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Strong correlations in quantum Coulomb systems (QCS) are attracting increasing interest in
many fields ranging from dense plasmas and semiconductors to metal clusters and ultracold
trapped ions. Examples are bound states in dense plasmas (atoms, molecules, clusters) and
semiconductors (excitons, trions, biexcitons) or Coulomb crystals. We present first principle
simulation results of these systems including path integral Monte Carlo simulations of the equi-
librium behavior of dense hydrogen and electron-hole plasmas and molecular dynamics and
quantum kinetic theory simulations of the nonequilibrium properties of QCS. These large-scale
simulations became feasible due to the supercomputer power of the NIC Jülich. They have the
advantage that much more accurate predictions of the behaviour of very complex CQS are now
available.

1 Introduction

The family of Coulomb systems, i.e. many-body systems which are dominated by
Coulomb interaction, has grown beyond convential plasmas in space or laboratory for many
years, for an overview, see e.g.1, 2. They include also electron-hole plasmas in semiconduc-
tors, the electron gas in metals, charged particles confined in various traps or storage rings,
charged complex or dust particles and also small few-particle clusters in mesoscopic quan-
tum dots. Despite their different nature, all Coulomb systems have similar fundamental
properties which are governed by two parameters: the strength of the Coulomb interac-
tion (measured by the coupling parameters

�
and ��� ) and the strength of quantum effects

(degeneracy parameter � ). These parameters are determined by the ratio of characteristic
energy and length scales3, 4):

	 Length scales: 1.) 
� – the average interparticle distance, 
������ ����� (  and � denote
the density and dimensionality , ������������� , of the system respectively). 2.)  – the
quantum-mechanical extension of the particles. For free particles,  !�#"%$�& ��')(+*-,�.
(DeBroglie wavelength), for bound particles -  is given by the extension of the wave
function. 3.) /0, – the relevant Bohr radius /�,1� 23546357986:; 4 7 , with ( � �<>= �?( � �<A@ ( � �= .

	 Energy scales: 1.) BDCFE – the mean kinetic energy, in a classical system BGCHEJILKM��� *�,N. , whereas in a highly degenerate Fermi system BDCHE�O ; �QPRTSVU ( SVU denotes
the Fermi energy); 2.) the mean Coulomb energy – for free particles: BLWXI�E�YZ� 3 4 3 7[]\ 2

� ^_ ,
and for bound particles: BLWNI�E5,!� 35463 7[]\ 2

�� <6`!a SVb (Rydberg).
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	 The degeneracy parameter � a   � � �  X$%
��� � divides many-body systems into
classical ( ��� � ) and quantum mechanical ones ( ���#� ).

	 The Coulomb coupling parameter is the ratio � BLW I�E	� $�BDCFE . For classical systems
� a

� BLW�I�E
� $�*�, . , whereas for quantum systems the role of
�

is taken over by ��� a 
��$�/0,1�
� BLW�I�E
� $�SVU .
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Figure 1. Universal density–temperature plane for Coulomb systems in equilibrium. The lines ����
and ������� enclose the region of strong Coulomb correlations, the lines ��������� and �	���������
give an approximate boundary for Coulomb (Wigner) crystals. The line ����� separates classical
(left) and quantum (right) systems. Abbreviations stand for CS in tokamaks (T), inertial confinement
fusion (ICF), brown dwarf stars (DWARFS), Jupiter interior (J), ionosphere (I), shock wave plasmas
(SH), ion beams (IBEAMS). The green box denotes the region of semiconductors (scaled with the
excitonic �! #"%$'& ). Plasmas in traps (TR) are outside the figure, typically at sub-Kelvin temperatures.

Fig. 1 shows a qualitative phase diagram of Coulomb systems in equilibrium as a function
of temperature and density. It allows to compare different Coulomb systems and projects
results from one area onto another. One simply has to rescale length and energies in the
actual / , and S b using the corresponding data for ( , ( , � and ) . As an illustrative ex-
ample, Fig. 1 shows that the electron-hole plasma in semiconductors covers a remarkably
broad range of situations in laboratory and space plasmas.

