
  

Journal of Experimental and Theoretical Physics, Vol. 98, No. 4, 2004, pp. 719–727.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 125, No. 4, 2004, pp. 821–830.
Original Russian Text Copyright © 2004 by Bonitz, B. B. Zelener, B. V. Zelener, Manykin, Filinov, Fortov.

                                                                                                                                                        

PLASMA, 
GASES
Thermodynamics and Correlation Functions 
of an Ultracold Nonideal Rydberg Plasma
M. Bonitza, B. B. Zelenerb,*, B. V. Zelenerb, É. A. Manykinc, 

V. S. Filinovd, and V. E. Fortovd

aLehrstuhl Statistische Physik, Institut für Teoretische Physik und Astrophysik, Christian-Albrechts-Universität Kiel,
Kiel, D-24098 Germany

bJoint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412 Russia
c Russian Research Centre Kurchatov Institute, Moscow, 123182 Russia

dInstitute of Thermal Physics of Extreme States, Joint Institute for High Temperatures, Russian Academy of Sciences, 
Moscow, 125412 Russia

*e-mail: bobozel@mail.ru
Received October 2, 2003

Abstract—A pseudopotential model is suggested to describe the thermodynamics and correlation functions of
an ultracold, strongly nonideal Rydberg plasma. The Monte Carlo method is used to determine the energy, pres-
sure, and correlation functions in the ranges of temperatures T = 0.1–10 K and densities n = 10–2–1016 cm–3.
For a weakly nonideal plasma, the results closely agree with the Debye asymptotic behavior. For a strongly non-
ideal plasma, many-particle clusters and a spatial order in the arrangement of plasma electrons and ions have
been found to be formed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The unique experimental works [1–3] have given us
an insight into some of the physical properties of a
dense ionized gas at cryogenic temperatures. Until now,
a dense ionized gas has been traditionally produced at
high temperatures and high pressures.

In [1–3], in which a Xe plasma was studied, about
5 × 106 metastable Xe atoms (the 6S[3/2]2 level, a life-
time of 43 s) were produced, decelerated by using the
Zeeman technique, collected in a magneto-optical trap,
and radiatively cooled on the 6S[3/2]2 –6P[5/2]3 (λ1 ≈
882 nm) transition down to a temperature of 100 µK.
The maximum atomic density reached 5 × 1010 cm–3;
the density distribution was Gaussian with a root-mean-
square radius of σ ≈ 180 µm.

To produce a plasma, more than 20% of the atoms
were photoionized over 10 ns. First, the 6P[5/2]3 (λ1 ≈
882 nm) level was populated, and then the atom was
ionized by photons with a wavelength λ2 ≈ 514 nm. The
difference between the photon energy and the ioniza-
tion potential, ∆E, was distributed between electrons
and ions. Because of the small electron-to-ion mass
ratio, only an energy of 4 × 10–6∆E was acquired by
ions, while the remaining energy was acquired by elec-
trons. In [1–3], ∆E/k was varied in a controllable way
between 0.1 and 1000 K. The maximum charged parti-
cle density was

n ne ni+ 2 109 cm 3– .×= =
1063-7761/04/9804- $26.00 © 20719
An anomalous slowdown of the recombination in the
produced plasma was found in [1–3]. The recombina-
tion time was on the order of 100 µs. The recombina-
tion time estimated by using a formula valid for a rar-
efied plasma is several nanoseconds, which is many
orders of magnitude shorter than the observed value.

Note that the produced plasma is strongly nonideal.
In this plasma, the ratio of the mean potential energy of
the particles to their kinetic energy (nonideality param-
eter), γ = βe2n1/3 (where β = 1/kT is the inverse temper-
ature, and e is the electron charge), is much larger than
unity. Thus, at T = 0.1 K and n = 2 × 109 cm–3, γ = 21.
At the same time, the electrons in this plasma are nonde-
generate. The ratio of the thermal de Broglie wavelength

 of an electron to the mean particle separation (degen-
eracy parameter) at T = 0.1 K and n = 2 × 109 cm–3 is
much smaller than unity:

(1)

Here, me is the electron mass, and " is the Planck con-
stant.

