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Various approaches to a theoretical treatment of the dynamics of quantum many-body systems starting from a
correlated initial state are discussed. In particular, we compare the concept of the BBGKY–hierarchy (single-
time reduced density operators) and that of nonequilibrium Green’s functions (two-time correlation functions).
Conditions for physically meaningful initial correlations are established.

1 Introduction

In recent years the interest in strongly correlated many-body systems and their dynamics has increased substan-
tially triggered by the experimental progress in producing Bose condensates, Wigner crystals, dusty and colloidal
plasmas etc. Most theoretical work so far has been able to explain equilibrium or linear response properties, e.g.
[1, 2], leaving the treatment of nonequilibrium dynamics and short-time phenomena open.

Though most traditional treatments of quantum many-body systems neglect the influence of initial correla-
tions on the time evolution, the importance of this problem has been realized from the very beginning, e.g.
[3]. Formally this question is almost trivial in kinetic theories for single-time statistical quantities based on the
BBGKY-hierarchy, e.g. [4, 5]. However, in nonequilibrium Green’s functions, the non-trivial time structure ren-
ders this problem essentially more difficult. In the 1970s and 1980s remarkable progress has been made by Hall
[6], Tikhodeev [7], Danielewicz [8] and others who discussed how to convert the initial correlation information
into additional selfenergy contributions acting as new driving terms in the dynamics of the two-time correlation
functions. Most of these considerations, however, concentrated on the effect of ground state or equilibrium corre-
lations. In recent papers [9, 10, 11] we have further developed this idea and presented a novel completely general
derivation on the basis of the Martin–Schwinger hierarchy which is valid for arbitrary initial states.

Nevertheless, a variety of questions is still open as recently noted by Martin [12] and Keldysh [13]. This
includes the problem of how to distinguish physically relevant from unphysical initial states and how about the
equivalence of the single-time and two-time theories. In this paper we address these two questions and critically
assess previous works.

2 Initial correlations in single-time kinetic theory

As noted above, the problem of initial correlations is readily handled in the framework of the BBGKY hierarchy
and all physical questions are most easily discussed here. Decoupling this hierarchy at any level n leads to a
system of n first order1 differential equations for the single-particle statistical operator F1 and the correlation
coperators g12, g123,..., g1...n. This system requires as a boundary condition n conditions for the n functions. As
the special case of interest to us we may limit ourselves to given values for each function at a certain time t0:
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F1(t0), ..., g1...n(t0). Moreover, all problems are understood already on the level of binary correlations where
either g123 = ... = g1...n ≡ 0 or all three-particle and higher order operators are known functionals of F1 and
g12 (the actual functional form is defined by the actual decoupling approximation).

Then the dynamical problem is formulated according to (for the inclusion of spin statistics effects, see [5, 14])

i�
∂

∂t
F1 −

[
H̄1, F1

]
= nTr2 [V12, g12] , F1(t0) = F 0

1 , (1)

i�
∂

∂t
g12 −

[
H̄12, g12

]
= [V12, F1F2] + nTr3 {[V13, F1g23] + [V23, F2g13] + [V13 + V23, g123]} , (2)

with g12(t0) = c0 describing correlations existing in the system at time t = t0 and the effective Hamiltonians
(UH

1 denotes the Hartree (mean field) potential)

H̄1 = H1 + UH
1 , H̄12 = H̄1 + H̄2 + V12. (3)

The equation for g12 can be solved formally . The solution reads e.g. in second Born approximation, i.e. neglect-
ing three-particle correlations, g123, ladder terms [V12 in H̄12] and polarization terms [second and third term on
the r.h.s. of Eq. (2), for solutions beyond the Born approximation see [5, 14]] , for t ≥ t0,

g12(t) = U0R
12 (tt0) c0 U0A

12 (t0t) +
1
i�

∞∫
t0

dt̄ U0R
12 (tt̄)

{
V̂12F1F2 − F1F2V̂

†
12

}∣∣∣
t̄
U0A

12 (t̄t), (4)

where the propagators are two-time functions (mathematical Green’s functions) obeying a simpler equation of
motion with a delta inhomogeneity2, and V̂12 is the shielded potential, V̂12 = (1 ± nF1 ± nF2)V12 , [5, 14].
Solution (4) contains a (rapidly decaying) initial correlation term and a contribution describing correlation build
up due to collisions, e.g. [4, 5]. Inserting this solution into Eq. (1) yields a closed kinetic equation for F1 with
the traditional (non-Markovian) collision integral I plus an additional collision term IIC containing c0 [5],

i�
∂

∂t
F1(t) −

[
H̄1, F1(t)

]
= I(t) + IIC(t). (5)

In these equations, so far, the initial moment t0 and the shape of c0 are completely arbitrary. The simplest case
is that of thermodynamic equilibrium (or ground state) correlations cEQ which arise in a many-body system in
the absence of external perturbations after a sufficiently long time (practically, this time is rather short and given
by the correlation time τcor). In most cases cEQ is known or can be computed from simpler equilibrium theories.
Alternatively, it is always possible to design a real physical process (or a “gedankenexperiment”) which produces
the state cEQ beginning from uncorrelated particles. For example, in a semiconductor this real process is optical
excitation or electrical injection of electrons (holes) which are produced mutually uncorrelated (although this is
not always the case, see below) and build up their correlations due to collisions within the correlation time. In
general we can always think of an initial state where all particles are so far apart that all interactions are negligible
and then bring them together by some external (real or ficticious) force which has vanished by the time t0.