2 Coulomb structures in equilibrium

The general behavior is well known: in the limit of high temperature, �+* � and
� * � ,

CS behave as a classical ideal gas of free charge carriers. Similarly, in the limit of high
densities, ��, � and � �-* � , ideal gas behavior is recovered, however, that of a quantum
gas of spatially extended mutually penetrating particles. Both limits are structureless and
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comparatively simple theoretically: they are succesfully (and rigorously) treated by pertur-
bation theory (with respect to

�
or � � ). Much more interesting behavior emerges when the

Coulomb energy starts to exceed the kinetic energy, i.e.
� � � or � � �#� – the behavior of

charged particles is then strongly correlated, electrons may become trapped by ions lead-
ing to the formation of atoms, molecules and macroscopic matter. This parameter range
is very challenging theoretically due to the absence of small expansion parameters. Tradi-
tional classical and quantum statistical methods, e.g.5, 4, are able to describe only certain
types of these correlations by summing special classes of diagrams (such as ladder type
diagrams describing atoms or excitons).

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

   

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

2 4 6 8 10 12 14 16 18 20 22

2

4

6

8

10

12

14

16

18

20

22

1 2 3 4 5 6

1

2

3

4

5

6

Figure 2. Snapshots of a correlated quantum electron-hole plasma in a two-dimensional semiconduc-
tor quantum well at low temperature � � ��� ��$ & simulated with path integral Monte Carlo. The
densities are: � � ����� � (top left), � � ���	� 
 (top right), � � ��
�� � (bottom left) and � � �+��� � (bottom
right). Yellow (blue) dots show the average quantum extension of an electron (hole).

The alternative here is first-principle simulations such as path integral Monte Carlo
(PIMC) which do not have restrictions with respect to the coupling strengths, e.g.6–8. Fig.
2 shows direct fermionic PIMC simulations for an excited electron hole plasma in a semi-
conductor quantum well in the range of strong correlations. Both electrons and holes are
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strongly degenerate, i.e. � 3�� ��� � , thus a quantum-mechanical treatment is essential. The
PIMC simulations yield the correct size of the electrons and holes (the dots indicate the
average extension of the wave function). If the density is increased (from the top left
to the bottom right figure) this size becomes comparable to and even exceeds the mean
interparticle distance with. The temperature is chosen well below the exciton binding en-
ergy, and formation of localized electron-hole pairs (excitons), three-particle complexes
(trions), molecules (bi-excitons) is evident at low density (large � � ). With increasing den-
sity (bottom figures), even larger complexes form – electron-hole droplets which have been
predicted by Keldysh more than 3 decades ago and observed experimentally.

Figure 3. PIMC simulation snapshots of strongly correlated hydrogen plasma at � ������" ���
��� in
3D space (gray lines are the coordinate axes). Electrons are shown by clouds of small dots, red and
green dots denote electrons with different spin projections. The protons are treated classically and
marked by large blue dots. Densities are: � � ��� � � cm �

	
(top left figure), � ��
� ��� � � cm �

	
(top

right), ��� ��� cm �
	

(bottom left) and ��� ��� cm �
	

(bottom right). Scales on the axes are increased with
density according to �������

����	
.

Very similar situations exist in dense plasmas found in the interior of the giant planets,
brown dwarf stars or in plasma compression experiments, cf. Fig. 1. Similarly, also the
PIMC simulations can be directly applied to these systems, and results for dense hydrogen
are shown in Fig. 3. Obviously, the main difference is the much larger mass ratio of ions
and electrons compared to electron-hole systems, which allows to treat the ions classically
(i.e. as point-like particles, they are shown by blue dots in the figure). In contrast, the
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electrons are treated quantum-mechanically fully including diffraction effects (finite ex-
tension, given by the size of the clouds of small dots) and fermionic exchange (red and
green colors denote electrons with different spin projection). The peculiar feature shown
in the top figures is the formation of large clusters which contain several protons embedded
into de-localized electrons. This is very similar to the electron-hole droplets, cf. Fig. 2 and
indicates an instability of the homogeneous plasma state at low temperature which may
be related to the hypothetical plasma phase transition, e.g.9, 10. As the density is increased
further (bottom figures) the electron extension  exceeds the Bohr radius and bound states
and clusters become unstable. The bottom left figures shows a high density liquid-like
plasma state. Further increase of the density by two orders of magnitude leads to an un-
usual state where the electrons behave like a completely delocalized weakly interacting
quantum gas ( � 3 , ����� � * � ), the protons, however, are still classical ( ��� � � ) but so
strongly coupled (

