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Interacting electrons in a one-dimensional random array of scatterers:
A quantum dynamics and Monte Carlo study
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The quantum dynamics of an ensemble of interacting electrons in an array of random scatterers is treated
using a numerical approach for the calculation of average values of quantum operators and time correlation
functions in the Wigner representation. The Fourier transform of the product of matrix elements of the dynamic
propagators obeys an integral Wigner-Liouville-type equation. Initial conditions for this equation are given by
the Fourier transform of the Wiener path-integral representation of the matrix elements of the propagators at
the chosen initial times. This approach combines both molecular dynamics and Monte Carlo methods and
computes numerical traces and spectra of the relevant dynamical quantities such as momentum-momentum
correlation functions and spatial dispersions. Considering, as an application, a system with fixed scatterers, the
results clearly demonstrate that the many-particle interaction between the electrons leads to an enhancement of
the conductivity and spatial dispersion compared to the noninteracting case.
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I. INTRODUCTION

Noninteracting electrons in an array of fixed random sc
terers are known to experience Anderson localization at t
perature T50 in one-dimensional systems. In two
dimensional systems single-parameter scaling theory pre
that all states are localized as well.1 In three-dimensiona
arrays of random scatterers localization appears at the b
extremities, while the center may consist of delocaliz
states, indicating a disorder driven metal-insulator transit
in three dimensions only.

This picture has been challenged by recent experime
which suggest a metal-insulator transition also in disorde
two-dimensional electron systems.2 A theoretical
explanation3 indicated that the Coulomb interaction betwe
the electrons plays a central role in this effect. Moreover,
experimental study of persistent currents in mesosco
metal rings4 yields currents that are two orders of magnitu
larger than predicted by theories based on noninterac
electrons.5 These findings suggest that it is the many-parti
interaction that leads to delocalization tendencies. To the
of our knowledge, this has first been suggested by Pollak
co-workers.6,7

Evidence for this influence of the Coulomb interaction h
been obtained by examining the problem of two interact
electrons in a one-dimensional disordered band.8 It is, how-
ever, not clear whether this schematic model is able to y
answers for more realistic systems described by an ense
of many electrons. Therefore, attempts have been mad
calculate directly the conductivity of a disordered system
many electrons. Numerical results for the ensemble-avera
logarithm of the conductance have been obtained for sm
systems by applying a Hartree-Fock-based diagonaliza
scheme for electrons without9,10 and with spin.11 An increase
of the conductivity for certain regions in the disorde
0163-1829/2002/65~16!/165124~11!/$20.00 65 1651
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interaction parameter space has been demonstrated in
publications.

The purpose of this paper is twofold.~i! We present our
approach, which does not rely on small system sizes. T
can be applied to a wide variety of different physical sy
tems, such as plasmas, liquids, and solids.~ii ! As an illustra-
tion, we study the problem described above. In particular
this paper we investigate the influence of the many-part
interaction on electronic transport. We consider, as a c
study, a one-dimensional disordered array of scatterers in
acting repulsively with the electron system. Witho
electron-electron interaction such a system shows Ande
localization. It is the purpose of this application to study t
effect of the long-range, electron-electron Coulomb inter
tion on the mobility of the electrons.

Anderson localization at temperatureT50 relies on quan-
tum coherence of electron trajectories and results from in
ference. The key parameter in the physics of electron in
ference phenomena is the dephasing time of electrons
finite temperatures the electron coherence is destroyed
both the electron-electron and phonon-electr
scattering.12–15To study the influence of these effects on k
netic electron properties in a random environment, we h
simulated the quantum dynamics in a one-dimensional
nonical ensemble at finite temperature for both interact
and noninteracting electrons using a quantum-dynam
Monte Carlo scheme. The main quantities calculated in
paper are the temporal momentum-momentum correla
functions, their frequency-domain Fourier transforms, a
the time dependence of the spatial dispersions. We disc
ered that the results strongly depend on the electron-elec
interaction, clearly demonstrating the delocalizing influen
of the many-particle interaction even at finite temperature

