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Abstract. The influence of the well width fluctuations on the dependence of
the binding energy of excitonic complexes in quantum wells is studied by using
the path-integral Monte-Carlo technique. The results are compared with avail-
able experimental data and a good agreement is found.

1 Introduction

Coulomb-bound few-particle systems in semiconductors are formed when interact-
ing electrons (e) and holes (h) bind. In particular, an electron and hole bound
together will form an exciton, while more electrons and holes will form the so-
called exciton molecules, e.g., 2e(h)þ h(e) form a trion and 2eþ 2h form a biex-
citon. It is well known that in nanostructured semiconductors such as quantum
wells (QWs), the binding energy of such excitonic complexes is substantially
increased [1]. But the measured increase is larger than theoretically predicted.
For the trion system this may be even a factor of two. It has been argued that
the extra increase observed experimentally could be ascribed to the presence of
quantum well width fluctuations which traps the Coulomb-bound few-particle sys-
tem in the plane orthogonal to the quantum well growth axis [2, 3]. This interface
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defect would enhance the confinement of the excitonic complexes and as a con-
sequence it would increase the binding energy of the system.

In this paper we make a quantitative investigation of the binding energy of the
exciton, trion, and biexciton in a QW in the presence of an interface defect. In Sect.
2 we present the Hamiltonian of the problem and discuss the approach used to
solve the system. In Sect. 3 we present our results and compare them to available
experimental data.

2 Theoretical Tools

We consider a single GaAs=Al0:3Ga0:75As quantum well structure. In the isotropic
effective mass approximation the Hamiltonian for Ne electrons and Nh holes can be
written as

H ¼
XNe;Nh

i¼1

�
� �h2

2mi

r2 þ VeðhÞðziÞ þ V loc
eðhÞðriÞ

�
þ

XNe;Nh

i < j¼1

ei ej

�jri � rjj
; ð1Þ

where mi and ei are the mass and charge of the i-th particle; � is the dielectric
constant, which we assume equal in the well and the barrier; VeðhÞ is the confine-
ment potential due to the QW; V loc

eðhÞ is the lateral (localization) confinement which
is due to the fluctuations of the QW width. We take the quantum-well growth
direction as the z-direction. We consider the following heights of the square-well
potential: Ve ¼ 216 meV for electrons and Vh ¼ 163 meV for holes, and we use the
following material parameters: � ¼ 12:58, me ¼ 0:067m0, mh ¼ 0:34m0, where m0

is the mass of the free electron. The units for energy and length are
2R�y ¼ e2=ð� aBÞ ¼ 11:58 meV, aB ¼ �h2�=ðme e

2Þ ¼ 99:7 Å, respectively. To limit
the number of parameters, we simulate the interface defects through a cylindrically
symmetric potential with a lateral radius R and height V loc

eðhÞ. The potential height is
determined by the zero-point energy and was obtained as the difference between
the lowest energy levels of the electron (hole) in two QW’s with the widths L and
Lþ �, where � is an integer number of monolayer (ML)-thicknesses, see Fig. 1. In
the case when the quantum well height goes to infinity, the height of the potential
will be V loc

i ¼ �h�2=miL
2 � �h�2=miðLþ �Þ2

. Because of the difference in mass
between the electron and the hole, the height of the localization potential will also
be different, see Fig. 2.

To solve the Hamiltonian we use the path-integral Monte-Carlo approach [4, 5].
The starting point is the N-particle density matrix of the exciton complex under
study. As wavefunction of the density matrix in the z-direction we take for the

Fig. 1. Schematic view of a quantum well with well

width fluctuation (interface defect)
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electron and the hole density matrices the ones of the non-interacting particle
confined in the quantum well �ðZi; �Þ. This allows us to introduce an effective
two-dimensional (2D) in-plane interaction potential V

xy
eff ,

V
xy
eff ¼

ð
dZe dZh

X
i < j

ei ej

�jri � rjj
�ðZe; �Þ�ðZh; �Þ

� ð
dZe dZh �ðZe; �Þ�ðZh; �Þ

��1

:

3 Results

In this section we investigate the influence of the interface defect (i.e., defect width
and height) on the ground state of the exciton and excitonic complexes confined in
a quantum well. In particular, we analyze the modification of the binding energies
and of the average interparticle distances in the ground state of excitons (X),
positive and negative trions (X �), and biexcitons (X2).

