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The internal energy and equation of state of dense hydrogen are investigated by direct path integral Monte Carlo
method simulations which are further improved in comparison to our previous results. Data for four isotherms
– T = 10, 000K, 30, 000K, 50, 000K, and 100, 000K – are presented. For T = 10, 000K it is shown that the
internal energy is lowered due to droplet formation for densities of the order 1023cm−3 giving direct support
for the existence of a plasma phase transition in megabar hydrogen.
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1 Introduction

Strongly correlated Fermi systems and their equilibrium properties at high pressure are of growing importance
in many fields, including shock and laser plasmas, astrophysics, solids and nuclear matter, see Refs. [1–7] for
an overview. In particular, the thermodynamic properties of warm dense matter, such as hydrogen at megabar
pressure, are essential for the description of plasmas generated by strong lasers [5], ion beams or free electron
lasers. Among the phenomena of particular current interest are the high-pressure compressibility of deuterium
[8], metallization of hydrogen [9], Wigner crystallization [10, 11] plasma phase transition etc., which occur in
situations where both interaction and quantum effects are relevant and a crossover from a neutral system to full
ionization takes place. Among the early theoretical papers on dense hydrogen we refer to Wigner/Huntington
[12], Abrikosov [13], Ashcroft [14] and Brovman et al. [15] and, concerning the plasma phase transition, see
Norman and Starostin [16], Kremp et al. [17], Saumon and Chabrier [18], Schlanges et al. [19], and Ebeling
et al. [20]. Further, among the early simulation approaches we refer to several Monte Carlo (MC) calculations,
e.g. [21–25]. For a recent overview on the understanding of the hypothetical plasma phase transition, we refer to
the paper by Norman [26].

Several methods have been developed to perform quantum MC for dense plasmas. Common to all is the
Fermion sign problem: the poor convergence of the simulations for Fermi systems at increasing values of the
degeneracy parameter nλ3, where n is the density and λ the thermal wavelength (quantum “extension” of the
microparticle). First we mention the restricted PIMC method (RPIMC) [27–30]; here special assumptions on the
density operator ρ̂ are introduced in order to reduce the sum over permutations to even (positive) contributions
only. This method crucially depends on the knowledge of the “nodes” of the density operator which can be seen
e.g. in the differences of the results computed with free or variational nodes. Furthermore, the presently used
nodes apparantly exclude the possibility of inhomogeneous plasma configurations, as they would appear in the
case of a first order phase transition. Finally, one of us has shown, that this method does not reproduce the correct
ideal Fermi gas limit [31].
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For these reasons, the alternative approach of direct fermionic PIMC simulations (DPIMC) is of high value
[10,32], as it avoids all additional assumptions. Obviously, the computational cost is much higher, but the results
continue to improve. This method now allows for direct fermionic path integral Monte Carlo simulations of
dense plasmas in a wide range of densities and temperatures. Using this concept, the pressure and energy of a
degenerate strongly coupled hydrogen plasma have been computed [10, 32–36] as well as the pair distribution
functions in the region of partial ionization and dissociation [10, 32]. This scheme is rather efficient when the
number of time slices (beads) in the path integral is less or equal to 50 and was found to work well for temperatures
kBT � 0.1Ry. One of the most striking recent results [35, 37, 38] was the observation of droplet formation in
dense hydrogen below T � 20, 000K which confirmed previous chemical picture results about the plasma phase
transition, see above. However, in the region of the instability, the simulations yielded unusally low values for the
internal energy. In the present paper, this issue is critically addressed. We present new results which are obtained
from an improved treatment of the exchange effects. While these results confirm the formation of droplets,
they show that the energy gain of the plasma due to phase separation is much smaller than previously computed
because it is partially compensated by an energy increase due to increased Fermionic exchange energy in the
high-density droplets.

One difficulty of PIMC simulations is that reliable error estimates are often not available, in particular for
strongly coupled degenerate systems. Here, we will make a comparison with two independent analytical methods.
The first is the method of an effective ion-ion interaction potential (EIIP) which has previously been developed for
application to simple solid and liquid metals [15] and which was adopted in [36] to dense hydrogen. The second
is the method of Padé approximations in combination with Saha equations, i.e. the chemical picture (PACH) [3].