Our approach also treats the positions of the scatte
centers as dynamical variables. We are, therefore, abl
generate various initial conditions, including the scenario
©2002 The American Physical Society24-1
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‘‘electron bubbles’’ as an interesting side result.
We start in Sec. II by presenting the quantum-dynam

Monte Carlo approach used in this work, which is based
the Wigner representation of quantum statistical mechan
It treats both electrons and scatterers on an equal foo
Details of our model, relevant correlation functions and
system of reduced units are introduced in Sec. III. Numer
results for the momentum-momentum correlation function
the time and frequency domains and for the spatial disp
sion are given in Sec. IV. Finally, Sec. V contains a disc
sion of our results.

II. WIGNER REPRESENTATION OF TIME CORRELATION
FUNCTIONS

According to the Kubo formula the conductivity is th
Fourier transform of the current-current correlation functio
Generally, time correlation functionsCFA(t)5^F̂(0)Â(t)&
for a pair of dynamic variablesF(t)5^F̂(t)& and A(t)
5^Â(t)& are among the most interesting quantities in
study of the dynamics of electrons in disordered system
scatterers, such as transport coefficients, chemical rea
rates, equilibrium and transient spectroscopy, etc. Our s
ing point is the general operator expression for the canon
ensemble-averaged time correlation function:16

CFA~ t !5Z21Tr$F̂eiĤ tc* /\Âe2 iĤ tc /\%, ~1!

whereĤ is the Hamiltonian of the system expressed as a s
of the kinetic-energy operatorK̂, and the potential-energ
operatorÛ. Time is taken to be a complex quantity,tc5t
2 i\b/2, whereb51/kBT is the inverse temperature withkB

denoting the Boltzmann’s constant. The operatorsF̂ and Â
are quantum operators of the dynamic quantities under c
sideration andZ5Tr$e2bĤ% is the partition function.

The Wigner representation of the time correlation fun
tion in a y-dimensional space can be written as

CFA~ t !5~2p\!22y

3E E dm1dm2F~m1!A~m2!W~m1 ;m2 ;t; i\b!,

~2!

where we introduce the short-hand notation for the pha
space point,m i5(pi ,qi),(i 51,2), andp andq comprise the
momenta and coordinates, respectively, of all particles in
system. In the definition~2!, W(m1 ;m2 ;t; i\b) is the spec-
tral density expressed as

W~m1 ;m2 ;t; i\b!5Z21E E dj1dj2ei (p1j1 /\)ei (p2j2 /\)

3 K q11
j1

2 UeiĤ tc* /\Uq22
j2

2 L
3 K q21

j2

2 Ue2 iĤ tc /\Uq12
j1

2 L , ~3!

andA(m) denotes Weyl’s symbol17 of the operatorÂ
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A~m!5E dje2 i (pj/\)K q2
j

2UÂUq1
j

2L , ~4!

and similarly for the operatorF̂. Hence the problem of the
numerical calculation of the canonically averaged time c
relation function is reduced to the computation of the sp
tral density.

To obtain the integral equation forW, let us introduce a
pair of dynamic (p,q)-trajectories

$q̄t~t;p1 ,q1 ,t !,p̄t~t;p1 ,q1 ,t !%

and

$q̃t~t;p2 ,q2 ,t !,p̃t~t;p2 ,q2 ,t !%

starting at t5t from the initial condition $q1 ,p1% and
$q2 ,p2% propagating in ‘‘negative’’ and ‘‘positive’’ time di-
rection, respectively:

dp̄

dt
5

1

2
F@ q̄t~t!#;

dq̄

dt
5

p̄t~t!

2m

with

p̄t~t5t;p1 ,q1 ,t !5p1 ; q̄t~t5t;p1 ,q1 ,t !5q1 , ~5!

and

dp̃

dt
52

1

2
F@ q̃t~t!#;

dq̃

dt
52

p̃t~t!

