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Extending our previous work[A.V. Filinov et al., J. Phys. A 36, 5957 (2003)], we present a detailed
discussion of accuracy and practical applications of finite-temperature pseudopotentials for two-component
Coulomb systems. Different pseudopotentials are discussed:(i) the diagonal Kelbg potential,(ii ) the off-
diagonal Kelbg potential,(iii ) the improveddiagonal Kelbg potential,(iv) an effective potential obtained with
the Feynman-Kleinert variational principle, and(v) the “exact” quantum pair potential derived from the two-
particle density matrix. For theimproveddiagonal Kelbg potential, a simple temperature-dependent fit is
derived which accurately reproduces the “exact” pair potential in the whole temperature range. The derived
pseudopotentials are then used in path integral Monte Carlo and molecular-dynamics(MD) simulations to
obtain thermodynamical properties of strongly coupled hydrogen. It is demonstrated that classical MD simu-
lations with spin-dependent interaction potentials for the electrons allow for an accurate description of the
internal energy of hydrogen in the difficult regime of partial ionization down to the temperatures of about 60
000 K. Finally, we point out an interesting relationship between the quantum potentials and the effective
potentials used in density-functional theory.
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I. INTRODUCTION

In recent years, there has been growing interest in the
properties of densequantumplasmas, particulary in astro-
physics, laser plasmas, and condensed matter; see Refs.
[1–7] for an overview. In particular, the thermodynamic
properties of hot dense plasmas are essential for the descrip-
tion of plasmas generated by strong lasers[6]. Further,
among the phenomena of current interest are the high-
pressure compressibility of deuterium[8], metallization of
hydrogen[9], and the hypothetical plasma phase transition,
e.g. [10–16], which occur in situations where bothinterac-
tion and quantum effectsare relevant.

While the case of strong degeneracy and the weak-
coupling limit have been extensively studied theoretically,
e.g., within the random-phase approximation, plasma prop-
erties atintermediate coupling and degeneracy(whenG, the
ratio of the potential energy to the mean kinetic energy, ex-
ceeds unity) are a hot topic of the present research activity.
For an overview of present-day analytical methods, see, e.g.,
Refs.[2,3,5,14]. Analytical methods typically use a chemical
picture where electrons, ions, and bound states(atoms, mol-
ecules, etc.) are treated as independent species, and the
chemical composition(degree of ionization) is computed
from a mass action law(nonideal Saha equation). However,
these methods are based on perturbation expansions in the
coupling strength and are thus limited to regions of small-
coupling parameters,G,1 or r s,1 (r s is the quantum cou-
pling parameter,r s= r̄ /aB). Furthermore, the mass action law
becomes increasingly inaccurate in the region where the
electrons are degenerate(because of uncertainty in the mass
action constants). Also, during rapid pressure ionization
around the Mott density, the distinction between free and
bound particles is an open problem.

On the other hand, in the past decade, static properties
(e.g., equation of state) of dense hydrogen in thermal equi-
librium have been successfully investigated with “exact”
quantum-statistical methods, such as the path integral Monte
Carlo (PIMC) method[17–20]. This first-principles numeri-
cal technique is well suited for an accurate treatment of
many-particle correlation effects in quantum systems, but un-
fortunately does not give dynamical characteristics of the
plasma(with the exception of those obtained within linear-
response theory). The alternative numerical approach for
dense partially ionized plasmas(which does not have the
above shortcoming) is a group of methods based upon
ab initio quasiclassical molecular-dynamic simulations
(MD), e.g., Refs.[21,22], when a real quantum system is
projected onto a classical one where most of the quantum
effects are included in some effective interparticle interaction
potentials[23,24], such as the ones proposed by Kelbg[25],
Deutsch [26], Klakow, Toepffer, and Reinhard[21], and
many others, e.g.,[27–29]. These potentials can be derived
from the two-particle Slater sum using Morita’s method.

However, no rigorous comparison of the accuracy of these
potentials has been done yet, which is one of the aims of this
paper. Different quantum potentials are compared with an
“exact” pair potential obtained from the two-particle density
matrix. Furthermore, we introduce pair potentials including
particle statistics, e.g., describing interaction between elec-
trons in the singlet and triplet states, and we use them in our
MD simulations of two-component hydrogen plasmas.

This paper is organized as follows. In Sec. II, we discuss
different methods to obtain an effective quantum pair poten-
tial. In the weak-coupling limit, this potential leads exactly to
the off-diagonal Kelbg potential, the properties of which are
discussed and compared to its commonly used diagonal ap-
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proximation. We outline two methods for a direct solution of
the off-diagonal two-body Bloch equation, which are then
used in Sec. III for numerical comparison with the Kelbg and
improved Kelbg potentials for rigorous assessment of the
accuracy of the latter. Further, in Sec. IV we present an
analysis of the accuracy of the diagonal and off-diagonal
Kelbg potentials in the PIMC simulations. Section V de-
scribes an application of the improved Kelbg potentials to
classical molecular-dynamics simulations of dense hydrogen.
Comparing the results to those of PIMC simulations allows
us to conclude that use of the improved Kelbg potential al-
lows us to significantly extend the range of applicability of
classical MD to the region of partial ionization and to tem-
peratures as low as approximately one-third of the binding
energy. Section VI discusses another field of potential appli-
cability of the quantum potentials, namely density-functional
theory. Finally, Sec. VII concludes the paper.

II. EFFECTIVE QUANTUM PAIR POTENTIALS

In this section, we discuss different possibilities for ob-
taining effective quantum potentials describing interactions
in the two-particle problem.

A. Analytical solution of two-body Bloch equation:
Off-diagonal and diagonal Kelbg potential

The equilibrium pair density matrix at a given inverse
temperatureb=1/kBT is the solution of the two-particle
Bloch equation,

]

] b
rsr i,r j,r i8,r j8;bd = − Ĥrsr i,r j,r i8,r j8;bd,

Ĥ = K̂i + K̂j + Ûsr i,r j,r i8,r j8d. s1d

Numerical methods to obtain the density matrix of Eq.(1)
will be considered in Sec. II C. Here, we concentrate on the
available analytical solutions in the limit of weak coupling.
If the interaction is weak, Eq.(1) can be solved by perturba-
tion theory with the following representation for the two-
particle density matrix:

ri j =
smimjd3/2

s2p"bd3 expF−
mi

2"2b
sr i − r j8d

2G
3expF−

mj

2"2b
sr i − r j8d

2Gexpf− bFi jg, s2d

where i , j are particle indices,ri j ;rsr i ,r j ,r i8 ,r j8 ;bd, and
Fi j ;Fsr i ,r j ,r i8 ,r j8 ;bd is the off-diagonal two-particle effec-
tive potential. In the following, we will consider application
of this result to Coulomb systems. As a result of first-order
perturbation theory, we get explicitly

F0sr i j ,r i j8 ,bd ; qiq jE
0

1 da

dijsad
erfS dijsad/li j

2Îas1 − ad
D , s3d

where dijsad= uar i j +s1−adr i j8 u , erfsxd is the error function,

erfsxd=s2/Îpde0
xdte−t2, and li j

2 ="2b /2mi j with mi j
−1=mi

−1

+mj
−1. The diagonal elementsr i j8 =r i jd of Eq. (3) is the poten-

tial derived by Kelbg and co-workers[4,25],

F0sxi jd =
qiq j

li jxi j
h1 − e−xi j

2
+ Îpxi jf1 − erfsxi jdgj s4d

with xi j = ur i j u /li j . The Kelbg potential is finite at zero dis-
tance, reflecting that it captures the basic quantum diffraction
effects and the quantum nature of two-particle interaction at
small distances, which prevents any divergence. From Eq.
(4), it is also clear that quantum effects become dominant
(and the quantum potential deviates from the classical Cou-
lomb potential) at distancesr i j &li j given by the thermal
deBroglie wavelength. We will see below that, in interacting
systems, this is only a rough approximation, and at strong
coupling, the expression for the quantum particle “exten-
sion” deviates strongly fromli j and needs to be generalized.

To obtain a simplified expression for the rather complex
quantum potential(3), one can approximate the off-diagonal
matrix elements by the diagonal ones. A first possibility is to
approximate the integral overa by the length of the interval
multiplied with the integrand in the center(Mittelwertsatz)
which leads to the so-called KTR potential due to Klakow,
Toepffer, and Reinhard, which(in the diagonal approxima-
tion) is often used in quasiclassical MD simulations[21],

F0sr i j ,r i j8 ,bd ;
qiq j

dijs1/2d
erfSdijs1/2d

li j
D , s5d

wheredijs1/2d= 1
2ur i j +r i j8 u. Alternatively, the integral can be

simplified by taking the off-diagonal Kelbg potential only at
the center coordinate,

F0sr i j ,r i j8 ,bd < Fi j
0S ur i j u + ur i j8 u

2
,bD . s6d

Many authors use theend-pointapproximation(4) for the
effective potentialFsr i j ,r i j8 ,bd in the pair density matrix(2)
due to the fact that it is very convenient computationally. The
pair potential for interparticle interaction is simply replaced
by an effective potential which has only a dependence on the
radial variablesur i j u , ur i j8 u. However, most of the accuracy is
usually lost in this end-point approximation.

