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Abstract
We present a first-principles path integral Monte Carlo study of a finite number
of strongly correlated electron–hole pairs in two symmetric vertically coupled
quantum dots. In this system, the intra- and interdot correlations depend
on the distance d between the dots, the density n (strength of confinement
potential) and temperature T. For fixed d and T > 0, increasing n leads to
four qualitatively different states: an exciton ‘liquid’, an exciton ‘crystal’,
orientationally decoupled electron and hole ‘crystals’ and an electron (hole)
liquid.

PACS numbers: 71.35.−y, 73.22.−f, 71.10.−w

1. Introduction

Electron–hole systems have been the subject of extensive experimental and theoretical
investigation in the last few decades. In particular, electron–hole symmetric and asymmetric
double quantum wells (DQWs) [1] and vertically coupled quantum dots [2] are attracting a
lot of interest. In biased DQWs excitons can be photoexcited where electrons and holes are
confined in adjacent QWs and, therefore, are spatially separated (interwell (IW) excitons).
These excitons are characterized by radiative decay times much longer than those of intrawell
excitons, where both carriers are in the same well. Therefore, IW excitons can attain a
high density at low temperature T and even Bose condense, as theoretically predicted [3–5].
Alternatively, high IW exciton densities can be achieved by applying an external field in
each QW so that electrons and holes are confined in two coupled 2D quantum dots (QDs).
The external field may be realized by a system of metallic gates attached to the surface of
a semiconductor layer or by self-assembled quantum dots. The distance d between the dots
can be made sufficiently large so that interdot tunnelling is negligible. Also, by changing the
external field parameters, the exciton density can be varied over a wide range, allowing us to
investigate the effects of exciton–exciton correlations3, 4.

3 An analysis of classical macroscopic e–h bilayers is performed in [6].
4 Quantum macroscopic e–h bilayers have been investigated in [7].
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The analogous one-component system (consisting only of electrons or holes) in two
coupled QWs and QDs has recently been considered theoretically (e.g. [8–11]). In particular,
for two coupled dots containing electrons the formation of a mesoscopic cluster has been found
and analysed as a function of interdot distance [11]. Furthermore, the increased stability of this
mesoscopic cluster compared to a cluster in an isolated QD was revealed at specific interdot
separation [8, 11].

In this paper, we report on computer simulations of two symmetric 2D QDs,one containing
a small number of electrons, the other the same number of holes. In particular, we are
interested in the interplay between Wigner crystallization in the layers and its coexistence
with IW excitons. In order to give a reliable answer to these questions, we perform path
integral Monte Carlo simulations (PIMC) fully including quantum effects which are crucial
for the behaviour of excitons and their correlations.

2. Model and numerical aspects

In the present work we concentrate on a 2D model system which allows us to understand
the basic Coulomb correlation effects. More realistic material properties, such as finite layer
thickness of the QDs, interdot tunnelling or band anisotropy may become important when
the interdot distance is comparable with the exciton Bohr radius aB and will be considered
elsewhere. We use the following Hamiltonian of two vertically coupled electron–hole QDs

Ĥ = He + Hh −
Ne∑
i=1

Nh∑
j=1

eiej

ε
√|ri − rj |2 + d2

(1)

Ĥ k =
Nk∑
i=1


− h̄2

2mi

∇2 + Vk(ri) +
Nk∑
i<j

eiej

ε|ri − rj |


 k = e, h

where mi and ei are masses and charges of particles (here we consider symmetric bilayers,
so me = mh = m∗ is the common effective mass of electrons and holes). Further, we take
dielectric constants ε of the well and surrounding material to be the same. The confinement
potential for electrons, Ve, and holes, Vh, is considered as a harmonic potential, 1

2mω2
i r

2, with
ωe = ωh. In the following, we use the effective Hartree Ha = e2/εaB as the (atomic) unit of
energy and the effective Bohr radius aB = h̄2ε/m∗e2 as the unit of length. Temperature T is
also given in atomic units.