In a strongly nonideal plasma, the estimates of any
processes based on the formulas obtained in the
approximation of γ ! 1 are inapplicable for such non-
ideality parameters γ.
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2. THERMAL RELAXATION

Based on the properties of a nonideal plasma [4], the
authors of [1–3] concluded that thermal equilibrium
sets in several tens of microseconds. It seems to us that
this conclusion is unjustified, because a weakly non-
ideal plasma with γ ! 1 was considered in [4]. Since
there is no quantitative kinetic theory for γ ≥ 1, only
qualitative estimates can be obtained. In this case, it fol-
lows from general physical considerations that the ther-
mal relaxation time in a strongly coupled system (e.g., at
fixed temperature T with variation in particle density n)
will be shorter than that in a weakly coupled system.

To estimate the thermal relaxation time in a gas of
electrons and ions, we use a standard expression from [5]
for γ ! 1 and nλ3 ! 1:

(2)

Here, Te is the electron temperature, M is the ion mass,
z is the ion charge, ni is the ion density, and Le is the
Coulomb logarithm:

(3)

where vTe is the electron velocity that corresponds to Te ,
and

(4)

is the Debye screening length.

If the plasma is electrically neutral, then ne = ni . For-
mula (2) contains a Coulomb logarithm Le that has no
physical meaning for γ ≥ 1. The Coulomb logarithm Le

arises in this formula when the transport cross section
is calculated. The latter is generally determined in the
rarefied case for a ≥  (where  is the mean density).
However, it is clear that the transport cross section
always has a physical meaning and is finite.

By analogy, the estimate of the thermal relaxation

time  for γ ≥ 1 can be represented by using the char-
acteristic physical quantities as (2); in this case, how-
ever,  (the effective Coulomb logarithm that
includes the collective effects in a nonideal plasma)
should be substituted for Le:

(5)
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where

( )0 = 3.4 × 10–2 s at Te = 0.1 K and ni = 104, z = 1 (γ =
0.67, M = 131.3 amu). At Te = 0.1 K and ni = 1010,

( )0 = 34 ns.

We also assume that the differential scattering cross
section remains Coulomb, but either corrections to it
arise or the integration limits change. However, the
dependence of the relaxation time on n at T = const
remains logarithmic.

The value of  can change via the substitution of

 for Le by no more than a factor of 10 to 20. Of
course, all of this reasoning must be confirmed by rig-
orous estimations or numerical calculations. Thus, we
may assume that thermal equilibrium at T = 0.1 K and
n = 109–1010 sets in less than 1 µs.

3. THEORETICAL APPROACHES TO STUDYING 
AN ULTRACOLD NONIDEAL RYDBERG 

PLASMA

The Xe plasma produced in the experiments [1–3]
consists of singly charged Xe ions, electrons, and
highly excited (n > 100) hydrogen-like Xe states. These
states are called Rydberg atoms. The possibility of the
existence of condensed excited states of matter was first
considered in [6]. At present, these condensed states of
substance for Rydberg atoms (the so-called Rydberg
substance) have been extensively studied theoreti-
cally [7, 8] and experimentally [9–11]. Subsequently,
this idea has been developed by several authors (see the
review [12]). According to this approach, the interac-
tion between Rydberg atoms as their density increases
ultimately leads to a change in the phase state of the
system and to a qualitative change in all parameters.
Moreover, in contrast to free Rydberg atoms whose
lifetime in an excited state is about 10 ns, the lifetime
of a Rydberg substance is macroscopically long.
Despite the low density that is the gas density by its
parameters, the condensed excited state is a metastable
ordered state of the substance. At present, there are
experimental data [13, 14] for a cesium plasma at T =
500–1000 K that suggest the existence of a Rydberg
substance.