2 Brief summary of the direct path integral Monte Carlo simulations

The main idea of DPIMC simulations is to perform first-principle calculations which avoid any additional as-
sumptions. In particular, no assumptions on the chemical composition or the type of bound states which exist
in the system or on the homogeneity of the plasma are made. This is crucial in the region of the Mott transition
where the plasma composition, the degree of ionization and dissociation changes rapidly in a narrow density inter-
val. Thus, we start from the basic plasma particles: electrons and ions. Feynmans path integral concept together
with Monte Carlo methods “automatically” accounts for bound state formation and ionization and dissociation.
Furthermore, in contrast to a chemical picture, no restrictions on the type of chemical species are made and the
appearance of complex aggregates such as molecular ions or clusters of several atoms are fully included. On
the other hand, the simulations are expected to become increasingly difficult at high density where the electron
degenercy is large due to the Fermion sign problem.

Let us briefly outline the idea of our DPIMC scheme. All thermodynamic properties of a two-component
plasma are defined by the partition function Z which, for the case of Ne electrons and Np protons, is given by

Z(Ne, Np, V, β) =
Q(Ne, Np, β)
Ne!Np!

,

with Q(Ne, Np, β) =
∑

σ

∫
V

dq dr ρ(q, r, σ;β), (1)

where β = 1/kBT . The exact density matrix is, for a quantum system, in general, not known but can be
constructed using a path integral representation [21, 39–41],∫

V

dR(0)
∑

σ

ρ(R(0), σ;β) =
∫
V

dR(0) . . . dR(n) ρ(1) · ρ(2) . . . ρ(n)

×
∑

σ

∑
P

(±1)κP S(σ, P̂ σ′) P̂ ρ(n+1), (2)

where ρ(i) ≡ ρ
(
R(i−1), R(i); ∆β

) ≡ 〈R(i−1)|e−∆βĤ|R(i)〉 and ∆β ≡ β/(n + 1). Further, Ĥ is the Hamil-

ton operator, Ĥ = K̂ + Ûc, containing kinetic and potential energy contributions, K̂ and Ûc, respectively,
with Ûc = Ûp

c + Ûe
c + Ûep

c being the sum of the Coulomb potentials between protons (p), electrons (e) and
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electrons and protons (ep). Further, σ comprises all particle spins, and the particle coordinates are denoted by
R(i) = (q(i), r(i)) ≡ (R(i)

p , R
(i)
e ), for i = 1, . . . n + 1, R(0) ≡ (q, r) ≡ (R(0)

p , R
(0)
e ), and R(n+1) ≡ R(0)

and σ′ = σ. This means, the particles are represented by fermionic loops with the coordinates (beads) [R] ≡
[R(0);R(1); . . . ;R(n);R(n+1)], where q and r denote the electron and proton coordinates, respectively. The spin
gives rise to the spin part of the density matrix S, whereas exchange effects are accounted for by the permutation
operator P̂ , which acts on the electron coordinates and spin projections, and the sum over the permutations with
parity κP . In the fermionic case (minus sign), the sum contains Ne!/2 positive and negative terms leading to the
notorious sign problem. Due to the large mass difference of electrons and ions, the exchange of the latter is not
included.

To compute thermodynamic functions, the logarithm of the partition function has to be differentiated with
respect to thermodynamic variables. In particular, the internal energy E follows from Q by

βE = −β∂lnQ/∂β, (3)

This leads to the following result (for details, cf. [33]),

βE =
3
2
(Ne +Np) +

1
Q

1

λ
3Np
p ∆λ3Ne

e

Ne∑
s=0

∫
dq dr dξ ρs(q, [r], β) ×

{
Np∑
p<t

βe2

|qpt| +
n∑

l=0

[
Ne∑
p<t

∆βe2

|rl
pt|

+
Np∑
p=1

Ne∑
t=1

Ψep
l

]

+
n∑

l=1

[
−

Ne∑
p<t

Cl
pt

∆βe2

|rl
pt|2

+
Np∑
p=1

Ne∑
t=1

Dl
pt

∂∆βΦep

∂|xl
pt|

]
− 1

det|ψn,1
ab |s

∂ det|ψn,1
ab |s

∂β

}
, (4)

with Cl
pt =

〈rl
pt|yl

pt〉
2|rl

pt|
, Dl

pt =
〈xl

pt|yl
p〉

2|xl
pt|

, ∆λ2
e = 2π�

2∆β/me,

and Ψep
l ≡ ∆β∂[β′Φep(|xl

pt|, β′)]/∂β′|β′=∆β contains the electron-proton Kelbg potential Φep, cf. Eq. (6)
below. Here, 〈. . . | . . . 〉 denotes the scalar product, and qpt, rpt and xpt are differences of two coordinate vectors:
qpt ≡ qp − qt, rpt ≡ rp − rt, xpt ≡ rp − qt, rl

pt = rpt + yl
pt, x

l
pt ≡ xpt + yl

p and yl
pt ≡ yl

p − yl
t, with

yn
a = ∆λe

∑n
k=1 ξ

(k)
a . Here we introduced dimensionless distances between neighboring vertices on the loop,