To compute the thermodynamic properties of the system of Ne electrons and Nh holes, we
evaluate the density operator, ρ̂ = exp[−βĤ ], where β = 1/kBT , which contains complete
information about the system and any observable Ô,

〈Ô〉 = Tr[Ôρ̂(β)]

Tr [ρ̂(β)]
=

∫
dR〈R|Ôρ̂(β)|R〉

/ ∫
dR〈R|ρ̂(β)|R〉 (2)

where R = {r1, . . . , rN } specifies the coordinates of all particles, and 〈R|ρ̂(β)|R′〉 =
ρ(R, R′; β) is the N-particle density matrix. While for a correlated system ρ̂ is unknown,
at high tempatures it can be expanded in terms of one-particle ρ[1], two-particle, ρ[2], etc
contributions, and for sufficiently high temperature all terms except the first two can be
neglected. As a result, the N-particle density matrix is approximated by

ρ(R, R′; τ ) ≈
N∏
i

ρ[1](ri , r′
i; τ )

∏
j<k

ρ[2](rj , rk, r′
j , r′

k; τ )

ρ[1](ri , r′
i; τ )ρ[1](rk, r′

k; τ )
+ O(ρ[3]). (3)
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To take advantage of this high-temperature approximation we use the identity ρ̂(β) = [ρ̂(τ )]M

with M = β/τ , where each factor ρ̂(τ ) corresponds to an M times higher temperature,
1/τ = M × kBT . Choosing M sufficiently large, we can apply the pair approximation (3).
We numerically solve the equation for the two-particle density matrix ρ[2] (Bloch equation)
using the matrix squaring technique [12]. Inserting this result into equation (3) we obtain
ρ(τ). Finally, ρ(β) at the required temperature 1/β follows from the factorization identity by
using path integral Monte Carlo techniques (e.g. [13, 10]).

3. Simulation results

We have performed PIMC simulations for a system with Ne = Nh = 3 particles per dot and at
various values of the interdot distance. The electron and hole densities are controlled by the
strength of the confinement which was chosen to be equal in the dots, Ve = Vh = 1

2mω2r2. In
the used atomic system of units V [Ha] = 1

2�2(r/aB)2, where � = mω2a3
Bε/e2. Furthermore,

the densities in the layers are influenced by the interlayer correlations, i.e. depend on the
distance d. For the sake of comparison with the results for a one-component system in a single
QD where the density is controlled by the quantum parameter n, see [10], we use the same
parameter which obeys � = √

2n3. Below we show results where the quantum parameter
was varied in the range 0.05 � n � 0.30 (in a single QD melting of mesoscopic electron
clusters was found at n ∼0.12 [10]). The temperature of the system was fixed at 1 × 10−3 Ha
assuring that IW excitons are stable. Initially, the system was equlibrated during ∼104 MC
steps (each step includes movement of all particles). Then all thermodynamical properties
were calculated taking the average over ∼1.6 × 106 MC steps.

The simulations are governed by two competing effects—the strong intralayer Coulomb
repulsion of particles of the same charge and the interlayer attraction between electrons and
holes, where the former may lead to ‘crystallization’ in the layers and the latter favours the
formation of IW excitons. Of special interest is the interplay of these two effects. First,
for d � 2aB , we do not observe ‘crystallization’ which is due to weakening (screening) of
the Coulomb interaction. More interesting behaviour is found at larger d; as an example we
present results for d = 10aB . Our results reveal the existence of four different phases5:
(a) exciton liquid, (b) exciton clusters (mesoscopic exciton crystal), (c) orientationally
decoupled clusters (crystals) of electrons and holes and (d) electron–hole liquid. We identify
the different phases from an analysis of the intra- and interlayer pair distribution functions
(PDF) and the relative interparticle distance fluctuations.

Figure 1 shows the e–h PDF geh(r) for four densities n. At n = 0.05, the first peak
of geh(r) shows that electrons and holes are bound in pairs (excitons), with the effective
Bohr radius aeff

B ≈ 6aB (r denotes the projection of reh onto one of the layers, i.e. does not
include the interdot separation d ). The second peak at r ≈ 120aB arises from the next hole
in another exciton. Between these two peaks the PDF drops to zero confirming that there is
no exchange (tunnelling) of particles between neighbouring excitons. The inset shows the
probability density of electrons (upper inset) and holes (lower inset) in their respective QD
(one electron—shown by a small cross or square—was fixed and placed at the maximum of
the radial distribution function). From the insets one can see that, at n = 0.05, the two other
excitons are randomly distributed around the fixed electron which allows us to conclude that
we observe a state of disordered excitons resembling an exciton ‘liquid’. In the next figure

5 We will use the notions of phases, liquid, crystal etc to underline the analogy to the related phenomena in
macroscopic systems.
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Figure 1. Electron–hole pair distribution function, r × g(r) (r denotes the projection of reh on
the QW plane) for Ne = Nh = 3, for T = 1/3 × 10−3 Ha and d = 10aB at four values of the
confinement: n = 0.05, 0.07, 0.15 and 0.20. The insets show the two-dimensional distribution
functions in the two layers (one of the electrons—shown by the dot in the upper insets—is fixed).

