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Abstract
The quantum dynamics of an ensemble of interacting electrons in an array of
random scatterers is treated using a new numerical approach for the calculation
of average values of quantum operators and time correlation functions in the
Wigner representation. This approach combines both molecular dynamics
and Monte Carlo methods and computes numerical traces and spectra of
the relevant dynamical quantities such as momentum–momentum correlation
functions and spatial dispersions. Considering, as an application, a system
with fixed scatterers, the results clearly demonstrate that the many-particle
interaction between the electrons can lead to an enhancement of the conductivity
at intermediate densities.

PACS numbers: 72.15.Rn, 61.43.−j, 05.30.−d

Non-interacting electrons in an array of fixed random scatterers are known to experience
Anderson localization at temperature T = 0 in one-dimensional systems [1–3]. However, it
is expected that the many-particle interaction leads to delocalization tendencies which have
been confirmed for simple models [4, 5]. The purpose of this paper is twofold. (i) We
present a novel approach which does not rely on model interactions and small system sizes.
It can be applied to a wide variety of physical systems, such as plasmas, liquids and solids.
(ii) As an illustration we investigate the influence of the many-particle interaction on electronic
transport in a one-dimensional disordered array of scatterers interacting repulsively with the
electron system. With electron–electron interaction neglected, such a system shows Anderson
localization. It is the purpose of this application to study the effect of the true long-range
electron–electron Coulomb interaction on the mobility of the electrons.
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To study the influence of these effects on kinetic electron properties in a random
environment we have simulated the quantum dynamics in a one-dimensional canonical
ensemble at finite temperature for both interacting and non-interacting electrons using a
quantum-dynamics-Monte Carlo scheme. The main quantities calculated in this paper
are the temporal momentum–momentum correlation functions and their frequency-domain
Fourier transforms. We discovered that the results strongly depend on the electron–electron
interaction, clearly demonstrating the delocalizing influence of the many-particle interaction
at densities around Rs = r̄/a0 = 5 (r̄ is the mean interparticle distance and a0 is the
effective Bohr radius) even at finite temperatures. Our approach also treats the positions of the
scattering centres as dynamical variables. We are, therefore, able to generate various initial
conditions.

1. Wigner representation of time correlation functions

According to the Kubo formula the conductivity is the Fourier transform of the current–current
correlation function. Our starting point is the general operator expression for the canonical
ensemble-averaged time correlation function [6]:

CFA(t) = Z−1 Tr{F̂ eiĤ t∗c /h̄Â e−iĤ tc/h̄} (1)

where Ĥ is the Hamiltonian of the system expressed as a sum of the kinetic energy operator, K̂ ,
and the potential energy operator, Û . Time is taken to be a complex quantity, tc = t − ih̄β/2,
where β = 1/kBT is the inverse temperature with kB denoting the Boltzmann constant. The
operators F̂ and Â are quantum operators of the dynamic quantities under consideration and
Z = Tr{e−βĤ } is the partition function. The Wigner representation of the time correlation
function in a υ-dimensional space can be written as

CFA(t) = (2πh̄)−2υ

∫ ∫
dµ1 dµ2 F(µ1)A(µ2)W(µ1; µ2; t; ih̄β) (2)

where we introduce the short-hand notation for the phase space point,µi = (pi, qi), (i = 1, 2),
and p and q comprise the momenta and coordinates, respectively, of all particles in the system.
W(µ1; µ2; t; ih̄β) is the spectral density expressed as

W(µ1; µ2; t; ih̄β) = Z−1
∫ ∫

dξ1 dξ2 ei p1ξ1
h̄ ei p2ξ2

h̄

×
〈
q1 +

ξ1

2

∣∣∣∣ eiĤ t∗c /h̄

∣∣∣∣q2 − ξ2

2

〉〈
q2 +

ξ2

2

∣∣∣∣ e−iĤ tc/h̄

∣∣∣∣q1 − ξ1

2

〉
(3)

and A(µ) denotes Weyl’s symbol [7] of operator Â: A(µ) = ∫
dξ e−i pξ

h̄

〈
q − ξ

2

∣∣Â∣∣q + ξ

2

〉
,

and similarly for the operator F̂ . Hence, the problem of the numerical calculation of the
canonically averaged time correlation function is reduced to the computation of the spectral
density.