In [15, 16], the experimental data [13, 14] were
found to correlate with the ideas of an isolated region of
metastable states of an ultracold nonideal plasma.
In [6, 12], the methods of solid-state physics were used
to produce a Rydberg substance by assuming the pres-
ence of an electron Fermi liquid. In [17, 18], the recom-
bination time of a dense plasma was calculated numer-
ically and was shown to be much longer than that for a
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THERMODYNAMICS AND CORRELATION FUNCTIONS 721
weakly nonideal plasma. The authors of [19, 20] sug-
gested a different approach to studying the thermody-
namics of a Rydberg substance in the case where the
electron gas is nondegenerate. This approach uses pre-
viously developed methods for a strongly nonideal non-
degenerate plasma [21].

We consider the thermodynamic equilibrium of a
nonideal gas of electrons and ions (γ ≥ 1). This gas is
peculiar in that there is absolutely no atomic discrete
spectrum or there are discrete states with n ≥ n*, where
n* = 100 or more. Since n* ≥ 100, the states may be said
to be Rydberg ones. Strictly speaking, there is no full
thermodynamic equilibrium in our case. Therefore,
when we talk about thermodynamic equilibrium
degrees of freedom, we primarily have in mind the
translational degrees of freedom. The thermodynamic
equilibrium of all the remaining degrees of freedom
(rotational, vibrational, dissociation and chemical reac-
tions, ionization and electron excitation) arises much
later. It may be assumed that in easily excited degrees
of freedom, equilibrium exists at each instant of time,
while the slow relaxation processes do not proceed at
all over the period under consideration. We will use
results from [21–29] to describe this gas.

4. THE PSEUDOPOTENTIAL MODEL 
AND THE RANGE OF ITS APPLICABILITY

The thermodynamics of an equilibrium quantum-
mechanical system is completely determined if the par-
tition function is known:

(6)

where  is the trace of the density matrix

exp( ); ψn(qN) and En are the wave functions and

energy levels of N particles, respectively;  is the
Hamiltonian of the N-particle system; qN are the coor-
dinates of the N particles; and V is the volume of the
system.

The authors of [25–29] developed an approach that
allows the thermodynamic properties of a dense plasma
to be described over a wide range of nonideality and
degeneracy parameters, including the region of strong
nonideality and degeneracy. However, a simpler
approach developed in [21–24] can be used for a non-
degenerate plasma. The authors of these papers sug-
gested a pseudopotential model to calculate the parti-

ZN Tr βĤ–( )exp( )≈

=  ψn
2 βEn–( ) qN ,dexp

n 1=

∞

∑
V

N

∫

Tr βĤ–( )exp( )
βĤ–

Ĥ
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tion function of a nonideal nondegenerate plasma. It
involves the Slater partition function

(7)

where λ is the particle thermal wavelength.
The essence of the pseudopotential model is that the

partition function (7) is represented as a product of the
pair electron–electron, ion–ion, and electron–ion Slater
partition functions:

(8)

In the experimental conditions under consideration,
this approximation is valid not only for γ < 1, but also
for γ ≥ 1, because there are neither pair nor many-parti-
cle bound states in the Xe gas. By analogy with the
classical case, product (8) may be substituted with

(9)

where

(10)

is the pseudopotential.
The pair Slater partition functions for electron–ion,

electron–electron, and ion–ion interactions can be cal-
culated accurately. The expression for the long-range
pseudopotential is identical to the Coulomb law, while
the short-range pseudopotential is finite and tempera-
ture-dependent.

4.1. The Electron–Ion Pseudopotential 

For the interaction of an electron with an ion, the
pseudopotential Φei is defined by the relation 

(11)

where Sei is the two-particle Slater partition function,
Eα(r) is the energy of the electron in the field of the ion
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in state α, Ψα(r) is the corresponding wave function,

and λei = λe/ . The summation is over all possible
states Eα . This pseudopotential is finite at r = 0, while
the expression for the long-range pseudopotential is
identical to the Coulomb law.