For an ideal QW, i.e., without interface defects, we define the binding energy of
the exciton, charged exciton, and biexciton as

EBðXÞ ¼ Ee þ Eh � EðXÞ;
EBðX �Þ ¼ EðXÞ þ EhðeÞ � EðX �Þ;
EBðX2Þ ¼ 2EðXÞ � EðX2Þ; ð2Þ

where EeðhÞ is the energy of a single electron (hole) in the given quantum well with
a free-particle mean kinetic (thermal) energy kBT, and EðAÞ is the total energy of
the excitonic complex A. If an interface defect is present and a localization poten-
tial is included in our calculations, then the above definitions must be modified. All
energies must be replaced by the corresponding energies of particles localized in
the defect potential.

First we discuss the results for the binding energies of the ground state of
various excitonic complexes as a function of the diameter (D) of the interface
defect (see Fig. 3). We took a QW width of L ¼ 60 Å and a defect of depth
� ¼ 1 ML¼ 2.8 Å, which leads to the following heights of the electron and hole
localization potentials, V loc

e ¼ 3:43 meV and V loc
h ¼ 1:28 meV, respectively. Notice

that for all excitonic complexes the binding energy is increased by the presence of

Fig. 2. The height of the localization potential

VeðhÞloc
versus the well width
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a defect. In particular, it increases with the diameter D of the trapping potential up
to some maximum after which it slowly decreases. For defect diameters exceeding
D � 800 Å all binding energies tend towards saturation because, in the large defect
limit, the system approaches an ideal QW, but 1 ML wider than the original one.
Notice that the X� is much more sensitive to the presence of the defect than the X2

and the Xþ. The X� is in fact the lightest of the three complexes and therefore more
mobile.

Secondly, in Fig. 4 we present a comparison between our theoretical results and
the experimental data of refs. [6, 7] for the binding energy of the positive and
negative trion as function of the quantum well width. Here the localization is
assumed to have diameter D ¼ 300 Å. Notice that if L<D=2 the presence of the

Fig. 3. The binding energy of the exciton, trion, and

biexciton versus the diameter of the quantum well

width fluctuation, in a quantum well of width 60 Å.

The width of the fluctuation is 1 ML

Fig. 4. Binding energies of positive and negative

trions versus quantum well width. The results are

for GaAs=Al0:3Ga0:7As QWs. Symbols: experimental

data for the X� from refs. [6, 7], lines with small

symbols: PIMC results with (solid curves) and with-

out (dashed curves) localization
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localization defect increases the binding energy, in the case of the negative trion
even doubles the binding energy for a well width of 50 Å. On the other hand, if
L>D=2 the binding energy is lower than the energy of the system without local-
ization. Notice how the experimental data reported for the negative trion at
L ¼ 100 Å is much closer to the value of the binding energy obtained when the
confinement is included.

Third, in Fig. 5 we plot the so-called Fano factor, i.e., EBðX2Þ=EBðXÞ for the
non-localized and the localized positive and negative trion and compare them
with the experimental results from ref. [8]. The localization potential is consid-
ered as due to a 1 ML defect with diameter D ¼ 400 Å. The theoretical result for
an ideal QW, i.e., without localization, is shown by the dashed lines. For the well
widths L� 50 Å, all theoretical and experimental results indicate a monotonic
decrease of the Fano factor with increasing well widths. For the ideal quantum
well the Fano factor starts from the value 0:15 for large L and reaches a max-
imum value of about 0:24 around L ¼ 50 Å, where the QW confinement has the
strongest localization effect on the electron (and hole) wave functions along the
growth direction. With the localization included (solid line) our calculation shows
a systematic increase of the Fano factor EBðX2Þ=EBðXÞ. The experimental values
for the Fano factor [8], solid squares in Fig. 4 by solid symbols, are mostly
located between the two theoretical curves. In an intermediate range, i.e., around
70 Å� L� 130 Å, there is an indication that the experimental results correspond
to non-localized excitonic complexes, whereas for widths larger than 150 Å and
smaller than 60 Å, there is a better agreement if the assumption of predominantly
localized complexes is made.
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Fig. 5. The Fano factor for the negative trions versus

quantum well width. The results are for GaAs=

Al0:3Ga0:7As QWs. Symbols: experimental data of

ref. [8], lines with small symbols: PIMC results with

(solid curves) and without (dashed curves) localization
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