ξ(1), . . . ξ(n), thus, explicitly, [r] ≡ [r; y(1)
e ; y(2)

e ; . . . ]. Further, the density matrix ρs in Eq. (4) is given by

ρs(q, [r], β) = Cs
Ne
e−βU(q,[r],β)

n∏
l=1

Ne∏
p=1

φl
ppdet ||ψn,1

ab ||s, ||ψn,1
ab ||s ≡ ||e−

π
∆λ2

e
|(ra−rb)+yn

a |2 ||s. (5)

whereU(q, [r], β) = Up
c (q) + {Ue([r],∆β) + Uep(q, [r],∆β)}/(n+ 1) and φl

pp ≡ e−π|ξ(l)
p |2 . We point out that

the density matrix (5) does not contain an explicit sum over the permutations and thus no sum of terms with
alternating sign. Instead, the whole exchange problem is contained in a single exchange matrix ||ψn,1

ab ||s, which,
as a result of the spin summation, carries a subscript s denoting the number of electrons having the same spin
projection.

The potential Φab appearing in Eq. (4) is an effective quantum pair interaction between two charged particles
immersed into a weakly degenerate plasma. It has been derived by Kelbg and co-workers [42, 43] who showed
that it contains quantum effects exactly in first order in the coupling parameter Γ,

Φab(|rab|,∆β) =
eaeb

λabxab

{
1 − e−x2

ab +
√
π xab [1 − erf(xab)]

}
, (6)

where xab = |rab|/λab, and we underline that the Kelbg potential is finite at zero distance. We mention recent
improvements of this potential [44] which allow to extend it into the region of moderate coupling and partial
ionization. These results will be used in future work.

The structure of Eq. (4) is obvious: we have separated the classical ideal gas part (first term). The ideal quan-
tum part in excess of the classical one and the correlation contributions are contained in the integral term, where
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the second line results from the ionic correlations (first term) and the e-e and e-i interaction at the first vertex
(second and third terms respectively). Thus, Eq. (4) contains the important limit of an ideal quantum plasma in
a natural way. The third line is due to the further electronic vertices and the explicit temperature dependence [in
Eq. (4)] and volume dependence (in the corresponding equation of state result) of the exchange matrix, respec-
tively. The main advantage of Eq. (4) is that the explicit sum over permutations has been converted into the spin
determinant which can be computed very efficiently using standard linear algebra methods. Furthermore, each of
the sums in curly brackets in Eq. (4) is bounded as the number of vertices increases, n → ∞. The error of the
total expression is of the order of 1/n. Thus, expression (4) and the analogous result for the equation of state are
well suited for numerical evaluation using standard Monte Carlo techniques, e.g. [21, 25].

In our Monte Carlo scheme we used three types of steps, where either electron or proton coordinates, ri
or qi or inidividual electronic beads ξ(k)

i were moved until convergence of the calculated values was reached.
Our procedure has been extensively tested. In particular, we found from comparison with the known analytical
expressions for pressure and energy of an ideal Fermi gas that the Fermi statistics is very well reproduced with a
limited number of particles, N � 100, and beads, n � 20, [10, 32, 33].

3 Numerical Results. Comparison of the analytical and simulation data

Let us now come to the numerical results. The path integral representation for the N-particle density operator
discussed above allows for direct fermionic path integral Monte Carlo (DPIMC) simulations of dense plasmas
in a wide range of densities and temperatures. Using this concept, the pressure, energy and the pair distribu-
tion functions of a degenerated strongly coupled hydrogen plasma have been computed in the region of partial
ionization and dissociation [10, 33–37].

Here, we present improved results for the pressure and internal energy of dense hydrogen. In Figs. 1–4 we
present isotherms for the temperatures 10, 000, 30, 000, 50, 000, 100, 000K. First, in all figures we observe the
familiar general behavior of the thermodynamic functions of a nonideal plasma: the formation of a pressure
and energy minimum (where the energy may become negative) at intermediate densities (around 1023cm−3),
which is due to the (overall attractive) Coulomb correlations leading in particular to formation of atoms and
molecules. At larger densities energy and pressure rapidly increase which is a consequence of electron degeneracy
effects: increasing overlap of the electron wave functions leads to a break up of bound states (Mott effect) and to
increased exchange energy. These quantum contributions start to become important around the energy minimum
and thus strongly influence the lowest value of the total energy per 2N protons on the isotherms. In our previous
calculations, this value was unexpectedly low, around 1Ry for T=10, 000K . We, therefore, did a careful analysis
of these results and improved the treatment of the electron exchange. In previous calculations, exchange effects
were only computed between particles inside the Monte Carlo cell. However, with increasing nλ3 also the ratio
of the thermal electron wave length to the size of Monte Carlo cell increases. When this ratio appoaches one, of
course, exchange effects between electrons in the main MC cell and their images in the neighbor cells have to be
included. In the present calculations we take into account the exchange interaction of electrons from neighbor
Monte Carlo cells, namely first from the nearest neigbor cells (33 − 1), then from the next neighbors 53 − 1
and so on. These improved calculations were first tested for an ideal plasma and then for a nonideal hydrogen
plasma, see Figs. 2–4. The agreement with the known analytical results for an ideal plasma is now very good up
to densities of the order of 5 · 1023cm−3.