For a plasma without bound states up to n = n0, the
expression for Sei(r, T) can be written as [21]

(12)

Here,

(13)

is the contribution of the part of the discrete spectrum
from E0 to E', which can be calculated from the known
wave functions Ψα(r) for the hydrogen atom, and the
contribution of the remaining part of the spectrum is

(14a)

if

and

(14b)
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Fig. 1. The ion–electron pseudopotentials at various tem-
peratures, T = 1 (1), 0.5 (2), and 0.1 K (3), compared to the
Coulomb potentials (solid lines)

βΦei
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if

where

The partition function Sc(r, T) was derived in the
quasi-classical approximation for bound states at Eα >
E ' and continuum states.

Expressions (13) and (14) for |βe2/λei| > 1 at r = 0
take the form

(15)

At n0 ≥ 100, it will suffice to use (14) and (15) and
the hydrogen wave functions and energy levels to deter-
mine the potential Φei(r, T). When determining Φei(r, T)
for the Xe ion, we must also take into account the fact
that its size is finite (its crystallographic radius is about
2 Å). Figure 1 shows the electron–ion pseudopotentials
at T = 0.1, 0.5, and 1 K and, for comparison, the Cou-
lomb potentials.

4.2. The Electron–Electron 
and Ion–Ion Pseudopotentials 

The Slater partition function for the interaction
between two electrons is [21]

(16)

The wave functions in expression (16) depend on the
electron spins σ1 and σ2 and must be antisymmetric.
Expression (16) can be written as a sum of the contri-
butions from the wave functions with symmetric and
nonsymmetric parts:

(17)
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The potential Φee(r, T) was numerically calculated
by Barker [22] over a wide temperature range, T =
102−105 K. He suggested the following fitting formula
for Φee(r, T):

(18)

where r is measured in a0, T is in Kelvins, and Φee is in
Rydbergs (Re = 0.5me4/"2).

At long range, formula (18) is identical to the Cou-
lomb law. For βe2/λee > 1, expression (17) at r = 0 can
be written [23] as

(19)

Thus, for βe2/λee > 1, fit (18) can be used down to T =
0.1 K.

Figure 2 shows the electron–electron pseudopoten-
tials at T = 0.1, 0.5, and 1 K and, for comparison, the
Coulomb potentials.

According to [21], the expressions for the ion–ion
pseudopotentials are identical to the Coulomb law. We
must only take into account the fact that the ion size
(e.g., the crystallographic radius) is finite.

5. CALCULATING
THE THERMODYNAMIC QUANTITIES

AND CORRELATION FUNCTIONS

5.1. The Method of Calculation 

In the pseudopotential approach, the quantum parti-
tion function reduces to an expression that is classical
in form [21]. Therefore, all of the methods developed in
the statistical thermodynamics of classical systems
(both analytical and numerical) can be used to deter-
mine the relevant thermodynamic quantities.

We used the Monte Carlo method for a multicom-
ponent plasma in a canonical ensemble developed
in [24, 25] to calculate the thermodynamic quantities
and correlation functions of an ultracold Rydberg
plasma.

In this case, determining the various thermody-
namic quantities reduces to calculating the mean values
of the known functions of coordinates q. For example,
for the energy, we obtain

(20)

where Q(N, V, T) is the path integral.
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The Monte Carlo method is a numerical method that
uses Markov chains [24]. It allows us to select only the
principal, most typical terms that define the integral
sum. Therefore, it is also called a method of significant
selection. Another peculiarity of the method is the use
of periodic boundary conditions. The entire three-
dimensional space is broken down into equal cells of
volume V with N particles in each cell. If one of the par-
ticles exits from a cell due to a change in its coordi-
nates, then its image from a neighboring cell simulta-
neously enters through the opposite cell face, and the
number of particles in the cell is conserved.