Since the Kelbg potential is obtained by first-order pertur-
bation theory, its application is limited to weak coupling,G
&1, whereG is the ratio of mean potential to kinetic energy.
In unbound and bound states of an electron-proton pair, this
results in the following conditions on temperature:

G =
e2

r̄ Y kBT & 1 ⇒ kBT *
e2

r̄
,

G = Ry/kBT & 1 ⇒ kBT * Ry, s7d

where Ry=Ha/2=e2/2aB, andaB is the Bohr radius. For the
last case, the Kelbg potential(and any of the simplifying
approximations) can be valid only for temperatures suffi-
ciently above the atomic binding energy, i.e., for the case of
hydrogen,T*Ry/kB<158 000 K. We address this point in
more detail in Sec. IV, where “exact” binding energies and
pair correlation functions for an electron-proton pair are
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compared with the results obtained with the potentials(3)
and (4).

B. Improved diagonal Kelbg potential

The limitation of the Kelbg potential to describe quantum
systems only when there are no bound states has led several
researchers[1,30,31] to introduce and investigate a more
generalized form of the quantum potential with an additional
free parametergi j ,

Fsr i j ,bd =
qiq j

r i j
H1 − e−r i j

2/li j
2

+ Îp
r i j

li jgi j
S1 − erfFgi j

r i j

li j
GDJ .

s8d

This potential has the advantage of preserving the correct
first derivative at r =0 of the original Kelbg potential,
Fs0,bdr8=−qiq j /li j

2, but at the same time allows the correc-
tion of the height of the Kelbg potential atr =0, i.e.,
Fs0,bd=qiq j

Îp / sli jgi jd to include bound states. Using the
definition of the effective potential as

e−bFi j ; Sij , s9d

where Sij ;Ssr i j ,bd is the exact binary Slater sum of par-
ticles i , j . The fit parametergi j in Eq. (8) is related to the
Slater sum at zero interparticle distance according to

gi j = −
Îp

li j

qiq jb

lnfSijsr i j = 0,bdg
. s10d

It is important to note thatgi j depends both on the tempera-
ture and the type of particles. For example, the binary Slater
sum of two electrons at zero separation has the form(includ-
ing the average “k¯l” over possible values of the total spin
S=0, 1)

See
kl sr ee= 0,bd = 2ÎpjeeJ1sjeed,

J1sji jd =E
0

`

e−x2 x dx

1 − expS−
pji j

x
D , s11d

where the interaction parameterji j =qiq jb /li j .
On the other hand, for an electron-proton pair the Slater

sum can be written as

Sepsr ep= 0,bd = 4ÎpjepJ1sjepd + Îpjep
3 Z3sjepd,

Znsjd = o
y=1

`

y−nej2/4y2
, s12d

where the last term shows the contribution of the bound
states.

The original Kelbg potential was derived for very high
temperatures without taking into account exchange between
particles. This work was followed by several studies where
the pseudopotentials for identical particles have been calcu-
lated numerically[32,33] or analytically [34–36] using ex-
pansions in a quantum parameter, small-particle separation,

and temperature. In the present work, following these stud-
ies, we approach the problem of the pseudopotential with
exchange by using the formalism of two-particle density ma-
trices(DM). The pair DM can be calculated numerically(see
Sec. II C) or expressed in analytical form(2) using the im-
proved Kelbg potential(8).

In the case of a pair of electrons, they can be in a singlet
or triplet state, and the spatial wave function is symmetric or
antisymmetric under the exchange of particle indices. Thus,
one can define a binary effective electron-electron interaction
for three different cases,

e−bUij
SsTd

=
rf2gsr i,r j,r i,r j ;bd ± rf2gsr i,r j,r j,r i ;bd

rf1gsr i,r i ;bdrf1gsr j,r jd
,

e−bUij
kl

= 3
4e−bUij

T
+ 1

4e−bUij
S
, s13d

whererf1g andrf2g are the one- and two-particle density ma-
trices, andUij

S , Uij
T, andUij

kl are the effective interactions in
the singlet statesSd, triplet statesTd, and the spin-averaged
potential, respectively.

If we now approximate the two-particle DM,rf2g, by Eq.
(2) and factorize it into the DM’s of the center-of-mass and
relative coordinates[the corresponding expressions are given
in Sec. II C, cf. Eq.(27)], then we obtain for the pseudopo-
tential between two electrons being in the singlet(triplet)
state and for the spin-averaged potential, respectively,

Uee
SsTd = −

1

b
lnse−bUeesr ,r d ± e−r 2/lee

2
e−bUeesr ,−r dd, s14d

Uee
kl = −

1

b
lnse−bUeesr ,r d − 1

2e−r 2/lee
2

e−bUeesr ,−r dd . s15d

In this expression, the function,Ueesr ,r 8d, is a pseudopoten-
tial between distinguishable particles(i.e., calculated without
exchange effects). Thus, one can substitute the original
Kelbg potential, Eq.(4), the improved Kelbg potential, Eq.
(8), or any further improved approximation for the binary
interaction. In the case of two electrons, if we use the im-
proved Kelbg potential(8) for Ueesr ,r d, then the fit param-
etergee must be obtained from Eq.(10), where for the binary
Slater sum one should take the two distinguishable particles
with the Coulomb repulsion case,

See
no excsr ee= 0,bd = 4ÎpjeeJ1sjeed. s16d

It follows from Eq. (15) that an exchange contribution
(effect of particle statistics in the pair interaction) arises from
the kinetic energy part of the density matrix and the nondi-
agonal potential,Ueesr ,−r d, which in the first order of the
perturbation theory can be calculated using Eq.(3). A further
simplification (which is crucial for the application of the
pseudopotentials in semiclassical MD simulations presented
in Sec. V) can be achieved by approximating the off-
diagonal potential by the diagonal terms,Ueesr ,−r d
< 1

2fUeesr ,r d+Uees−r ,−r dg=Ueesr ,r d. Then the above ex-
pressions are reduced to
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Uee,0
SsTd = Ueesr ,r d −

1

b
lnh1 ± e−r 2/lee

2
j, s17d

Uee,0
kl = Ueesr ,r d −

1

b
lnH1 −

1

2
e−r 2/lee

2 J . s18d

We note that in the diagonal approximation for the potential,
the exchange term corresponds to the case of the ideal Fermi
gas (i.e., exchange without interaction); the exchange term
arising from the interaction is missing.

Taking in Eq.(17) the limit r →0, we see that the poten-
tial of the triplet state shows a logarithmic divergency,

Uee,0
T = Ueesr ,r d − 2kBT lnH r

lee
J + OS r 2

lee
2 D , s19d

whereas the singlet and the spin-averaged potential acquires
an additional exchange contribution,

Uee,0
S,kl = Ueesr ,r d 7 kBT lnh2j + OS r 2

lee
2 D , s20d

but the slope of these potentials at the origin is the same as in
the case without exchange. This means, in the case of Cou-
lomb interaction, the slope is defined by the slope of the
original Kelbg potentialF0,

Ueesr ,r dr→0 = Fee
0 s0d −

e2r

lee
2 + OS r 2

lee
2 D . s21d

In our previous paper[1], we reported on the temperature
dependence of the fitting parametergi j for the electron-
electron and electron-proton interactions. There, two types of
calculations have been presented. The values ofgsbd were
obtained, first, by a least-square fit of the improved diagonal
Kelbg potential(IDKP), Eq. (8), to the “exact” pair potential
U [see Eq.(27)], and second, from Eq.(10) by evaluating the
values of the binary Slater sums. It has been found that both
methods agree within statistical uncertainty.

Extending our earlier results, we now present a Padé ap-
proximation which contains an analytical temperature depen-
dence of the parametersgi j which will be useful for practical
applications,

gepsTd =
x1 + x1

2

1 + aep x1 + x1
2 , s22d

geesTd =
geesT → 0d + aeex1 + x1

2

1 + x1
2 , s23d

where x1=Î8pkBT/Ha (with the Hartree energy Ha=2 Ry
=315 775 K), aep=1.090s14d, and aee=0.18s1d. The limit
value,geesT→0d, has been obtained from Eq.(10) by evalu-
ating the zero-temperature limit of the binary Slater sum
(16),

geesT → 0d < −
2

Îp
x̃3 1

lnh8x̃4/Îpj − 3x̃2
, s24d

with x̃=supjeeu /2d1/3. The excellent accuracy of the Padé ap-
proximation is demonstrated in Fig. 1.