� � � ��� ) that they form a Wigner lattice embedded into the electron
gas, see bottom right figure. Such behavior is expected to occur in high-density stellar ob-
jects, and it is very encouraging that PIMC simulations are able to correctly reproduce it.
Still these simulations of fermions at high density are in their infancy which is due to the
fermion sign problem, e.g.7. A solution of this problem for strongly correlated Coulomb
systems, either by appropriate additional approximations (restricted PIMC, e.g.11) or direct
simulations12, 13, 7), remains a major challenge in the theory of quantum Coulomb systems.

3 Nonequilibrium theory of correlated Coulomb systems

A theoretical description of Coulomb systems starts from the Hamiltonian

�� � �C @ �W�I @ �W 3��
	 � �C ��� � �
� �

� ���M��
� (

� � �W�I � � ����� (
�
(
�

) ����
�
����

�
� � (1)

where C , W I and W 3��
	 denote the kinetic energy, Coulomb interaction energy and energy
due to external fields. Equilibrium theories are derived from the � -particle density oper-
ator

��  ��( ���� �! #" which, for Fermi systems, has to be properly anti-symmetrized. Any
observable can be computed from the density operator, e.g.4, 3 by using quantum-statistical
or simulation methods. In particular, PIMC methods are able to yield first-principle results
of the equilibrium properties of CS. However, so far no comparably powerful method ex-
ists for time-dependent (dynamical, transport, optical) properties which require solution of
the equation of motion of the density operator, the von Neumann equation,$ �&%%(' ��  � ' �)�+* �� � ��  � ' ��,)�.-�/ (2)

An exception are classical Coulomb systems where Eq. (2) reduces to the equations of
classical mechanics (Newton’s equations) which can be integrated directly (molecular dy-
namics, MD). There exist various attempts to extend MD to quantum Coulomb systems
three of which will be mentioned here. The first is the concept of wave packet MD14 where
one computes quasi-classical phase space trajectories of particles which are represented by
a wave packet of finite extension in coordinate and momentum space. A second approach
is quasi-classical MD (QCMD) where one retains (in the dynamics) the point size of the
particles but includes quantum effects into a modified interaction potential which takes
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into account quantum extension effects at small inter-particle distances, see Sec. 3.1 and
Ref.15. As a third approach we mention the Wigner function MD (WFMD) where Eq. (2)
is transformed to the Wigner representation and solved directly for the N-particle density
matrix � ��� � ��� � � / /
/ �  ���  � , see e.g.16.

Besides these particle-based methods their exist powerful quantum kinetic ap-
proaches5, 4, 3. There, the equation for �  is transformed into a kinetic equation for
the single-particle density operator � � a Tr �������  �  , the one-particle Wigner function� ��� ��� � ' � , or the one-particle Green’s functions �
	 . The latter are defined by�

�
��� @� � ' ��� � � ' � �N� $ BG/��� � ' � �5/ ����� � ' � ��E ���� ��� @� � ' � � � � ' � �N� � $ BG/ ����� � ' � �5/��� � ' � ��E>� (3)

where the field operators / ����� � ' � � and /��� � ' � � denote annihilation of a particle with mo-
mentum

� @� at time ' � and creation of a particle with momentum
�

at time ' � , respec-
tively which assure exact fulfillment of the Fermi statistics. The equations of motion for��	 are the Kadanoff-Baym/Keldysh equations (KBE)5, 17,� $ � %% ' � ��) ��� � � 	 ��� � ' �!� � � ' � � � � � W 3 � 	 � �  � ' � �"� 	 ��� � �  � ' ��� � � ' � ���

� ^�$#&%(' ��� � ' ��� 
� ' � �)� 	 � 
� ' �!� � � ' � � @+* 	 ��� � ' ��� � � ' � �J� (4)

(to be supplemented with the adjoint equation), where # %(' is the Hartree–Fock selfenergy,
and the collision integrals * 	 contain the short-range correlation effects (see below).