The errors in the Monte Carlo results [24] are attrib-
utable to the choice of the number of particles in the cell
and to the finite length of the Markov chain. To estimate
the error in choosing the number of particles, we per-
formed calculations for various N = 16, 32, 64, and 128
and showed convergence ((∝ N–1)). Our estimate of the
statistical error due to the finite length of the Markov
chain [24] allowed us to choose Markov chains of the
required length. In addition, we discarded the nonequi-
librium part. We also calculated the electron–electron,
gee(r), ion–ion, gii(r), and electron–ion, gei(r), radial
correlation functions.

5.2. Results of the Calculations

Thus, we consider the pseudopotential model of an
ultracold Rydberg plasma. Experimental data suggest
that this plasma consists of electrons, singly charged
ions, and atoms in highly excited (n > 100) states. There
are no low-excitation (n < 100) states in this plasma,
because it was produced through the laser excitation of
atoms at a certain wavelength, and because an anoma-
lous increase in the recombination time was observed
in the experiment.

We performed calculations for the temperature
range T = 0.1–10 K and the density range n = 10–2–
1016 cm–3. The calculations in the range of low densities

1

2
3

0.1 0.2 0.3

1 × 107

5 × 107

βΦee

r, a0

Fig. 2. The electron–electron pseudopotentials at various
temperatures, T = 1 (1), 0.5 (2), and 0.1 K (3), compared to
the Coulomb potentials (solid lines).
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Fig. 3. Internal energy per particle, E/NkT, versus nonideal-
ity parameter γ.
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Fig. 4. Pressure P/nkT versus nonideality parameter γ.

Fig. 5. The correlation functions at various densities and temperature T = 0.1 K: gei(r) (1), gee(r) (2), and gii(r) (3); (a) n = 10, γ =

0.036; (b) n = 107, γ = 3.6; (c) n = 108, γ = 7.7; (d) n = 109, γ = 16.7; (e) n = 1010, γ = 36; and (f) n = 1011, γ = 77.
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Fig. 6. The correlation functions at density n = 1015 cm–3 and
temperature T = 10 K: gei(r) (1), gee(r) (2), and gii(r) (3).
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were needed to pass to the limit of the values that are
consistent with the Debye–Hückel approximation for
γ ! 1 (see, e.g., [21]).

In Figs. 3 and 4, internal energy E/NkT per particle
and pressure P/nkT are plotted against nonideality
parameter γ. In the limit of small γ, there is agreement
with the Debye–Hückel approximation (see the inset in
Fig. 3). At γ < 0.5, the dimensionless energy E/NkT
reaches the Debye value

(21)

Figures 5 and 6 show the correlation functions
gee(r), gii(r), and gei(r) for various densities and temper-
atures T = 0.1 and 10 K, respectively. For γ ! 1, there
is good agreement with the Debye–Hückel approxima-

E
NkT
----------- πγ3/2.–=
(a) (b)

(c)

Fig. 7. The graphical images of the particle coordinates that correspond to the correlation functions gee(r), gii(r), and gei(r). The

open and filled circles represent the ions and electrons, respectively: (a) T = 0.1 K, n = 109 cm–3, the ions and electrons are at the
lattice site; (b) T = 0.1 K, n = 1010 cm–3, the ions are at the sites of one lattice, while the electrons are at the sites of the other lattice;
(c) T = 10 K, n = 1015 cm–3, the ions and electrons form droplets with lattice site nuclei, the transition state between the short-range
order and the lattice.
SICS      Vol. 98      No. 4      2004



726 BONITZ et al.
tion (linearized or nonlinearized). For γ ≥ 1, the shape
of the correlation functions suggests that a short-range
order is formed among particles of both the same and
opposite signs. This order is enhanced with increasing γ.
The maxima of the correlation functions increase,
while their minima become zero, which is attributable
to the formation of a strict order in the spatial arrange-
ment of particles. There are almost no particles in the
region of zero correlation functions.