In Fig. 1, we present the temperature dependence ofg
obtained from the least-square fit(full and open symbols) to
the “exact” pair potential of distinguishable particles(no ex-
change) and the Padé approximation(22) (solid curves). The
most important result is that the corrected Kelbg potential is
now not limited to weak couplingas is the original Kelbg
potential. For the casegi j =1, Eq.(8) coincides with Eq.(4).
One clearly sees the deviation ofgi j from unity for T
ø106 K, which shows that the quantum extension of par-
ticles has started to be influenced by interaction effects and is

now of the order ofl̃i j =li jgi j , instead of the original thermal
deBroglie wavelengthli j . Thus, with the Padé formulas(22)
and(23), we have obtained an analytical fit for the quantum
extension of the scattering particles.

The Padé approximations(22) and (23) have been suc-
cessfully used in quasiclassical molecular-dynamics simula-
tions of two-component hydrogen plasmas. As we show in
Sec. V, they enable accurate results for partial hydrogen(or
other quantum systems of oppositely charged particles with
bound states).

Finally, we note that, in the MD simulations of quantum
plasmas, it can be advantageous to have spin-dependent po-
tentials for the electron subsystem defined by Eq.(14) or Eq.
(17). The spin-resolved approximation allows for refined
modeling; for example, it allows for the description of mol-
ecule formation, spin density waves, spin-flip processes in
the presence of a magnetic field, and so on.

C. Effective potentials from numerical solution
of the two-body Bloch equation

In this section, we briefly describe the numerical methods
which have been used to solve the two-particle problem in
order to obtain the “exact” quantum pair potentials. These
results have been used to obtain the analytical fit in the im-
proved Kelbg potential. Furthermore, they will be used to
test the accuracy of various analytical approximations for the
quantum pair potentials in Sec. III below.

FIG. 1. Temperature dependence of the fit parameter for the
binary interactions: electron-proton,gepsTd, and electron-electron
(no exchange), geesTd. Symbols show theg values obtained with
the least-square fit of the IDKP to the “exact” pair potential without
exchange. Solid curves correspond to the Padé approximation(22)
and (23).
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Let us factorize the full two-particle density matrix into a
center-of-mass(c.m.) term and a density matrix of relative
coordinates,

rsr i,r j,r i8,r j8;bd = rc.m.sR,R8;bdrsr ,r 8;bd, s25d

where R=smir i +mjr jd / smi +mjd, and r =r i −r j, and analo-
gously for R8 ,r 8. For the relative DM in analogy with Eq.
(2), we define the effective pair potential as

rsr ,r 8;bd = rkinsr ,r 8;bde−bUsr ,r8;bd, s26d

which results in the following expression:

Usr ,r 8;bd = −
1

b
lnfrsr ,r 8;bd/rkinsr ,r 8;bdg, s27d

wherersr ,r 8 ;bdkin is the kinetic energy DM.
One of the possibilities to get the relative density matrix

rsr ,r 8 ;bd is to directly solve the corresponding one-particle
Schrödinger equation and calculate the DM as a contribution
from bound and continuum states. This procedure is advan-
tageous when the Schrödinger equation can be solved ana-
lytically and we know analytical expressions for contribu-
tions of scattering and bound states, as, for example, for the
Coulomb potential, e.g.,[36]. But if that is not the case, a
separate calculation of each matrix element for each new
value of end pointsr and r 8 will be required, which is not
efficient and a time-demanding procedure. In principle, such
calculations can be done in advance withUsr ,r 8 ;bd stored
in the tables of the potential, but one still needs to solve the
Schrödinger equation many times for each value of quantum
numbers and also for wave functions of continuum states.

It is possible to approach this problem from the other side
and calculate the DM directly without solving the
Schrödinger equation. In this work, we apply two efficient
methods, namely thematrix squaring technique[32,37] and
the Feynman-Kleinertvariational approach[38,39]. In Sec.
III, we will compare the accuracy of the pseudopotentials
obtained with these methods.

1. Matrix squaring technique

The exact off-diagonal pair density matrix can be calcu-
lated efficiently by the method introduced by Storer and
Klemm [32]. For the case of spherical symmetry of the in-
teraction potential, the relative pair density matrix in Eq.(25)
is expanded in terms of partial waves. This expansion reads,
for the two- and three-dimensional cases,

r2Dsr ,r 8;bd =
1

2pÎr r 8
o

l=−`

+`

rlsr ,r 8;bdeilQ,

r3Dsr ,r 8;bd =
1

4pr r 8
o
l=0

+`

s2l + 1d 3 rlsr ,r 8;bdPlscosQd,

s28d

whereQ is the angle betweenr and r 8. Each partial-wave
component satisfies the 1D Bloch equation for a single par-
ticle in an external potential given by the interaction poten-
tial and also a convolution equation,

rlsr ,r 8;td =E
0

`

dr 9 rlsr ,r 9;t/2drlsr 9,r 8;t/2d. s29d

This is the basic equation of thematrix-squaring method
which allows the calculation of the functionrl at a given
temperature 1/t from the same function at a temperature
twice as high. Squaring the density matrixk times results in
a lowering of the temperature by a factor of 2k. Each squar-
ing involves only a one-dimensional integration which, due
to the Gaussian-like nature of the integrand in Eq.(29), can
be performed quite accurately and efficiently by standard nu-
merical procedures. To start the matrix-squaring iterations,
Eq. (29), one needs a known accurate high-temperature form
for the density matrix. A convenient choice is the semiclas-
sical approximation,

rlsr ,r 8;td = rl
0sr ,r 8;td 3 expS−

t

ur − r 8uEr

r8
VsxddxD ,

s30d

whererl
0sr ,r 8 ;td is the partial-wave component of the free-

particle density matrix.
Once the pair density matrixrlsr ,r 8 ;td is computed for

the desired value oft, it is substituted into Eqs.(28) and
(29), and a summation over partial waves readily yields the
full relative density matrix.

2. Variational perturbation approach

As a second method for solving the off-diagonal Bloch
equation, we used thevariational perturbation expansionde-
veloped by Feynman and Kleinert[38]. In this procedure, the
initial density matrix is presented in the form of a trial path
integral which consists of a suitable superposition of local
harmonic-oscillator path integrals centered at arbitrary aver-
age positionsxm, each with its own frequency squared
V2sxmd. One starts from decomposing the action in the den-
sity matrix as

rsr ,r 8;bd =E
sr ,0d→sr8,"bd

Dx e−Afxg/", s31d

Afxg = AV,xm
fxg + Aintfxg, s32d

with AV,xm
fxg being the action of a trial harmonic oscillator

with the potential minimum located atxm, andD being the
functional integral over all trajectories. The interaction part

Aintfxg =E
0

"b

dhfVfxshdg − 1
2m V2fxshd − xmg2g , s33d

is defined as the difference between the original potential
Vsxd and the displaced harmonic oscillator. TheV2 term in
Eq. (33) compensates for the contribution ofAV,xm

fxg in Eq.
(32). Now one can calculate the density matrix(31) by treat-
ing the interaction(33) as a perturbation, leading to a mo-
ment expansion
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rsr ,r 8;bd = r0
V,xmsr ,r 8;bdS1 −

1

"
kAintfxglr ,r8

V,xm

+
1

2"2kAint
2 fxglr ,r8

V,xm − ¯D
= e−tWN

V,xmS m

2p"2t
Dd/2

, s34d

with the definition

WN
V,xm =

d

2b
ln

sinh"bV

"bV
+

mV

2"b sinh"bV

3fsr̃ 2 + r̃ 82dcosh"bV − 2r̃ r̃ 8g

−
1

b
o
n=1

N
s− 1dn

n ! "n kAintfxglr ,r8
V,xm, s35d

whered is the space dimensionality andN the order of the
approximation. The functionr0

V,xmsr ,r 8d is the trial
harmonic-oscillator density matrix,r̃ =sr −xmd , r̃ 8=sr 8−xmd,
and the expectation value of the interaction action on the
right-hand side of Eq.(35) is given by

kAint
n fxglr ,r8

V,xm =
1

r0
V,xmsr ,r 8d

E
r̃ ,0

r̃8,"b

Dx̃p
l=1

n HE
0

"b

dtl

3 Vintfx̃stld + xmgeh−s1/"dAV,xm
fx̃+xmgjJ .

s36d

The functionWN
V,xm can be identified as aneffective quantum

potentialwhich is to be optimized with respect to the varia-
tional parametershV2sr ,r 8 ;bd ,xmsr ,r 8 ;bdj. Note that, in the
high-temperature limit, this effective potential goes over to
the original potentialVsr d. The optimal parameter values are
determined from the extremity conditions

] WN
V,xmsr ,r 8;bd

] V2 = 0,
] WN

V,xmsr ,r 8;bd
] xm

= 0. s37d

The perturbation series(35) is rapidly converging, in most
cases already in the first-order approximationW1

V,xm for the
effective potential, and gives a reasonable estimate of the
desired quantities.

III. COMPARISON OF THE PAIR POTENTIALS AND
THEIR TEMPERATURE DEPENDENCE

We will now compare the accuracy of the pair potentials
discussed above(or two-particle density matrices corre-
sponding to these potentials), their temperature dependence,
and range of applicability.

