne(r) = (r (P72 Varttal 4 1)1 ), (52)  inherited byU,(r). Then perform the expansion bf,(r) to

This is a single-particle problem. The right side is clearly afi'St order inA, setting\=1 at the end, to gef4]
functional ofV, through the dependence of the eigenvalues

of (p?/2m,)+V,, on the form of the external potential. Inter- Uy(r) — f dr'am,(r =1 )W(r"), (56)
estingly, even at the level of an ideal gas, determination of

this functional is nontrivial. In theondegenerate limithis ~ where 7, (r,r’) is the well-known static linear polarization
equation for the density becomes function in the random-phase approximation,

L (r | @ PLUPE2M )Y ]

n,(r) —(rle Ir). (53) (r) = (277)_3f dr €577 (K). (57)
If the external potential is chosen to be a Coulomb source,
then Eq.(53) becomes equivalent to the diagonal elements of
the two-particle density matrix in relative coordinates, which - d g dp F.(p-%k)-F.p)
has exactly the form of the pair distribution function used to 7a(K) = an mh)? p?-(p-hk)? (58)
define the effective quantum pair potential, cf. E2j7). “

Once the exchange and correlation free-energy functionalontaining the Fermi distribution
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2 — -
Fo(p) = (eAP72m mal 4 )71, (59) Va(r)=f dr/ g (r =1 )V, (r"). (65)
In this approximation, the functional relationship betweent is possible to show46] that in thisnondegenerate limit

the density and the potential is now known, Va(r) is just the original Kelbg potentiakg. (4). Therefore,
in the weak-coupling limit wher&,.({n}) can be neglected,

_ dp eﬁ[(p2/2m>+fdr’w(r—r’Wi‘O)(r’)—m]+1-1 Eq. (64) becomes the usual Boltzmann-Poisson equation
ni(r) = (271-;1)3( ) vyith effective quantum potentials given by the Kelbg poten-
(60) tial (4).

In summary, DFT applications can be performed in a
semiclassical form without solving the Kohn-Sham equa-
Now it is straightforward to improve these results by substi-tions by introducing effective quantum potentials. This can
tution of Eq.(51) into the right side of Eq(60), which gives  be done in a weak-coupling approximation similar to that
a generalization of the Thomas-Fermi approximation to in<jrst described by Kelbg and yields a closed analytical result
clude strong-coupling effects. However, everFif({n}) is (4. Based on the results of the above analysis, it can be
neglected, the result is the Thomas-Fermi approximation iixpected that this approach can be extended by incorporating
terms of the potential as well effects of degeneracy by using for the density Eq.

(52) instead of Eq.(62). Furthermore, by usingmproved
o quantum pair potentiats-along the lines of the improved
V,(r) =Jdr’7ra(r =1 )V, (r") (61) Kelbg potentials discussed in the previous sections—an ac-
curate treatment of the pair problem is achieved, laying the
foundation for advancing DFT to the regime of strong cou-

rather than the bare potenti),(r), which has short-ranged Pling.

divergences for opposite charge interactions. The result here

in terms of thenonlocal effective quantum potentiappears

to be a new one that cures some of the well-known problems VIl. CONCLUSION
of the “local approximation” Thomas-Fermi theory. As indi-

cated belowV,(r) becomes just the Kelbg potential in the In this work, we presented an analysis of generalized
nondegenerate limit. The resyB0) with Eq. (51) is a non- ~ quantum pair potentials. Extending the work of Kelbg and
linear integral equation for the density, including both others, we investigated in deteffective off-diagonal and
strong-coupling and degeneracy effecthere is no longer diagonal quantum pair potential®r a correlated hydrogen

lem is one of purely classical analysis. these potentials by an extensive comparison with the exact

It is instructive to consider the nondegenerate limit. InSolutions of the Bloch equation. Further, we proceeded to an
that case, the polarization function is evaluated usigg)  analysis ofimproved diagonal quantum pair potentialsy

e AG¥2m) 1] Furthermore, Eq(60) simplifies to correcting the value of the Kelbg potential at zero particle
separation. Excellent agreement with the exact solutions of

the two-particle Bloch equations could be achieved with the
n,(r) =n,e Y, (62) help of a single temperature-dependent fit parameter for
which an accurate analytical Padé formula was presented.
This lead to significantly improved diagonal pair potentials
compared to the original Kelbg potential. Moreover, these
Vf)(r’) :f dr'am M(r —=r)Uu(r'). (63 potentials are explicitly spin-dependent and retain the advan-
tage of a closed analytical expression.
These potentials have been applied in path integral Monte
Use of these in the DFT equatigfl) gives the closed equa- Carlo and “semiclassical” molecular-dynamics simulations
tion for the densities, of dense hydrogen and were found to give accurate results
over a wide range of parameters. One important conclusion,
of relevance to PIMC simulations, is that the off-diagonal
potential gives essentially more accurate resghis more
rapid convergenogethan its diagonal limit; quantitative esti-
mates have been provided.

Furthermore, we have demonstrated that the spin-
dependent improved diagonal potentials are of high use for
“semiclassical” molecular-dynamics simulations of partially
_ _ ionized plasmas. Our analysis revealed that with these poten-
The potentials/,(r) andV,,(r —r’) are “regularized” by the tials, one can successfully simulate dense hydrogen up to
polarization function, e.g., moderate coupling and degeneracy, from the fully ionized to

N,(r)

a

In

:—,Bva(r)—ﬁz fdrdr’vw(r—r’)n,,(r’)

+ f dr ' m,(r — 1 ')—‘igcg?i). (64)
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