From these considerations we conclude that, to be physically meaningful, an initial correlation c0 = g12(t0)
must include the possibility to be produced by an earlier evolution which starts from an uncorrelated state3 at
t = t− in the remote past, or as early as t0 − τcor, see Fig. 1. The only requirement is that this physical process is
included into the theoretical model. This consideration is, of course, not limited to equilibrium initial correlations.
We may equally choose any nonequilibrium state existing in the system between t = t− and t0. Then we can
create the many-particle state at any time t > t0 by many ways, for example, (a) by starting from an uncorrelated
state at t = t−, ga

12(t−) = 0 or, (b) by starting at t = t0 using the correlations formed earlier, during the time

2 U0R(A)(t, t′) is a retarded (advanced) propagator which is identically zero for t < t′ (t > t′) related by [U0A(t, t)]∗ = U0R(t, t′)
3 Here we do not consider long-living correlations, but our discussion is readily generalized to this case.
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interval [t−, t0], as “initial” correlations:

g
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1
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U0A

12 (t̄t), (6)

g
(b)
12 (t) = U0R

12 (tt0) c0 U0A
12 (t0t) +

1
i�

∞∫
t0

dt̄ U0R
12 (tt̄)

{
V̂12F1F2 − F1F2V̂

†
12

}∣∣∣
t̄
U0A

12 (t̄t). (7)

The initial value c0 in Eq. (7), i.e. the correlations built up at time t0, is given by

g12(t0) =
1
i�

∞∫
t−

dt̄ U0R
12 (t0t̄)

{
V̂12F1F2 − F1F2V̂

†
12
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t̄
U0A

12 (t̄t0). (8)

Inserting this result into Eq. (7), we immediately recognize that g
(a)
12 (t) = g

(b)
12 (t) for any t ≥ t0 under the only

condition that the propagators possess a semi-group property, i.e. for any three times ti+2 > ti+1 > ti > t−,
U0R(ti+2, ti) = U0R(ti+2, ti+1)U0R(ti+1, ti), and similarly for U0A.

3 Initial correlations in the nonequilibrium Green’s functions approach

Let us now consider the same problem in the framework of nonequilibrium Green’s functions. The strength of
this approach – the formal closure of the Martin–Schwinger hierarchy on the single-particle level by introduction
of the selfenergy,

∫
d2 V (1 − 2) g12(12, 1′2+) =

∫
d1̄ Σ(1, 1̄) g(1̄, 1′), 1 ≡ r1, t, (9)

unfortunately, makes the physical understanding of initial correlations less obvious than in the case of the BBGKY
hierarchy. In fact, the whole dynamical problem is now reduced to finding the two correlation functions g≷ as a
function of two times by solving the Kadanoff–Baym/Keldysh equations (KBE) [3, 15, 9, 10]

(
i�

∂

∂t
− p2

1

2m1

)
g≷(p1; t, t′) =

∞∫
t0

dt̄
[
ΣR(p1; t, t̄)g≷(p1; t̄, t′) + Σ≷(p1; t, t̄)gA(p1; t̄, t′)

]

+IIC(p1; t, t′), (10)
(
−i�

∂

∂t′
− p2

1

2m1

)
g≷(p1; t, t′) =

∞∫
t0

dt̄
[
gR(p1; t, t̄)Σ≷(p1; t̄, t′) + g≷(p1; t, t̄)ΣA(p1; t̄, t′)

]

+IIC∗
(p1; t′, t), (11)

generalized to include an initial correlation term IIC. In Born approximation it is given by [9, 10] (for general-
izations beyond the Born approximation, see [11])

IIC(p1; t, t′) = −2i�5V
∫

dp2

(2π�)3
dq

(2π�)3
V (q)

×gR(p1 + q; t, t0)gR(p2 − q; t, t0) c(p1 + q,p2 − q,p1,p2; t0) gA(p2; t0, t)gA(p1; t0, t′), (12)

and gR/A are the standard retarded/advanced Green’s functions, cf. footnote 2. Alternatively, the initial cor-
relation contribution can be expressed as an additional term in the selfenergy [9, 10]. Due to the inclusion of
initial correlations, the equations are valid for an arbitrary finite initial time t0. This is far more general than the
commonly used Bogolyubov condition of weakening of initial correlations, where lim

t0→−∞ c(t0) = 0 and, at the

same time, the lower limit of the time integration of the collision integrals is set to −∞.
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Fig. 1 Two-time plane in which the KBE (10–12) are solved. To start the evolution at the point O (t0, t0), in the general
correlated initial state the knowledge of g≷ in the square OABC is necessary. Equivalently, one can start at B (t−, t−)
with an uncorrelated initial state and include the correlation buildup in the dynamics. The single-time dynamics, Eq. (5) is
analogous, but proceeds along the time diagonal, line through B and O.