A. Full density matrix of electron-proton pair

In Fig. 2, we show the angular dependence of the full
off-diagonal two-particle density matrix calculated with the
off-diagonal Kelbg potential, ODKP(3), and its diagonal ap-
proximation, DKP(4). The density matrix is shown at sev-

eral temperature values(T=1 000 000, 250 000, and 62 500
K) and several angular distancessf=0,p /2 ,pd between the
vectorsr ; r i j , r 8; r i j8 (in each of the figures, the top curves
correspond to the case of parallel vectors,f=0, and the low-
est curves to antiparallel vectors,f=p). Also, for reference,
we give the off-diagonal density matrix obtained from the
“exact” solution of the Bloch equation, cf. Sec. II C 1. At
high temperatures,Tù250 000 K, the Kelbg density matrix
does not exhibit large deviations from the exact result. At
T=1 000 000 K(left column of Fig. 2), the ODKP density
matrix practically coincides with the exact solution, whereas
the DKP approximation shows small deviations. In these
cases, the perturbation expansion applies,G,0.15. With de-
creasing temperature, the deviations from the exact results
grow (see the middle column). To better understand the de-
tails of the deviations, we magnified the effect by including
results forT=62 500 K, which is far beyond the scope of the
perturbation theory,T<0.4 Ry/kB, i.e.,G<2.5. Here we ob-
serve that, at the origin, the density matrix of the Kelbg
potential is three times less than the exact one. The largest
errors were found for the DKP, in particular, in the case when
the vectorsr ,r 8 have the opposite directionsf=pd.

The behavior of the full density matrix can be understood
from the following considerations. The density matrix results
from contributions of kinetic and potential energy operators,
cf. Eq. (1). At small distancessr 8=0.25d, the Coulomb at-

FIG. 2. The “exact” off-diagonal density matrixrsr ,r 8 ;fd for
an electron-proton pair vs the density matrix calculated with the
diagonal(DKP) and off-diagonal(ODKP) Kelbg potentials. In all
figures, results for three angular values are given asf=0 (upper
curves), f=p /2 (middle), andf=p (lower curves). The proton is
located at the origin, and the vectorr 8 (initial electron position) is
fixed, ur 8u=0.25; 1.0; 2.0. The vectorr (final electron position) is
varied;f is the angle between the vectorsr and r 8.
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traction between an electron and a proton dominates and,
therefore, the density matrix shows an exponential decay. At
the largest distancesr 8=2.0d, kinetic and potential energy are
of the same order and a Gaussian-like free-particle density
matrix emerges, as can be clearly seen in the bottom left part
of Fig. 2.

From this first comparison, we can conclude that both the
DKP and the ODKP show satisfactory agreement with the
exact result in the cases where perturbation theory applies,
T*2 Ry. At lower temperatures, there is only qualitative
agreement. The strongest deviations arise for small interpar-
ticle distanceshr ,r 8j, and this, as will be shown below, re-
sults from the incorrect height of the Kelbg potential at zero
distancer =0.

B. Effective interaction of electron-proton
and electron-electron pairs

In Figs. 3(a) and 3(b), we show and compare the accuracy
of several effective electron-proton potentials and their tem-
perature derivatives obtained by various methods. As an “ex-
act” reference potential to which the accuracy of other po-
tentials is compared, we useUpair obtained from the electron-
proton pair density matrix calculated with the matrix
squaring technique.

First, we note from Fig. 3(a) that, at given temperatures
Tø2 Ry, the original Kelbg potential shows the largest de-
viations from the “exact” result,Upair. While the spatial de-
rivative of the DKP coincides with that ofUpair, a systematic
offset of the DKP compared toUpair is observed at the origin
r =0, which increases when the temperature is lowered. The
agreement is satisfactory only for the curve corresponding to
T=320 000 K. The accuracy of the Kelbg potential becomes
worse for quantities involving its temperature derivative. For
example, for the total energy one has to compute the thermo-
dynamic average of the function]fbUsbd /]bguU=FKelbg

0 . This
function is shown in Fig. 3(b). If multiplied by the Boltz-

mann factore−bUsbd, this function is a good estimate for the
binding energysEbd of an electron-proton pair. In the case of
a bound state, the main contribution to the energy comes
from the region of small interparticle distance,r &3aB.
Therefore, the behavior of]fbUsbd /]bg near the origin de-
termines the accuracy of the calculations of the energy and
other thermodynamic quantities. As we can see from the
curve for 5000 K in Fig. 3(b), the depth of the DKP is much
less than that ofUpair and, therefore, it gives too low a bind-
ing energy ofEb<0.16 Ha, i.e., a factor of 3 too low com-
pared with the true ground-state energyEb

0=0.5 Ha.
As was already discussed in Sec. II B, the accuracy of the

DKP can be improved with the additional fit parametergi j . In
Figs. 3(a) and 3(b), this potential is denoted asFKelbg. One
can see that at all considered temperatures,FKelbg practically
coincides withUpair. Even in the case of strong couplingsT
=5000 Kd, the agreement is very good.

The next potential shown in this figure is the variational
potential,Wv,xm, introduced in Sec. II C 2. This potential is
more accurate than the DKP and qualitatively reproduces the
“exact” effective pair potentialUpair for temperaturesT
=125 000 K, 320 000 K, and its derivative[see Fig. 3(b)].
The key point is that thevariational perturbation theory[38]
replaces the perturbation expansion inG (which does not
converge forG*1) into another expansion, Eq.(34), which
does not have this restriction. The results of this approach
can be improved by taking into account higher-order terms in
Eq. (34) (the results shown in the figure include only the first
term, n=1). The convergence of Eq.(34) extends even to
very strong coupling and has been successfully applied in
field theory(39).

We mention that comparison with other effective poten-
tials has been performed in our previous paper[1]. In par-
ticular, the “exact” pair potential was compared with the re-
sults of Barker[33] (the calculations of the pair potential by
the direct eigenfunction summation) and the Deutsch poten-
tial. Good agreement has been found with the data of Barker
[33], while the deviations of the Deutsch potential turned out
to be slightly larger than that of the Kelbg potential. The
reason for this difference is that the Deutsch potential has an
incorrect spatial derivative,Ur8, for r &3aB.

Next, in Fig. 4, we compare pair distribution functions
(PDF) of two electrons in singlet and triplet states for differ-
ent temperatures, obtained from the expression with the ef-
fective potential,

gsr d ~ e−bUSsTdsr d. s38d

Due to the Pauli principle in Fig. 4(a), the PDF goes to zero
asr ee→0. On the other hand, for electrons in a singlet state
[Fig. 4(b)], this happens only if the temperature is decreased
to 31 250 K, where the potential energy dominates the ki-
netic energy. The three lines in Fig. 4(a) show three cases:(i)
and(ii ) when as an effective potential in Eq.(15) we substi-
tute the “exact” pair potential and the Kelbg potential;(iii )
when in Eq.(17) we substitute the Kelbg potential. In the last
case, the exchange contribution from the potential function is
neglected. This, as shown in Fig. 4(a), becomes important
only for the temperature 31 250 K and below. Similarly, in

FIG. 3. (a) Diagonal effective electron-proton potential(in units
of Ha) for several cases: the DKPF0sr ;bd (4), the improved DKP
Fsr ;bd (8), variational potentialW1

V,xm (35), and pair potentialUp

(27) corresponding to the “exact” density matrix. Each potential is
given at three temperature values: 5000, 40 000, 125 000, and
320 000 K.(b) The functionUsbd+b]Usbd /]b for the same ap-
proximations and temperatures. The ovals include a set of curves
corresponding to the denoted temperature.
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Fig. 4(b) we compare two curves[cases(i) and (iii ) of Fig.
4(a)] corresponding to the “exact” pair potential and the
Kelbg potential.

One can note that the overall accuracy of the Kelbg po-
tential for description of two particles with the same charge
(even without improving its value at the origin withg) is
significantly better(compared to the results with the “exact”
pair potential) than for particles with opposite charge, cf. Fig.
3. This is due to the absence, in this case, of contributions
from bound states.

In Sec. V, these pair correlation functions will be com-
pared with those for a hydrogen plasma obtained by
molecular-dynamics simulations, see Fig. 9.

In the next section, we discuss application of quantum
pair potentials in thermodynamic calculations using Feyn-
man trajectories in imaginary time(PIMC).

IV. QUANTUM PAIR POTENTIALS IN THE PATH
INTEGRAL MONTE CARLO METHOD

It is well known (see, for example, the discussion in
Chap. 12 of[38]) that the singularity of the attractive Cou-
lomb potential causes difficulties in the Euclidian path inte-
gral. The energy of the path can be lowered indefinitely by
an almost stretched configuration(a path is presented as a
straight line along an imaginary time axis) which corre-
sponds to a slowly moving particle sliding down to the −e2/ r
abyss. This phenomenon is calledpath collapse.