To obtain the integral equation for W let us introduce a pair of dynamic p, q-trajectories
{q̄τ (τ ; p1, q1, t), p̄τ (τ ; p1, q1, t)} and {q̃τ (τ ; p2, q2, t), p̃τ (τ ; p2, q2, t)} starting at τ = t

from the initial condition {q1, p1} and {q2, p2} propagating in ‘negative’ and ‘positive’ time
directions, respectively:

dp̄τ

dτ
= 1

2
F [q̄τ (τ )] ,

dq̄τ

dτ
= p̄τ (τ )

2m
with p̄t (τ = t; p1, q1, t) = p1, q̄t (τ = t; p1, q1, t) = q1
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and
dp̃τ

dτ
= −1

2
F [q̃τ (τ )] ,

dq̃τ

dτ
= − p̃τ (τ )

2m
with p̄t (τ = t; p1, q1, t) = p1, q̃t (τ = t; p1, q1, t) = q1,

where F(q) ≡ −∇Ũ with Ũ being the total potential, i.e. the sum of all pair interactions Uab.
Then, as has been proved in [8], W obeys the following integral equation:

W(µ1; µ2; t; ih̄β) = W̄ (p̄0, q̄0; p̃0, q̃0; ih̄β)

+
1

2

∫ t

0
dτ

∫
ds W(p̄τ − s, q̄τ ; p̃τ , q̃τ ; τ ; ih̄β)�(s, q̄τ )

− 1

2

∫ t

0
dτ

∫
ds W(p̄τ , q̄τ ; p̃τ − s, q̃τ ; τ ; ih̄β)�(s, q̃τ ) (4)

where �(s, q) = 4
(2πh̄)υh̄

∫
dq ′ Ũ(q − q ′) sin

( 2sq ′
h̄

)
+ F(q)∇δ(s), and δ(s) is the Dirac

delta function. Equation (4) has to be supplemented by an initial condition for the
spectral density at t = 0: W(µ1; µ2; 0; ih̄β) = W̄ (µ1; µ2; ih̄β)|t=0 ≡ W̄ . The
τ -integrals connect the points p̄τ , q̄τ ; p̃τ , q̃τ at time τ of the above mentioned dynamic
p, q-trajectories with the points p1, q1; p2, q2 at time t whereas in W̄ the trajectories are to
be taken at τ = 0 (denoted by the subscript ‘0’). The function W̄ can be expressed in the
form of a finite difference approximation of the path integral [8–10]: W̄ (µ1; µ2; ih̄β) ≈∫ ∫

dq̃1 · · · dq̃n

∫ ∫
dq ′

1 · · · dq ′
n �(µ1; µ2; q̃1, . . . , q̃n; q ′

1, . . . , q
′
n; ih̄β), with
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′
nih̄β)

≡ 1
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where ϕ(p; q ′, q ′′) ≡ (2λ2)υ/2 exp
[− 1

2π
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pλ
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+ iπ q ′−q ′′

λ
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+ iπ q ′−q ′′
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〉]
, and 〈x|y〉 denotes the

scalar product of two vectors x, y. In this expression the original (unknown) density matrix of
the correlated system e−β(K̂+Û ) has been decomposed into 2n factors, each at a 2n times higher
temperature, with the inverse ε = β/2n and the corresponding high temperature de Broglie
wavelength squared λ2 ≡ 2πh̄2ε/m. This leads to a product of known high-temperature
(weakly correlated) density matrices, however, at the price of 2n additional integrations over
the intermediate coordinate vectors (over the ‘path’). This representation is exact in the limit
n → ∞, and, for finite n, an error of order 1/n occurs. The function � has to be generalized
to properly account for spin-statics effects. This gives rise to an additional spin part of the
density matrix and antisymmetrization of one off-diagonal matrix element. To improve the
accuracy of the obtained expression, we will replace Uab → U eff

ab where U eff
ab is the proper

effective quantum pair potential, see below. For more details on the path integral concept, we
refer to [11, 12]5.