With the improved treatment of electronic exchange, the lowest value for the energies increases significantly.
For T=10, 000K the minimum of the energy per 2N protons is now around 0.6Ry with an average magnitude
of the fluctuations (due to the observed instability) of 0.4Ry. At the same time, the formation of clusters in this
region found in our previous calculations [37,45] is reproduced by the present results, confirming our conclusion
about the plasma phase transition.

Let us now compare the results from DPIMC method, the method of an effective ion-ion interaction potential
(EIIP [36]), Padé approach within the chemical picture (PACH [3]) and density functional results for T=10, 000K
(DFT [46]). These methods are constructed in a way that they correctly reproduce the known analytical behavior
at very high densities, n > 1024cm−3 where they agree well which each other. For us the densities below
this range are of interest. Here, as we mentioned above, atom and molecule formation is becoming important,
and the DFT and EIIP methods (in their present form) are becoming increasingly unreliable. In contrast, the
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presented PACH results include bound states approximately. Further, the PACH and DFT methods are assuming
homogeneous density distributions and thus cannot describe phase separation. Interestingly, at T = 10, 000K
and 1023cm−3 ≤ n ≤ 1024cm−3, both the Pade and EIIP methods yield unstable results for the thermodynamic
functions which is a clear indication for the existence of a first order phase transition. Xu and Hansen [46] too
observed strong fluctuations in their density functional calculations below rs = 1.5 which they found to strongly
resemble precursors of a phase transition. Let us now compare the DPIMC simulations to the results of RPIMC
simulations of Militzer et al. [30]. We found excellent quantitative agreement between the two independent
quantum Monte Carlo methods above T = 50, 000K, see for example the point for T = 62, 500K in Fig. 4.a,
and also Ref. [33] where a more extensive comparison is given. At lower temperatures the DPIMC results for
the energy are mainly lower than the RPIMC results. In particular, our results for the energy minimum are
lower which is due to droplet formation, apparantly excluded by the fixed node apparoximation in the RPIMC
simulations. We mention that the same effects are observed in our DPIMC simulations of electron-hole plasmas
under similar conditions [35, 45] for which droplet formation is well established and observed experimentally
three decades ago [47].
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4 Discussion

This work is devoted to the investigation of the pressure and the total energy of warm dense plasmas in the
temperature region between 10, 0000 and 100, 000K. We presented new results for high-density plasmas and
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compare them with results based on several theoretical methods, namely the theory of an effective ion-ion po-
tential (EIIP), the Padé formalism within the chemical picture, density functional theory and the restricted path
integral Monte Carlo method (RPIMC). From these comparisons we conclude that the considered theoretical ap-
proaches – DPIMC, RPIMC, PACH, EEIP and DFT – are in good overall agreement with each other for a fully
ionized hydrogen plasma in the high density region. On the other hand, our DPIMC simulations agree well with
the available RPIMC data, cf. Figs. 2 - 4 and Ref. [33], for temperatures above 50, 000K. This agreement over
a broad range of parameters is certainly remarkable since the plasma is far outside the perturbative regime: it is
strongly correlated and the electrons are degenerate, and the two simulations are essentially independent.

In addition, at low temperature, we observe deviations in the region of the energy mininum, around n =
1023cm−3, where the DPIMC data are substantially lower. Our analysis revealed that these deviations are due to
droplet formation found in the DPIMC simulations which are not included in the other methods. Our improved
treatment of exchange effects which included exchange with particles of the neighboring MC cells has reduced
these differences. Our energies are now close to those of the molecular ground state.

Finally, for completeness we mention that, at very high density of the order of 1026cm−3, our DPIMC sim-
ulations revealed ordering of protons into a strongly correlated fluid and the onset of the formation of a proton
Wigner crystal [10, 45]. These interesting physical effects in high pressure hydrogen are of relevance for many
astrophysical systems, but also for many laboratory experiments, including ultracold degenerate trapped ions and
laser plasmas.
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