One possibility to prevent this effect is to use a modified
“regularized” Coulomb potential which has a cutoff atr =0.
This procedure, however, is quite arbitrary, and the results
are sensitive to the chosen cutoff parameters. Of course, in
nature, these difficulties are prevented by quantum fluctua-
tions which equip the path with a configurational entropy.
The latter must be sufficiently singular to produce a regular

free energy bounded from below. The inclusion of quantum
fluctuations in the Euclidean action of the Feynman path
pieces smoothes the singular Coulomb potential, producing
an effective potential that is finite at the origin, andpath
collapseis avoided. This again shows the importance of ef-
fective potentials, specifically, in “quasiclassical” simula-
tions (classical Monte Carlo and molecular-dynamics meth-
ods). Of great importance are potentials which have a closed
analytical form. In this case, for many thermodynamic quan-
tities it is possible to obtain analytical solutions.

For simulations of correlated quantum many-body sys-
tems which are based onfirst principles, the initial many-
body Hamiltonian with the true singular Coulomb energy
operator is considered and solved to find some effective
many-body interaction potential. For this approach, it is im-
portant that in the high-temperature limit theN-particle den-
sity matrix can be expanded in terms of two-particle, three-
particle, etc., contributions. If the temperature is sufficiently
high, then all contributions except the first one, which takes
into account two-particle correlations, can be omitted. As a
result, the following approximation for theN-particle density
matrix holds:

rsR,R8;td < p
i

N

rf1gsr i,r i8;tdp
j,k

rf2gsr j,r k,r j8,r k8;td
rf1gsr i,r i8;tdrf1gsr k,r k8;td

+ Osrf3gd, s39d

whereR=hr 1,… ,r Nj specifies coordinates of allN particles,
andrf1gsrf2gd is the single-(two-) particle density matrix. The
abovepair approximation is usually used in PIMC simula-
tions [37]. TheN-particle density matrixrsbd contains com-
plete information about the system with the observables
given by

kÔl =
TrfÔ r̂sbdg
Trfr̂sbdg

=
E dRkRuÔ r̂sbduRl

E dRkRur̂sbduRl
. s40d

Due to the exponential form, theN-particle density operator

r̂sbd=e−bĤ can be factorized(in analogy to the matrix squar-
ing method above) as r̂sbd=fr̂stdgM with M =b /t. Conse-
quently, theN-particle density operatorr̂sbd is expressed in
terms of density operators at anM times higher temperature
1/t=MkBT. If M is chosen sufficiently large, then one can
apply the pair approximation(39). Thus, accurate results for
the quantum pair potentials and, consequently, the pair den-
sity matrix will allow the calculation of the density matrix of
the wholeN-particle system. Here we are not interested in
the investigation of the accuracy of the approximation given
in Eq. (39) but concentrate on the two-body problem where
Eq. (39) is exact.

It is clear that the observables(40) computed with the
approximate pair-density matrixrf2g contain an error of the
orderOs1/M2d. Below, we will investigate the convergence,
as a function ofM, of the main thermodynamic properties
(total energy ande-p pair distribution) for an electron-proton

FIG. 4. Pair distribution function for a pair of electrons.(a) In a
triplet state(parallel spins,S=1). Cases compared are Eq.(14),

using forUee the “exact” pair potential,g~e−bUee
T

, the Kelbg poten-

tial, g~e−bFee
T

, and Eq.(17) with the Kelbg potential,g~e−bFee,0
T

.
(b) In a singlet state(antiparallel spins,S=0), Eq. (14) with the

“exact” pair potential,g~e−bUee
S

, and Eq.(17) with the Kelbg po-

tential, g~e−bFee,0
S

. The pair distribution functions are shown for
temperatures,T=31 250, 125 000, 250 000, and 1 000 000 K.
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pair using for the pair density matrixrf2g results computed
with the off-diagonal and the diagonal Kelbg potential.

Comparison of the diagonal and the off-diagonal Kelbg
potential in the example of a hydrogen atom

We consider a hydrogen atom in a box with periodic
boundary conditions(box sizeL=20aB) at several tempera-
tures, T=31 250−62 500 K, when the hydrogen atom can
ionize into free particles, as well as for the case
T,10 000 K, when there is essentially only the contribution
from the atomic ground state. First, in Fig. 5 we show thee-p
pair distribution functions(normalized to the volumedV
=4pr 2dr ).

For temperaturesT=5208 K and 10 416 K, the hydrogen
atom does not decay into free particles during the duration of
a typical simulation run(,106 Monte Carlo steps). In the
figures, the “exact” pair correlation function is compared
with the one obtained with the off-diagonal and diagonal
Kelbg potentials, respectively(the number of factorization
factors for the density matrix was chosen to beM =400). We
found that the best accuracy is achieved for the off-diagonal
Kelbg potential andM *200; in this case the ODKP pair
correlation function practically coincides with the exact re-
sult (T=0 “GST” curve in the two upper panels of Fig. 5).

At elevated temperatures,T=31 250 K and 62 500 K, ion-
ization of the hydrogen atom occurs, but due to the periodic
boundary conditions, the free particles cannot go to infinity
but, when reaching the boundary, are returned back in the
simulation box and have a finite probability for a formation

of a bound state again. Thus, this simulation captures the
region of partial ionization. As the temperature is increased,
the ionization probability also increases, leading to a signifi-
cant drop in the height of the proton-electron pair distribu-
tion function at the origin compared to the ground-state prob-
ability functionC0

2sr d (see Fig. 5, plots forT=31 250 K and
T=62 500 K).

In Fig. 6, we analyze the convergence of the internal en-
ergy in PIMC simulations with a varying number of high-
temperature factorsM. In particular, we compare indepen-
dent simulations with the diagonal and off-diagonal Kelbg
density matrices, respectively. The “exact” energy value for
the considered temperatures is given by the solid line and is
obtained from PIMC simulations using the “exact” pair den-
sity matrix, cf. Sec. II C 1. The internal energy was obtained
using the thermodynamic estimator,kEl=−s] /]bdln Z, where
Z is the partition function. Comparing thediagonalandoff-
diagonalcases, one can note that the ODKP density matrix
shows much better and faster convergence to the exact en-
ergy value. The improved diagonal Kelbg potential gives the
exact result only for the diagonal density matrix(the special
case whenM =0, and the density matrix is not factorized).
For any finite number of factors,M ù1, one makes an error
in Eq. (2) by substituting the off-diagonal potential with its
diagonal approximation. This error decreases with the in-
crease of temperature(or, equivalently, with the number of
factorsM) because, as the temperature increases, the particle
extension(given by the deBroglie wavelength) is reduced,
and the difference in the potential at pointsr andr 8 vanishes.
This explains why the improved Kelbg potential for a small
number of factors 1øM øMcr shows an increasing deviation
and for M .Mcr converges toward the “exact” result. The
value of Mcr (largest deviation) is in the range of 1 ··· 100,
where the small(large) number corresponds to high(low)
temperature, cf. Fig. 6.

A simple estimate shows that the relative error of the total
energy, in the diagonal approximation, depends on factoriza-

FIG. 5. Proton-electron pair correlation functions,gepsr d, from
PIMC simulations with the “exact” pair density matrix(diamonds),
the DKP(dots), and the ODKP(full line). Temperature values are as
indicated in the figure parts:T=5 208, 10 416, 31 250, and 62 500
K. For comparison,T=0 “GST” denotes the pair correlation func-
tion (shown by crosses) corresponding to the ground state of a
hydrogen atom.

FIG. 6. PIMC results for the internal energy of the proton-
electron pair using “exact” pair density matrix, DKP, ODKP, and
Improved Kelbg potential(IDKP) vs different number of factoriza-
tion factorsM.
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tion numberM as dE/E<gt2, t=b /M. In contrast, using
the off-diagonal potential, the error converges much faster,
dE/E<gt3. This fact is illustrated in Fig. 7, where the loga-
rithm of the relative error, logsdE/Ed, is shown as a function
of the inverse of the temperature used in the high-
temperature factors, 1/t. In this figure, we compare the be-
havior of the error for the same set of temperatures as in Fig.
6. In Fig. 6, we also add simulation results using theim-
proved diagonalKelbg potential(solid line). Its accuracy is
better than that of the ODKP at low temperatures(small
values ofM), but at high temperatures both are comparable.

The main conclusion that can be drawn from the pre-
sented PIMC results is that, at an equal number of factoriza-
tion factorsM, simulations with the off-diagonal Kelbg po-
tential are significantly more accurate in reproducing the
“exact” thermodynamic results of a hydrogen atom. Besides,
the full off-diagonal density matrix contains valuable infor-
mation about the spatial electron distribution around the pro-
ton, which is lost in the end-point approximation. Further, we
expect that the best results will be obtained usingan im-
proved off-diagonalKelbg potential, which has the correct
zero-point value and contains the complete angular depen-
dence of the pair density matrix which, however, is beyond
the scope of the present paper.