The advantage of these methods is that quantum and spin effects are built in rigorously.
The problem, on the other hand, is the difficult (or inefficient) treatment of strong correla-
tions, as in the equilibrium case. Here, it manifests itself in the familiar fact that the equa-
tions for

�
or � 	 are not closed but couple to the equations of motion for the two-particle

function
� �5� or � �5� and so on, giving rise to a hierarchy of equations (BBGKY-hierarchy

of reduced density operators, e.g.3 or Martin-Schwinger hierarchy of the Green’s func-
tions5, 4, 3). Solution of the kinetic equation requires decoupling of the hierarchy which is
related to an approximate treatment of correlation effect. To solve Eq. (4), a formal closure
is performed by introducing a selfenergy according to Tr �-, ��� � ��� � # � � � . Below we
show results where # � is used in the static Born approximation.

Finally, we point out that, the KBE have several important advantages compared to
convential kinetic equations (CKE, such as the Boltzmann, Landau or Vlasov equation):
they conserve total energy (kinetic plus correlation energy3, 18, 19) whereas CKE conserve
only kinetic energy and they describe relaxation to a correlated equilibrium state whereas
CKE always yield an ideal equilibrium (given by a Maxwell or Fermi/Bose distribution
function). These properties are crucial in the description of relaxation processes in corre-
lated Coulomb systems. Besides the KBE, these requirements are also fulfilled by classical
MD simulations (with the noted above problems in handling quantum and spin effects).

3.1 Dynamical properties. Plasmon spectrum

As a first example of nonequilibrium properties of quantum Coulomb systems we consider
dielectric properties. Oscillations of weakly correlated plasmas have been investigated
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in extraordinary detail during the last half century, the standard result for uncorrelated
classical and quantum plasmas is given by the Vlasov approximation and random phase
approximation (RPA), respectively. Similarly as for the equilibrium properties (Sec. 2), CS
show also universal dynamical behavior: the long-range Coulomb interaction gives rise to
a characteristic time scale, the plasma period . �>K ����' $�� �JK , where �

��>K � � ') ( � $ � )�( � .
� �>K is the universal eigenfrequency of a macroscopic classical or quantum one-component
plasma and is not affected by short-range correlations. On the other hand, correlation
and quantum effects influence the frequency of plasma oscillations of finite range (finite
wavenumber � ), leading to a reduction of the frequency and to an increased damping. To
compute these effects requires to go beyond the Vlasov and RPA level which has been
proven difficult since a number of consistency requirements – most importantly sum rules
– have to be fulfilled.
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Figure 4. Dynamic structure factor of a correlated quantum electron gas for a fixed wave number.
The figure compares standard models which neglect correlations (RPA and Vlasov) with two first
principle simulations which conserve density and total energy: classical molecular dynamics (a) and
quantum kinetic theory (b).

One approach that meets these requirements are quantum kinetic equations. It has
been demonstrated that due to conservation of total energy (and density) the solution of
the KBE (4) with a monochromatic external excitation W 3��
	 �AW � ' �����	�
��� ' includes the
required set of correlation corrections (selfenergy and vertex terms) selfconsistently and
guarantees sum rule preservation5, 17. Fig. 4b shows, for a fixed wave number ��� , the
result of correlations and fermionic exchange (full line) in comparison to the RPA17. The
second approach capable to yield rigorous results for the plasmon spectrum of correlated
CS is molecular dynamics, e.g.20. Fig. 4a show results of classical MD with a quantum
potential15 – the Kelbg potential,