We used a visualization program to better under-
stand the situation related to ordering with increasing γ.
This program visualizes the arrangement of particles in
various equilibrium configurations. Figures 7a–7c
show some of the equilibrium configurations for vari-
ous T and n.

Let us discuss the results for the T = 0.1 K isotherm.
The order that corresponds to a lattice of size L = 2.2 ×
105a0 at n = 109 cm–3 arises as the density increases
(Figs. 5d and 7a). The pairs of electrons and ions are
located at the lattice sites at distance r = 2.2 × 105a0. As
the density increases to n = 1010 cm–3 (Figs. 5e and 7b),
the electrons and ions that form the pair move apart,
and two (electron and ion) lattices are formed. This
probably suggests that two nested lattices constituted
the initial lattice at the sites of which the pairs were
located.

As the temperature increases, the formation of an
ordered structure shifts toward higher particle densities.
Thus, for T = 10 K and at a much higher density, n =
1015 cm–3, only a short-range order in the form of elec-
tron–ion clusters (as we see from the equilibrium con-
figuration) shown in Figs. 6 and 7c is established. These
clusters are droplets of oppositely charged particles,
with the electrons and ions in these droplets lining up in
minilattices.

As was noted above, the energy E/NkT at γ ≥ 0.1 in
the range T = 0.1–10 K is a linear function of γ (see
Fig. 3). This implies that, eliminating the temperature

105 1010 1015

0.1

1.0

10.0

T, K

n, cm–3

Fig. 8. The n–T diagram. The crosses, squares, and circles
represent the gaseous, liquid, and solid (lattice) states of the
plasma, respectively. The solid and dashed lines correspond
to γ = 1 and nλ3 = 1, respectively.
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from this function, we will obtain an expression similar
to the standard Madelung law for an ionic crystal [30]:

(22)

where A = 8–9 is a constant (an analogue of the Made-
lung constant).

As follows from our calculations, the lattice con-
stant is proportional to n–1/3. The form of Eq. (22) sug-
gests that an order similar to a crystal lattice is estab-
lished in the ionized gas produced at γ ≥ 1. In this case,
the energy is a function of the mean particle separation,
which is approximately equal to the lattice constant.

Figure 8 shows an n–T diagram. The region of
parameters that corresponds to a Debye plasma is indi-
cated by crosses; the regions where droplets and lattices
appear are indicated by squares and circles, respec-
tively. The γ = 1 and nλ3 = 1 lines are also shown in the
figure. We see from this diagram that the formation of a
short-range order begins only at γ ≈ 1; as was described
above, the formation of an ordered structures shifts
toward higher particle densities as the temperature
increases. In addition, under the given conditions, a
long-range order is formed long before the onset of
degeneracy.

Our results also give us an insight into what the
authors of [1–3] call the anomalously slowed down
recombination. There are no Rydberg atoms that must
recombine in an ionized gas at γ ≥ 1. However, there is
a short-range order (and a long-range order at γ @ 1) for
charged particles of both the same and opposite signs,
which reduces the probability of the approach and
recombination of oppositely charged particles.

6. CONCLUSIONS

We have considered a Rydberg ionized gas formed
from continuum electrons and ions. We investigated the
temperature range T = 0.1–10 K and the density range
n = 10–2–1016 cm–3. As a result, we found the formation
of a structure at γ ≥ 1, which probably leads to the
experimentally observed slowdown of the recombina-
tion. The structure is formed in the region where the
electron gas is far from being degenerate (nλ2 ! 1) and
where the structure itself changes from a short-range
order (similar to the structure in a liquid) to a long-
range order (similar to the lattice in solid bodies). Add-
ing states of the discrete spectrum to the gas under con-
sideration will change the properties of this gas. When
these states are taken into account for specific densities
and temperatures, the energy decreases, which may
cause the phase diagram to change.

The suggested model contains no specific parame-
ters of the elements. Therefore, it may be used for a gas
of any element.

E
N
---- Ae2n1/3,=
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