V. MOLECULAR-DYNAMICS SIMULATIONS

In this section, we apply the improved Kelbg potentials in
classical molecular-dynamics simulations of dense hydrogen.
Classical MD simulations of dense plasmas have been per-
formed by many authors before, where the classical collapse
of an electron into a proton is usually avoided by some cutoff
or “regularization” of the Coulomb potential at small dis-
tances. By using the effective quantum pair potentials ob-
tained from the exact solutions of the Bloch equations, we
expect to have the correct pair interactions at short distances.
This should not only prevent any collapse, but also correctly
reproduce the formation of hydrogen atoms and thus allow
us to obtain improved MD simulation results. However,
since these potentials are derived from pure equilibrium con-

siderations, there is no ad hoc proof that they will necessarily
be accurate for the description of dynamical behavior as well
(in particular under strong nonequilibrium conditions). We,
therefore, concentrate in the present analysis on correlated
partially ionized hydrogen inthermodynamic equilibrium.
The results obtained below confirm that, indeed(at least in
equilibrium), the quantum pair potentials are well suited for
use in the interparticle force terms in classical MD.

Classical MD simulations incorporate all interparticle col-
lision processes and are thus not restricted with respect to the
coupling parameterG in a classical system. With the use of
effective quantum pair potentials, we expect, in addition, to
capture dominant features of the quantum nature of micro-
particles, such as quantum diffraction and spin effects. Thus,
these simulations could be called “semiclassical” MD. Hav-
ing access not only to improved electron-ion potentials but
also to spin-dependent electron-electron potentials allows us
to consider also spin effects by simulating electrons with
different spin projections as two independent particle spe-
cies. While in this paper no spin-flip processes are consid-
ered[40], our model is capable of treating spin as an addi-
tional degree of freedom. In particular, it should allow us to
describe spin polarization, spin interaction with magnetic
fields, spin density waves, and so on. In this paper, we focus
on static properties, such as internal energy, and radial dis-
tribution functions. Investigation of dynamical properties and
of spin density fluctuation is the aim of a forthcoming paper.

We consider a dense, degenerate hydrogen plasma at two
densities corresponding to the Brueckner parameterr s
= r̄ /aB=4 and r s=6 and temperaturesT=31 250, 50 000,
62 500, 125 000, and 166 670 K. These parameter values
correspond, respectively, toG=2.53, 1.58, 1.26, 0.63, and
0.47 for r s=4; andG=1.68, 1.05, 0.84, 0.42, and 0.32 for
r s=6.

The simulation box of our system, with the lengthL
=fn/ sNp+Ne

↑+Ne
↓dg1/3, contains Np=200 protons,Ne

↑=100
electrons with spin up and an equal number of electrons, and
Ne

↓=100 with spin down. We keep the condition of the elec-
troneutrality by takingNp=Ne

↓+Ne
↑. Details of the numerical

algorithm can be found in Ref.[22].
Since MD, in contrast to PIMC, involves only diagonal

interaction potentials, we choose the following expressions:
for the interaction between electrons and protons, protons
and protons, and electrons with opposite spin, we use the
improved Kelbg potential, Eq.(8), with the fit parameters
given by Eqs.(22) and (23), respectively. The interaction
between electrons with the same spin projection is described
by the diagonal antisymmetric potential, Eq.(17). Further, to
properly account for the long-range character of the poten-
tials, we used the standard Ewald procedure as outlined in
Ref. [22]. However, in contrast to the rather involved expres-
sions of Ref.[22] for a one-component plasma, here we re-
strict the potential energy sum to the proper sum only inreal
space(due to an additional partial screening of the interac-
tion between particles of the same charge by particles of
opposite charge). We do not reproduce these lengthy expres-
sions here, but mention that the value of the parametera
defined in Ref.[22] was chosen to bea=5.6/L, and we take
Five vectors in every direction inthe reciprocal space.This
gives some computational-cost advantage in the computation
of the forces compared to Ref.[22].

FIG. 7. Relative error in the internal energy of the proton-
electron pair from PIMC simulations with the diagonal, off-
diagonal and improved Kelbg potential(IDKP) vs temperature ar-
gument in the two-particle density matrix 1/t.
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In Fig. 8, we plot the internal energy per atom as a func-
tion of temperature for two densities and compare it to the
path integral Monte Carlo results of Militzer[41]. One can
note that for high temperatures, the energies of MD and
PIMC simulations coincide very well and lie within the lim-
its of statistical errors. This is an important test for the simu-
lation, and this agreement was expected due to the
asymptotic character of the Kelbg potential as a rigorous
weak-coupling result. Moreover, we observe good agreement
between MD and PIMC results at temperature as low as ap-
proximately 50 000 K, corresponding to a coupling param-
eterG=3. This is a remarkable extension of “semiclassical”
molecular dynamics into the regime of moderate coupling
and moderate degeneracy.

Below a critical temperature of about 50 000 K, devia-
tions from the PIMC results start to grow rapidly; the MD
results for the energy are lower than the PIMC results. It is
very interesting to analyze the reasons for these deviations,
as this may suggest directions for further improvements.
These deviations are not due to a failure of the quantum pair
potentials. The quantum pair potentials remain exact in the
whole temperature range. In contrast, the observed devia-
tions of the MD results from the PIMC data arise as a con-
sequence of many-particle effects, i.e., correlations. This ex-
planation is confirmed by a detailed inspection of the
microscopic particle configurations in the simulation box. At
high temperatures, the particle trajectories are those of a fully
ionized classical plasma. At temperatures below 1 Ry, we
observe an increasing number of electrons undergoing strong
deflections on protons and eventually performing quasibound
trajectories. Most of these electrons remain “bound” only for
a few classical orbits and then leave the proton again. Aver-
aged over a long time, our simulations are able to reveal the
degree of ionization of the plasma. At the same time, we
observe occasional events when three or more particles are
close to each other for the duration of one or more orbits,
reflecting the appearance of hydrogen molecules H2, molecu-
lar ions H2

+, etc.

If the temperature is lowered below approximatelyT
=50 000 K, we observe a strong increase in molecule forma-
tion and even an aggregation of many molecules into clusters
with an interparticle distance close to 1aB. This turns out to
be the reason for the observed very low energy because the
attractive Coulomb interaction contributions are becoming
dominant in the total energy. Of course, this behavior is not
surprising: while all pair interaction processes are modeled
correctly even at low temperature(which is assured by the fit
parameters in the improved Kelbg potentials), as soon as
three or more particles are close together, three-particle and
higher-order correlations are strong(they, in particular, ac-
count for the formation of the larger bound-state complexes
described above). However, in the derivation of the quantum
potentials, it was assumed that three-particle and higher cor-
relations could be neglected that formed the basis for the use
of pair potentials in modeling the wholeN-particle system.
While molecular dynamics, of course, includes any level of
correlations, the use of the present potentials means that
quantum corrections to three-body (and higher-order) inter-
actionsare not adequately captured. Therefore, it is no sur-
prise that this approximation breaks down at sufficiently low
temperature, and that this breakdown occurs around the tem-
perature corresponding to the binding energy of hydrogen
molecules. From this we can conclude that molecule forma-
tion sets the limit of the applicability of the present semiclas-
sical MD simulations.

Let us now turn to a more detailed analysis of the spatial
configuration of the particles in the MD simulations.

In Fig. 9, the radial pair distributions between all particle
species with the same charge are plotted at two densities.
Consider first the case ofT=125 000 K (upper panel). For
both densities, all functions look qualitatively the same,
showing a depletion at zero distance due to Coulomb repul-
sion. Besides, there are differences which arise from the spin
properties. Electrons with the same spin show a slightly
broader “Coulomb hole” aroundr =0 than the protons, be-

FIG. 8. Semiclassical MD results(full lines) for the internal
energy per hydrogen atom at densitiesr s=4,6 vs temperature. The
results of restricted PIMC simulations by Militzer[41] are shown
for comparison(dashed lines). Symbols indicate the five tempera-
tures for which MD simulations have been performed:T=31 250,
50 000, 62 500, 125 000, and 166 670 K(solid lines). The pair
approximation breaks down around 50 000 K at the molecule bind-
ing energy.

FIG. 9. Electron-electron and proton-proton radial pair distribu-
tion functions for a correlated hydrogen plasma withr s=4 (left
row) and r s=6 (right row) for T=125 000, 61 250, and 31 250 K
(from top to bottom).
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cause the Pauli principle yields an additional repulsion of the
electrons(this effect is much weaker for two protons due to
their much smaller deBroglie wavelength). This trend is re-
versed at lower temperature(see middle panel), which is due
to the formation of hydrogen atoms; see also Fig. 11 below.
In this case, the electron trajectories are “spread out” around
the protons, giving rise to an increased probability of close
encounters of two electrons in different atoms compared to
two protons.

Now, let us compare electrons with parallel versus anti-
parallel spins. In all cases, we observe a significantly in-
creased probability to find two electrons with opposite spin
at small distances below one Bohr radius, which is due to the
missing Pauli repulsion in this case. This trend increases as
the temperature is lowered because of quantum effects and
thus convincingly confirms that spin effects are correctly re-
produced in our MD simulations.