2m

with

p̃t~t5t;p2 ,q2 ,t !5p2 ; q̃t~t5t;p2 ,q2 ,t !5q2 , ~6!

while

Ã~s,q!5
4

~2p\!y\

3E dq8Ũ~q2q8!sinS 2sq8

\ D1F~q!¹d~s!,

~7!

d(s) is the Dirac delta function andF(q)[2¹Ũ with Ũ
being the total potential.

Then, as has been proved in Refs. 18,19,W obeys the
following integral equation:
4-2
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W~m1 ;m2 ;t; i\b!5W̄~ p̄0 ,q̄0 ; p̃0 ,q̃0 ; i\b!

1
1

2E0

t

dtE dsÃ~s,q̄t!

3W~ p̄t2s,q̄t ; p̃t ,q̃t ;t; i\b!

2
1

2E0

t

dtE dsÃ~s,q̃t!

3W~ p̄t ,q̄t ; p̃t2s,q̃t ;t; i\b!, ~8!

where Eq.~8! has to be supplemented by an initial conditi
for the spectral density,W̄(m1 ;m2 ; i\b)[W(m1 ;m2 ;t
50;i\b), which can be expressed in the form of a fin
difference approximation of the path integral:18–20

W̄~m1 ;m2 ; i\b!'E E dq̃1•••dq̃nE E dq18•••dqn8

3C~m1 ;m2 ;q̃1 , . . . ,q̃n ;q18 , . . . ,qn8 ; i\b!

~9!

with

C~m1 ;m2 ;q̃1 , . . . ,q̃n ;q18, . . . ,qn8 ; i\b!

[
1

Z
^q1ue2eK̂uq̃1&e

2eU(q̃1)^q̃1ue2eK̂uq̃2&

3e2eU(q̃2)
•••e2eU(q̃n)^q̃nue2eK̂uq2&w~p2 ;q̃n ,q18!

3^q2ue2eK̂uq18&e
2eU(q18)^q18ue

2eK̂uq28&

3e2eU(q28)
•••e2eU(qn8)^qn8ue

2eK̂uq1&w~p1 ;qn8 ,q̃1!,

~10!

where

w~p;q8,q9![~2l2!y/2 expF2
1

2p K pl

\
1 ip

q82q9

l U
3

pl

\
1 ip

q82q9

l L G , ~11!

where^xuy& denotes the scalar product of two vectorsxW•yW .
In this expression the original~unknown! density matrix of
the correlated systeme2b(K̂1Û) has been decomposed in
2n factors, each at a 2n times higher temperature, with th
inversee5b/2n and the corresponding high-temperature d
Broglie wavelength squaredl2[2p\2e/m. This leads to a
product of known high-temperature~weakly correlated! den-
sity matrices, however, at the price of 2n additional integra-
tions over the intermediate coordinate vectors~over the
‘‘path’’ !. This representation is exact in the limitn→`, and,
for finite n, an error of order 1/n occurs.

Expression~10! has to be generalized to properly accou
for spin effects. This gives rise to an additional spin part
the density matrix, whereas exchange effects can be
counted for by the antisymmetrization of only one o
16512
-

t
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diagonal matrix element in Eq.~10!. As a result, in Eq.~10!

one matrix element, for example^q18ue
2eK̂uq28& has to be re-

placed by the antisymmetrized expression^q18ue
2eK̂uq28&A

which can be written as the following sum of determinan
involving thesingle-particledensity matrix,

^q18ue
2eK̂uq28&A[(

s50

N

CN
s detu^q1,a8 ue2e k̂uq2,b8 &us

5(
s50

N

CN
s detUexpS 2

p

l2
uq1,a8 2q2,b8 u2D U

s

.

~12!