W�������
�
� � ��. ��� � ' ( �

� � �������
� � � � $�� � �
� @ & '

� ��� �!�
� ��$�� � � (5)

where �
� . � �  $ & ��' . W "�����
� correctly takes into account quantum diffraction effects

(in particular it has a finite height at zero � ) and, at large distances, approaches the Coulomb
potential. Fig. 4a shows that correlations lead to an additional damping of the plasmon
(increased width of the peak) and a reduction of its energy thereby also preserving sum
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rules15. Further development of this QCMD approach and its extension to strong coupling
and strong degeneracy are possible by derivation of improved quantum potentials21.

3.2 Short-time dynamics. Plasma cooling

Let us now consider rapid processes in correlated CS which proceed on the time scale of
the plasma period .(�>K . This is the time necessary to correlate the particles after the plasma
is being created – the time to build up the pair distribution function, the plasmon spectrum
and the screening cloud18, 3, 22. This build up of correlations among initially independent
(uncorrelated) particles is shown in Fig. 5: The magnitude of Coulomb interaction (and
kinetic) energy increases during a short initial period and remains constant for '�� . �>K .
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Figure 5. Energy relaxation in a one-component plasma before and after a sudden reduction of the
interaction from solution of the KBE (4). Initially, correlations are being build-up, causing heating
of the system. After reduction of the interaction correlations are being reduced, the plasma cools24.
Blue (red) – correlation (kinetic) energy, green – total (kinetic plus correlation) energy.

Now it is interesting to ask if one can achieve the opposite: bring the plasma into a state
which is overcorrelated3, 23. As a consequence, the magnitude of correlation energy would
be reduced leading to a reduction of kinetic energy, owing to total energy conservation. A
possible realization is demonstrated in Fig. 5: at '�� ��/ � $�� �>K the interaction between the
particles is reduced so rapidly that they have no time to readjust their arrangement. During
a subsequent evolution lasting to about '�� � $�� �JK the plasma responds to this modifica-
tion: pair correlations are weakened, leading to a reduction of the magnitude of correlation
energy and of kinetic energy – the system cools. Such schemes are indeed possible24, best
candidates are two-component plasmas with large mass difference, such as ions in traps or
dusty plasmas. For a theoretical description of these processes, again, models are needed
which conserve total energy and allow to describe fast changes in the system: generalized
quantum (or classical) kinetic equations and molecular dynamics, more detailed results are
given in Ref.24.

8



4 Computational aspects and conclusion

In this paper, we have discussed correlated quantum Coulomb systems and approaches for
a rigorous theoretical and computational treatment. Naturally, only a few concepts have
been discussed in some detail which, nevertheless, characterize the present situation in
the field: there exist powerful approaches each of which is capable for a first-principle
description of certain limiting cases or certain particular properties of QCS2. Therefore, a
very fruitful direction of research appears to be to find combination of these (and possibly
other) theoretical and numerical methods.

The results presented in the first part of this paper are based on path integral Quantum
Monte Carlo simulations. These simulations run very well on massively parallel computers
(and we were lucky to use the CRAY T3E of the NIC Jülich). The parallelization is trivial
and almost without communication bottleneck: each processor is given a different initial
configuration and independently computes its own equilibrium state (the state of highes
probability). After convergence is reached, macroscopic observables, such as total energy,
equation of state or the pair distributions are obtained by averaging over the data of all
processors.

Our nonequilibrium results are based on numerically solving quantum kinetic equa-
tions. Here the main CPU time consumption goes into evaluation of the collision integrals,
i.e. the r.h.s. of Eqs. (4). These integrals are non-Markovian, i.e. involve a time integration
over the whole history of the system. This situation is much less adapted to straightforward
parallelization. Instead we found it advantageous to use the NIC’s vector machine which
allowed to effectively compute the integration loops (which were transformed into huge
vectors over momenta and time arguments).
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ceased in August 2003. His continuous interest in our work was a great stimulus for us.
The authors are grateful to the colleagues at NIC Jülich for providing us with CPU time
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