It is interesting to compare the electron PDF’s of Fig. 9
with the results of the QMC calculation, see, e.g., the curves
for 125 000 K in Fig. 4. The general trend is that, at small
distances, corresponding tor &4aB, the MD curves are sig-
nificantly higher than the QMC results. The reason for this
increase of the probability to find two electrons at small dis-
tances is easy to understand: the QMC results correspond to
an isolated pair of electrons. In contrast, the MD simulations
yield the two-electron correlation in the presence of the sur-
rounding plasma particles. These plasma particles partially
screen thee-e repulsion. This effect is reduced when the
density is lowered fromr s=4 to r s=6 (Fig. 9). In the limit of
zero density, the PDF is given by the QMC result.

Before analyzing the lowest temperature in Fig. 9, let us
consider the electron-proton pair distributions which are
shown in Fig. 10. As the temperature is lowered, we observe
a strong increase in the probability of finding an electron
close to a proton. In contrast to the classical case of a col-
lapse(see above), here the probability is finite. Multiplying
these functions byr 2 gives essentially the radial probability,
which is plotted in Fig. 11. Here, lowering the temperature

leads to the formation of a shoulder at around 1.5aB, which is
due to the formation of hydrogen atoms. This conclusion is
confirmed by inspection of the corresponding quasibound
electron trajectories, as discussed above. At the lowest tem-
peraturesT=50 000 Kd shown in Fig. 11, the observed most
probable electron distance is not 1aB, as in the case of the
hydrogen ground state, but is larger as a consequence of the
considerable kinetic energy of the particles. We expect that at
even lower temperatures, the most probable radius would
tend towards 1aB, but this temperature range is not realisti-
cally modeled due to molecule and cluster formation.

While the description of correlated complexes of more
than two particles is certainly beyond the present pair ap-
proximation model, several features of partially ionized and
partially dissociated hydrogen plasmas are reproduced cor-
rectly. At 62 500 K andr s=6 (right center part of Fig. 9), the
simulations show the first weak signature of molecule
formation—see the maximum of thep-p pair distribution
function aroundr =2aB and the maximum of the pair distri-
bution function of electrons with antiparallel spins around
r =1.5aB. Further lowering of the temperature by a factor of
2 (lower panel of Fig. 9) confirms this trend: thep-p func-
tions exhibit a clear peak very close tor =1.4aB—the theo-
retical p-p separation in H2 molecules. At the same time, the
e-e functions have a clear peak aroundr =0.5aB, in the case
of opposite spins, andr =1.2aB, for parallel spin projections.
The first case comes rather close to the true quantum-
mechanical H-H bound state(singlet) with the electron wave
function predominantly concentrated between the two pro-
tons. On the other hand, this electron peak should extend to
the right of thep-p peak, and no such pronounced peak is
expected for electrons with the same spin.

We conclude that even the formation and spatial dimen-
sion of hydrogen molecules appear to be captured surpris-
ingly well in these simulations. The main difficulty appears
to arise not on the level of four-particle correlations but on
the level of six-particle correlations: in the simulations, noth-
ing prevents two “bound” atoms from binding to a third and
more atoms. The overall attractive Coulomb interaction
makes it, below 50 000 K, energetically favorable to form

FIG. 10. Electron-proton radial pair distribution functions atr s

=4 (left figure) and r s=6 (right figure) and five temperatures:T
=166 667, 125 000, 62 500, 50 000, and 31 250 K.

FIG. 11. Electron-proton radial pair distribution functions mul-
tiplied by r 2. Same data as in Fig. 10.
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large clusters consisting of more than two atoms, explaining
the strong decrease of the internal energy atT=31 250 K, cf.
Fig. 8. In reality, complexes of two molecules do exist, but
they have a very low binding energy which is due to subtle
compensation effects arising from repulsive exchange inter-
action between the electrons which go far beyond the level
of pair interactions[42].

VI. USE OF THE QUANTUM PAIR POTENTIALS IN
DENSITY-FUNCTIONAL THEORY

The effective quantum potentials have been introduced to
represent the equilibrium two-particle density matrix and
subsequently generalized to incorporate many-body Cou-
lomb coupling effects. There are other many-body coupling
effects due to degeneracy or exchange correlations. For some
applications, it may be useful to incorporate these directly in
the effective pair potentials to extend their validity to still
lower temperatures, as was demonstrated in the example of
classical MD above.

In this section, we describe the usefulness of the effective
quantum potentials for a completely different theoretical ap-
proach, namely density-functional theory(DFT). In doing so,
the role of effective quantum potentials with degeneracy ef-
fects is illustrated as well.

DFT is a formal structure in which nonperturbative ap-
proximations can be introduced to describe strong-coupling
effects[43]. Although there are both classical and quantum
versions of DFT, the classical form does not apply to a sys-
tem of electrons and positive ions due to Coulomb diver-
gence. One possibility is to postulate classical statistical me-
chanics using the effective quantum potentials described
above, which allows the removal of the singularity. Alterna-
tively, the proper quantum formulation can be used from the
outset and the effective quantum potentials “derived” as a
tool in the process of computing properties of interest[44].
This second approach will be used here.

In essence, DFT is a variational means to derive an equa-
tion for the charge density induced by an external potential.
If that potential is taken to be the same as the potential of one
of the charges in the system, the resulting density is in fact
formally identical to the equilibrium pair correlation func-
tion, or diagonal element of the two-particle density matrix.
The density obeys a known nonlinear integral equation—a
generalization of the Boltzmann-Poisson equation. However,
in practice, the direct solution of this equation is seldom
attempted. Instead, an equivalent set of self-consistent one-
particle Schrödinger equations, the Kohn-Sham equations
[45], are solved to construct the charge density. Yet it might
be very useful to recall the existence of an alternative direct
approach which becomes practical if an appropriate quantum
pair potential is introduced. This is illustrated in more detail
as follows.

Consider a quantum system in the presence of external
sources that can be described by an additive potential,

V̂ = o
a

o
i=1

Na

V̂asqiad. s41d

Herea denotes a species andqia is the position operator of
particle i of speciesa. The caret on the potentials is used to

distinguish the quantum operator from its corresponding
function. In general, each species may have a different form
for the coupling to the external sources. The potential also
can be written in terms of the density operators for each
species,

V̂ =E dro
a

Vasr dn̂asr d, n̂asr d = o
i=1

Na

dsr − qiad. s42d

The details of the remainder of the Hamiltonian are not im-
portant at this point. For this many-body system with exter-
nal sources, the theorems of density-functional theory apply
in the following form. First, a functional of the average den-
sities, n̂asr d, averaged over an equilibrium grand-canonical
ensemble is constructed(the generalization to other equilib-
rium ensembles has been carried out). This is done in two
steps. First, the equilibrium grand potential for the system is
considered formally,

bVe = − lno
hnaj

Tr e−bsH−o
a

manad. s43d

The density for the various species is obtained(formally) by
functional differentiation with respect to the potentials,

Ve = Veshma − Vajd, neasr d = −
dVe

dfma − Vasr dg
. s44d

The density equation is inverted(formally) to get the exter-
nal potentials as functionals of the average densities,

Va = Vasr uhnesjd, s45d

and a Legendre transformation is performed to construct the
free energy as a functional of the densities rather than the
chemical potentials,

Fshneajd = Veshma − Vajd

+ o
a
E dr fma − Vasr uhnesjdgneasr d. s46d

The crucial second step is to extend this functional toarbi-
trary density fields,

Fshneajd → Fshnjd. s47d

The main task of density-functional theory is now to con-
struct the density functional

VVshnjd ; Fshnjd −E dr fma − Vasr dgnasr d, s48d

where, in this definition,Vasr d is not considered to be a
functional of the density. The main theorem of density-
functional theory is then that this functional has an extremum
at the equilibrium density,

dVVshnjd
dn

= 0 =
dFshnjd

dn
− fma − Vasr dg,

⇒n = nea. s49d

Furthermore, the value of the functional at the equilibrium
density is clearly the equilibrium grand potential
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VVshnjd = Vshma − Vajd.

In practice, an approximate free-energy functionalFshnjd is
written and Eq.(49) is solved to obtain the equilibrium den-
sity. This density is then used to evaluate the equilibrium
grand potential and determine all equilibrium thermody-
namic properties. Structural properties can be obtained as
well by choosing the external potential to be the same as that
for interaction among the system particles. In other words,
the source is chosen to be a particle of the same type as those
comprising the many-body system. The densitiesnea become
equilibrium pair correlation functions.

How should the functionalFshnjd be constructed? There
is clearly a part associated with an ideal gas, and an energy
due to the direct Coulomb interactions. These can be identi-
fied explicitly. In addition, there are the more difficult parts
due to exchange and correlations. Consequently, it has be-
come standard practice to write the free energy as

Ffng = Fs0dshnjd +
1

2o
a,s

E drdr 8Vassr − r 8dnasr dnssr 8d

+ Fxcshnjd, s50d

whereFs0dshnjd is the free energy for the noninteracting sys-
tem, the second term is the contribution from the direct Cou-
lomb interaction, andFxcshnjd denotes the remaining contri-
butions due to interactions from exchange and correlations.
Then the extremum condition(49) becomes[44]

Va
s0dsr uhnsjd = Vasr d + o

s
E drdr 8Vassr − r 8dnssr 8d

+
dFxcshnjd

dnasr d
, s51d

with Va
s0dsr und denoting the functional(45) for an ideal gas.