2. Quantum dynamics

Let us now come back to the integral equation (4). For the discussion we note that the integral
equation (4) can be exactly converted into an iteration series (which is obtained by successively
5 Details on our direct fermionic path integral Monte Carlo simulations are given in [13].
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replacing W → W̄ under the integrals). This series is, however, not a perturbative expansion
in the interaction, neither in the electron–scatterer nor in the electron–electron interaction.
It is rather an expansion in terms of corrections to classical trajectories of fully interacting
electrons and electrons with scatterers. So multiple scattering effects are fully included.
Physically the second order and other terms of the iteration series include corrections to the
classical electron trajectories (momentum jumps related to the uncertainty principle between
momentum–coordinate and energy–time) and corrections to the quantum Wigner–Liouville
function. A detailed investigation of the conditions for which the contribution of the next
terms of the iteration series should be taken into account is presented in [8, 14–16].

As mentioned above, the first term W̄ describes propagation of a correlated quantum initial
state along the characteristics of the classical Wigner–Liouville equation. This term, containing
all powers of Planck’s constant, is the coherent sum of complex-valued contributions of a
trajectory ensemble related to W̄ . This term allows us to describe quantum coherent effects
such as Anderson localization, while the other terms of the iteration series describe deviations
from the classical trajectories: the trajectories are perturbed by finite momentum jumps s
occurring at arbitrary times τ , 0 � τ � t [9]. These terms are essential for the recovery of
tunnelling effects, we expect that they do not give dominant contributions to coherence and
localization phenomena. With increasing quantum degeneracy (i.e. decreasing temperature
or/and increasing density) the magnitude of these terms will grow. However, our numerical
results below refer to finite temperature and moderate degeneracy n1Dλee = 0.2 . . . 7. We,
therefore, will include in the following numerical analysis only the first term of equation (4).

As an application, in this work we will consider a system composed of heavy particles
(called scatterers) with mass ms and negatively charged electrons with mass me. To avoid
bound state effects due to attraction we consider in this case study only negatively charged
scatterers, assuming a positive background for charge neutrality. The influence of electron–
scatterer attraction will be studied in a further publication.

The developed Monte Carlo approach, based on ideas [8, 14, 15, 17], allows us to generate,
in a controlled way, various kinds of quantum dynamics and initial conditions of the many-
body system, in particular, (i) those which are characteristic of the fully interacting system
(i.e. including scatterer–scatterer (s–s), electron–scatterer (e–s) and electron–electron (e–e))
and (ii) those which result if some aspects of these interactions are ignored.

3. Numerical results

We now apply the numerical approach, explained above, to the problem of an interacting
ensemble of electrons and disordered scatterers in one dimension. In all calculations, times,
frequencies and distances are measured in atomic units. The average distance between
electrons, Rs = 1/(nea0), was varied between 12.0 and 0.55, with the densities of electrons
and heavy scatterers taken to be equal. The results obtained were practically insensitive to
the variation of the whole number of the particles in MC cell from 30 up to 50 and also of
the number of high temperature density matrices (determined by the number of factors n),
ranging from 10 to 20. Estimates of the average statistical error gave the value of the order
5–7%. We studied two different temperatures: kBT /|V es

0 | = 0.45 and 0.28, corresponding to
λee/a0 ∼ 2.2 and λee/a0 ∼ 3.5, respectively. The strengths of the three interactions in the
system are fixed arbitrarily at the ratio V ee

0 :V es
0 :V ss

0 ∼ 0.7:1:32.
According to the Kubo formula [6] our calculations include two different stages:

(i) generation of the initial conditions (configuration of scatterers and electrons) in the canonical
ensemble with probability proportional to the quantum density matrix and (ii) generation
of the dynamic trajectories on the time scale t ′ in phase space, starting from these initial
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Figure 1. Real part of the Fourier transform of the temporal momentum–momentum correlation
functions for dynamics with (1) and without (2) e–e interaction. Figure parts are for two densities
((a), (b): Rs = 5.5; (c), (d ): Rs = 1.2) and temperatures (a), (c): kBT /|V es

0 | = 0.28; (b), (d ):
kBT /|V es

0 | = 0.45).

configurations. The results presented below are related to two different cases: (1) with e–e
interaction included in the dynamics (‘interacting dynamics’) and (2) without e–e interaction
(‘non-interacting dynamics’). In both cases, the initial state fully includes all interactions.

Figure 1 presents for our model the real part of the diagonal elements of the electrical
conductivity tensor versus frequency (real part of the Fourier transform of the temporal
momentum–momentum correlation functions) which characterizes the Ohmic absorption of
electromagnetic energy and has the physical meaning of electron conductivity. To compare the
influence of electron interactions, the conductivities are given in figure 1 in the same arbitrary
units. The first observation is that, in all cases, the conductivity for the non-interacting
dynamics (2) has a maximum at some finite frequency related to the coherent oscillations
in the time domain and vanishes at low frequency6. The latter clearly indicates Anderson

6 In fact, we observe negative values, although the real part of the conductivity has to be positive. The reason is
weakly damped oscillations with a period exceeding the scale t ′ used in the calculation of the dynamics. To overcome
this deficiency of our model one has to increase the time t ′ and/or to take into account the slow motion of the heavy
particles, which will destroy the coherent oscillations of the light electrons trapped by the heavy particles. Additional
calculations with increased t ′ lead to decreasing negative contributions for low frequencies, as expected.
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localization. The effect of the e–e interaction is, as shown by curves 1, a reduction of
the maximum (damping of the coherent oscillations) and, in most cases, an increase of the
zero-frequency conductivity. Thus, our calculations confirm the delocalizing effect of the
interactions (figures 1(a), (b), (d )) at the considered densities. Interestingly, figure 1(c) is
an exception: even with interactions included, the localization behaviour persists. The large
oscillations in figure 1(c) are not the result of numerical noise; they exist in spite of very long
simulation duration.

The reason for the observed behaviour is an interplay of varying strength of the e–e-
interaction (which is weakened with reducing Rs , i.e. from top to bottom figures) and of the
magnitude of quantum effects (which grow with temperature reduction, i.e. from right to left
figures). Thus, the delocalization tendency observed from figures 1(c) to (d ) is due to thermal
activation which, similar to the interaction, destroys the coherence phenomena.

Our simulations qualitatively confirm analytical predictions for the low-frequency and
zero temperature limit of the 1D conductivity [18]. Yet our computer power allows us to
generate dynamic trajectories up to times t ′ equal 100 . . .200 in atomic units. Thus, for small
frequencies of the order 10−2, large fluctuations of the conductivity appear (see footnote 6), and
the accuracy is not yet sufficient to extract an asymptotic frequency behaviour. On the other
hand, the advantage of our computational method is that it allows us to study systematically the
influence of finite temperature and of electron correlation effects on localization phenomena in
a wide range of densities. We note that we have also performed simulations at lower densities
and found that the delocalizing effect of the e–e interaction has also been observed at lower
density up to Rs = 12. At even lower densities, we expect that future simulations will yield
a pinned electron Wigner crystal at weak disorder7 and Coulomb glass behaviour at strong
disorder.

In summary, we have presented numerical results on the influence of Coulomb interaction
on Anderson localization in a one-dimensional system. At low density (Rs = 5.5) the
interaction is comparatively strong and localization is destroyed. With increasing density
Rs = 1.2, localization is found to persist even in the presence of Coulomb interaction. For
a full understanding of the physical processes additional investigations are needed which are
presently under way.
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