The structure of the KBE is analogous to Eq. (5). The main difference is that the evolution proceeds not
only along a single-time axis but in a two-time plane, the diagonal of which corresponds to the time in Eq. (5).
Now, what about the initial conditions which have to be provided to solve these equations? The mathematical
answer is clear: to calculate g≷ in the quadrant t, t′ ≥ t0 we need the one-particle correlation functions at
t = t′ = t0, g≷(t0, t0), and, in addition, the initial value of the two-particle correlation function, c(t0). But what
is the connection between these two quantities? Can they be chosen independently and arbitrarily, or are there
restrictions of physical nature as in the single-time case above?

In order to answer these questions, let us imagine to start a calculation at a time t− in the remote past, i.e. at
least with t− ≤ t0 − τcor (see Fig. 1, point B, and discussion in Sec. 2). At that time, the system is uncorrelated,
i.e. c(t−) = 0, and starts to evolve in time under the action of scattering and a possible excitation process.
Imagine that the evolution is interrupted at t = t′ = t0 (point O). At this stage, g≷ are known in the whole
square OABC. Now, there exist (at least) two possibilities to resume the evolution at t0 (see the discussion in
Sec. 2): (a) to continue the previous calculation as if it would not have been interrupted, or (b) to condense the
information obtained so far in an “initial” correlation c(t0) and start at t = t′ = t0 a new calculation including
the additional collision integral IIC.

If we require the two ways to be consistent with each other, we get from the system (10–12) the condition

−2i�V
∫

dp2

(2π�)3
dq

(2π�)3
V (q)c(p1 + q,p2 − q,p1,p2; t0) =

=

t0∫
t−

dt̄
[
Σ>(p1; t0, t̄)g<(p1; t̄, t0) − Σ<(p1; t0, t̄)g>(p1; t̄, t0)

]
. (13)

This is our main result which allows us to construct the function c(t0) from the information obtained from an
arbitrary evolution preceding t0. Further, Eq. (13) shows which single-time information is required: we need
g≷ and Σ≷ on the two lines OA and OC4. Furthermore, keeping in mind the fact that the memory depth of the

4 In fact, due to the symmetry g≷(t, t′) = −
[
g≷(t′, t)

]∗
, Σ≷(t, t′) = −

[
Σ≷(t′, t)

]∗
, one of these lines is sufficient.
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system is limited by the correlation time τcor, the span of the time integration in (13) is reduceed and one needs
to know the quantities only on the lines OD and OF .

The problem is simplified if we consider the selfenergies in second Born approximation,

Σ≷(p1, t, t
′) = 2�

2

∫
dp2

(2π�)3
dq

(2π�)3
|V (q)|2 g≷(p1 + q; t, t′)g≷(p2 − q; t, t′)g≶(p2; t′, t). (14)

In that case, the initial correlation c(t0) can be obtained explicitly from (13):

c(p1 + q,p2 − q,p1,p2; t0) =
i�

V

t0∫
t−

dt̄ V (q)
[
g>(p1 + q, t0, t̄)g>(p2 − q, t0, t̄)g<(p2; t̄, t0)g<(p1; t̄, t0)

−g<(p1 + q, t0, t̄)g<(p2 − q, t0, t̄)g>(p2; t̄, t0)g>(p1; t̄, t0)
]
. (15)

Thus, in Born approximation the knowledge of g≷ on the two lines OA and OC (or OD and OF ) is sufficient.5

Our approach equally applies to a variety of other scattering processes including carrier–phonon and electron–
impurity scattering. More details will be given in [16].

In summary, there exist two alternative approaches to describe the influence of initial correlations on the
dynamic evolution: (a) to explicitly include the build-up of correlations into the calculations (this was done e.g.
for an electron gas in [17] and for electron-hole plasmas in [18, 19]). However, in cases where this explicit
description of the excitation process is not required because its result may be well-known [case (b)], one can use
the latter to construct the initial correlation c(t0), allowing for a significantly more efficient calculation. This
approach has been used for example in the short-time evolution of ultracold laser produced plasmas [20].

In this paper we have clearified the relation of the two concepts. We have shown that a correlated initial state
can be characterized equivalently by one-particle quantities (correlation functions g≷ in a time square of length
τcor before t0) or a two-particle quantity [pair correlation function c in a single time point (t0, t0)]. We have
motivated the physical restrictions on the initial binary correlation c(t0): only those which can be produced from
an uncorrelated state by a physical process are meaningful. This may be a real process (experiment), or a ficticous
but physically reasonable procedure (“gedankenexperiment”).
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