Determination of this functional is the central issue of the
discussion here, and we will show that it is closely related to
the Kelbg potential analyzed in the bulk of this paper.

The definition of the functionalVa
s0dsr und is straightfor-

ward from the representation of the density for anideal
Fermi gasin the external potentials,

nasr d = kr usebfsp2/2mad+V̂a−mag + 1d−1ur l. s52d

This is a single-particle problem. The right side is clearly a
functional ofVa through the dependence of the eigenvalues

of sp2/2mad+V̂a on the form of the external potential. Inter-
estingly, even at the level of an ideal gas, determination of
this functional is nontrivial. In thenondegenerate limit,this
equation for the density becomes

nasr d → kr ue−bfsp2/2mad+V̂a−magur l. s53d

If the external potential is chosen to be a Coulomb source,
then Eq.(53) becomes equivalent to the diagonal elements of
the two-particle density matrix in relative coordinates, which
has exactly the form of the pair distribution function used to
define the effective quantum pair potential, cf. Eq.(27).

Once the exchange and correlation free-energy functional

is specified(guessed), Eq. (51) provides a set of closedclas-
sical integral equations for the equilibrium densities. As will
be seen below, a leading approximation is the usual
Boltzmann-Poisson representation in terms of semiclassical
potentials. The primary technical difficulty in this prescrip-
tion is the determination ofVa

s0dsr und. Kohn and Sham noted
that Eq.(51) defines an effective single-particle potential and
therefore is formally equivalent to an ideal gas in this effec-
tive potential. Therefore, the solution can be constructed by
solving the one-particle Schrödinger equation whose poten-
tial is the right side of Eq.(51), and calculating the densities
from the associated form(52) self-consistently,

nasr d = kr usebfsp2/2mad+V̂a−mag + 1d−1ur l

= o
i

sebseia−mad + 1d−1ucisr du2. s54d

This avoids the difficult problem of finding the functional
Va

s0dsr und but at the cost of having to solve a set of self-
consistent Schrödinger equations.

Consider instead an approximate evaluation of the poten-
tial Va

s0dsr und in terms of an effective quantum potential
Uasr d defined by

nasr d ; E dp

s2p"d3sebfsp2/2mad+Uasr d−mag + 1d−1

= kr usebfsp̂2/2mad+V̂a
s0d−mag + 1d−1ur l. s55d

The first equality is similar to a finite-temperature Thomas-
Fermi representation, with a local chemical potential given
by masr d=ma−Uasr d. An important difference discussed be-
low is that Uasr dÞVasr d. The functional relationship of
nasr d to masr d and hence toUasr d is that for an ideal gas and
is well known. The second equality of Eq.(55) defines the
semi-classical potentialUasr uVa

s0dd as a functional ofVa
s0d.

This relationship ofUasr uVa
s0dd to Va

s0d is more difficult to
unfold. However, it is straightforward to discover it for weak
coupling of the system to the perturbing potential. The analy-
sis is similar to the derivation of the Kelbg potential and will

not be repeated here. Formally make the replacementV̂a
s0d

→lV̂a
s0d in Eq. (55) with the corresponding dependence onl

inherited byUasr d. Then perform the expansion ofUasr d to
first order inl, settingl=1 at the end, to get[44]

Uasr d →E dr 8pasr − r 8dVa
s0dsr 8d, s56d

wherepasr ,r 8d is the well-known static linear polarization
function in the random-phase approximation,

pasr d = s2pd−3E dr eik·rp̃askd, s57d

p̃askd =
] ma

] na
E dp

s2p"d3

Fasp − "kd − Faspd
p2 − sp − "kd2 , s58d

containing the Fermi distribution

FILINOV et al. PHYSICAL REVIEW E 70, 046411(2004)

046411-14



Faspd = sebfsp2/2mad−mag + 1d−1. s59d

In this approximation, the functional relationship between
the density and the potential is now known,

nisr d ; E dp

s2p"d3sebfsp2/2mid+edr8psr−r8dVi
s0dsr8d−mig + 1d−1.

s60d

Now it is straightforward to improve these results by substi-
tution of Eq.(51) into the right side of Eq.(60), which gives
a generalization of the Thomas-Fermi approximation to in-
clude strong-coupling effects. However, even ifFxcshnjd is
neglected, the result is the Thomas-Fermi approximation in
terms of the potential

V̄asr d =E dr 8pasr − r 8dVasr 8d s61d

rather than the bare potentialVasr d, which has short-ranged
divergences for opposite charge interactions. The result here
in terms of thenonlocal effective quantum potentialappears
to be a new one that cures some of the well-known problems
of the “local approximation” Thomas-Fermi theory. As indi-

cated below,V̄asr d becomes just the Kelbg potential in the
nondegenerate limit. The result(60) with Eq. (51) is a non-
linear integral equation for the density, including both
strong-coupling and degeneracy effects.There is no longer
any need to solve the Kohn-Sham equations, and the prob-
lem is one of purely classical analysis.

It is instructive to consider the nondegenerate limit. In
that case, the polarization function is evaluated usingF0spd
→e−bfsp2/2mad−mag. Furthermore, Eq.(60) simplifies to

nasr d = nae−bUasr d, s62d

Va
s0dsr 8d =E dr 8pa

−1sr − r 8dUasr 8d. s63d

Use of these in the DFT equation(51) gives the closed equa-
tion for the densities,

ln
nasr d

na

= − bV̄asr d − bo
s
E drdr 8V̄assr − r 8dnssr 8d

+E dr 8pasr − r 8d
dFxcshnjd
dnasr 8d

. s64d

The potentialsV̄asr d andV̄assr −r 8d are “regularized” by the
polarization function, e.g.,

V̄asr d =E dr 8pasr − r 8dVasr 8d. s65d

It is possible to show[46] that in thisnondegenerate limit

V̄asr d is just the original Kelbg potential,Eq. (4). Therefore,
in the weak-coupling limit whereFxcshnjd can be neglected,
Eq. (64) becomes the usual Boltzmann-Poisson equation
with effective quantum potentials given by the Kelbg poten-
tial (4).

In summary, DFT applications can be performed in a
semiclassical form without solving the Kohn-Sham equa-
tions by introducing effective quantum potentials. This can
be done in a weak-coupling approximation similar to that
first described by Kelbg and yields a closed analytical result
(4). Based on the results of the above analysis, it can be
expected that this approach can be extended by incorporating
as well effects of degeneracy by using for the density Eq.
(52) instead of Eq.(62). Furthermore, by usingimproved
quantum pair potentials—along the lines of the improved
Kelbg potentials discussed in the previous sections—an ac-
curate treatment of the pair problem is achieved, laying the
foundation for advancing DFT to the regime of strong cou-
pling.

VII. CONCLUSION

In this work, we presented an analysis of generalized
quantum pair potentials. Extending the work of Kelbg and
others, we investigated in detaileffective off-diagonal and
diagonal quantum pair potentialsfor a correlated hydrogen
plasma including spin effects. We studied the accuracy of
these potentials by an extensive comparison with the exact
solutions of the Bloch equation. Further, we proceeded to an
analysis ofimproved diagonal quantum pair potentialsby
correcting the value of the Kelbg potential at zero particle
separation. Excellent agreement with the exact solutions of
the two-particle Bloch equations could be achieved with the
help of a single temperature-dependent fit parameter for
which an accurate analytical Padé formula was presented.
This lead to significantly improved diagonal pair potentials
compared to the original Kelbg potential. Moreover, these
potentials are explicitly spin-dependent and retain the advan-
tage of a closed analytical expression.

These potentials have been applied in path integral Monte
Carlo and “semiclassical” molecular-dynamics simulations
of dense hydrogen and were found to give accurate results
over a wide range of parameters. One important conclusion,
of relevance to PIMC simulations, is that the off-diagonal
potential gives essentially more accurate results(or more
rapid convergence) than its diagonal limit; quantitative esti-
mates have been provided.

Furthermore, we have demonstrated that the spin-
dependent improved diagonal potentials are of high use for
“semiclassical” molecular-dynamics simulations of partially
ionized plasmas. Our analysis revealed that with these poten-
tials, one can successfully simulate dense hydrogen up to
moderate coupling and degeneracy, from the fully ionized to
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the partially ionized regime. The present potentials allow us
to correctly model dense plasmas up to temperatures as low
as the molecular binding energy. Further improvements are
posible, including the description of molecular hydrogen, but
they require the inclusion of three-particle and four-particle
correlations and exchange effects beyond the two-particle
level.

Finally, an intimate relation of the quantum potentials to
density-functional theory has been explored that allows for
DFT calculations without the need to solve the Kohn-Sham
equations.
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