(n = 0.07, stronger confinement) we observe a similiar behaviour, only the average distance
between the excitons has shrunk to r ≈ 80aB .

A qualitatively different picture is observed at n = 0.15: here, in each dot all particles are
well localized as in a crystal [10] and, at the same time, each electron sits right on top of its hole
partner. The inter-exciton correlations are strong enough (at temperature T = 1/3 × 10−3 Ha)
to form a radially ordered mesoscopic cluster with all excitons residing on one shell with
the same radius, Re = Rh ≈ 16aB . This state is best described as a ‘mesoscopic exciton
crystal’. Next, at n = 0.20 a third configuration is observed where the particles in each of
the dots are localized (as seen in the upper inset), but the hole cluster becomes orientationally
decoupled with respect to the electrons (as seen in the smeared out positions of the holes in
the lower inset). At the same time the e–h PDF shows that the distance between neighbouring
excitons is now reduced to 20aB and the two peaks overlap strongly. At these conditions
exchange of particles between excitons becomes frequent. This analysis suggests calling this
phase ‘orientationally disordered crystal’ (decoupled electron and hole crystals). Finally, if
the density is increased further, we observe quantum melting of the crystal in each dot (not
shown in figure 1), and the system goes over into a liquid-like state.

The most sensitive quantities to characterize the structural properties and to locate the
structural transitions are the relative distance fluctuations of particle pairs in the same and
in different QDs, �ree and �reh, and also radial fluctuations of each particle with respect
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Figure 2. Low-temperature (T = 1/3 × 10−3 Ha) density dependence of: (a) relative radial
fluctuations and e–e and e–h distance fluctuations, (b) exciton–exciton interaction energy Exx(3X)

of three coupled IW excitons and (c) correlation energy Ec(3X) and binding energy of a single
exciton Eb(X).

to the QD centre, �r , shown in figure 2(a). With the formation of the excitonic cluster at
n � 0.07, all fluctuations reach a minimum, while at n � 0.15, fluctuations �reh rapidly
increase again. Since, at this point, �ree and �r increase only weakly, we conclude that in
each dot crystallization persists but the clusters become rotationally decoupled.

Let us now consider the interaction between the IW excitons in more detail
(figures 2(b), (c)). To this end, we define the exciton–exciton interaction energy Exx , the
correlation energy of the whole system Ec and the binding of a single exciton Eb:

Eb(X) = Ee + Eh − E(X) Exx(3X) = E(3X) − 3E(X) (4)

E(NX) = NEe + NEh + Ec(NX) (5)

where Ee(h) is the energy of a free electron (hole) in the QD, and E(X), and E(3X) denote
the total energy of one and three e–h pairs in the two coupled QDs, respectively. As can
be seen from figure 2(b) at n � 0.07 the interaction energy of the three excitons, Exx , is
practically zero which is due to the fact that the QD confinement is sufficiently flat and
excitons are far apart. When the density exceeds 0.07, Exx increases continuously which
reflects a steady increase of the exciton–exciton repulsion until it leads to a break-up of rigid
e–h pairs and the possibility of the relative rotation of the electron and hole clusters, cf the
density distributions in the insets of figure 1 at n = 0.20. Finally, in figure 2(c) we show the
density dependence of the binding energy of a single exciton and of the correlation energy
Ec(3X). Interestingly, Eb increases with the confinement which is due to the reduction of the
quantum extension of electrons (and holes). The correlation energy which can be rewritten
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as Ec(3X) = 3Eb(X) − Exx(3X), contains both excitonic and exciton–exciton repulsion
effects, decreases with increased confinement because the increase of Exx is the dominant
effect.

4. Summary

This work is devoted to the investigation of electron–hole pairs located in two separated
quantum dots. We presented an analysis of excitonic states and ‘crystallization’ in this system.
We obtained a finite density interval where the excitons can form mesoscopic clusters. Upon
compression these clusters melt via loss of orientational order between the electrons and holes
in the two dots. Similarly, as in macroscopic e–h bilayers [9, 6], the electron–hole attraction
leads to a stabilization of the mesoscopic clusters compared to the case of a single QD [10]
from rs ∼45 to rs ∼20.6 One can make the following estimations of the typical temperatures
and densities where e–h clusters in bilayers can be observed (T � 1/3 × 10−3 Ha, rs � 20):
for GaAs-based structures, T � 40 mK and ρ � 8 × 108 cm−2; for CdTe, T � 100 mK and
ρ � 9 × 109 cm−2; for ZnSe, T � 400 mK and ρ � 3 × 109 cm−2.
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