Here CN
s [N!/s!(N2s)!, and uq1,a8 2q2,b8 u denotes the dis-

tance between the verticesq18 and q28 of particlesa and b,
respectively. As a result of the summation over spin variab
and all possible exchange permutations, the determinant
ries a subscripts denoting the number of electrons having t
same spin projection. To improve the accuracy of the
tained expression, in the total potentialU being the sum of
all pair interactionsUab , we will replaceUab→Uab

eff where
Uab

eff is the proper effective quantum pair potential, see bel
For more details on the path-integral concept, we refer
Refs. 21–25, for recent applications of this approach to c
related Coulomb systems, cf. Refs. 26–29.

Let us now come back to the integral Eq.~8!. One readily
checks that its solution can be represented symbolically
an iteration series of the form

Wt5W̄t1Kt
t Wt5W̄t1Kt1

t W̄t11Kt2

t Kt1

t2W̄t1

1Kt3

t Kt2

t3Kt1

t2W̄t11•••, ~13!

whereW̄t andW̄t1 are the initial quantum spectral densitie
evolving classically during time intervals@0,t# and @0,t1#,
respectively, whereasKt i

t i 11 are operators that govern th

propagation from timet i to t i 11.
Since the time correlation functions~1! are linear func-

tionals of the spectral density, for them the same series
resentation holds,

CFA~ t !5~2p\!22y

3E E dm1dm2f~m1 ;m2!W~m1 ;m2 ;t; i\b!

[~fuWt!5~fuW̄t!1~fuKt1

t W̄t1!1~fuKt2

t Kt1

t2W̄t1!

1~fuKt3

t Kt2

t3Kt1

t2W̄t1!1•••, ~14!

where f(m1 ;m2)[F(m1)A(m2) and the parenthese
(•••u•••) denote integration over the phase spaces$m1 ;m2%,
as indicated in the first line of the equation.

Note that the mean valueF̄(t) of a quantum operatorF̂
can be represented in a form analogous to Eq.~14!:
4-3
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F̄~ t !5~2p\!22y

3E E dm1dm2

F~m1!1F~m2!

2
W~m1 ;m2 ;t; i\b!,

~15!

which allows us to increase the efficiency of the simulatio
In the following section, we apply this scheme to a system
interacting electrons and random scatterers.

III. QUANTUM DYNAMICS

As an application, in this work we will consider a syste
composed of heavy particles~called scatterers! with massms
and negatively charged electrons with massme . To avoid
bound-state effects due to attraction, we consider in this c
study only negatively charged scatterers, assuming a pos
background for charge neutrality. The influence of electr
scatterer attraction will be studied in a further publication

The possibility to convert a series such as Eq.~14! into a
form convenient for a probabilistic interpretation allows
to apply Monte Carlo methods to its evaluation. According
the general theory of Monte Carlo methods for solving line
integral equations, e.g., Ref. 30, one can simultaneously
culate all terms of the iteration series~14!. Using the basic
ideas of Ref. 30 we have developed a Monte Carlo sche
which provides domain sampling of the terms giving t
main contribution to the series~14!, cf. Refs. 18,19. This
sampling also reduces the numerical expenses for calcula
the integrals in each term. For simplicity, in this work, w
take into account only the first term of the iteration ser
~14!, which is related to the propagation of the initial qua
tum distribution~10! according to the Hamiltonian equatio
of motion. This term, however, does not describe pure c
sical dynamics but accounts for quantum effects31 and, in
fact, contains arbitrarily high powers of Planck’s consta
The remaining terms of the iteration series describe mom
tum jumps18,19,32that account for higher-order corrections
the classical dynamics of the quantum distribution~10!,
which are expected to be relevant in the limit of high dens
A detailed investigation of the conditions for which the co
tribution of the next terms of the iteration series should
taken into account is presented in Refs. 32,33.

The dynamical evolution of this system is studied alo
the trajectory pair in phase space~5!,~6! on time scales less
than a maximum timet8. This time is chosen small enoug
such that the system of scatterers is practically station
within the time interval 0,t,t8. The initial states of the
system evolution are proper equilibrium states and thus
late to physical times much larger thant8. So the initial
microstates~particle configurations in phase space! can be
randomly generated, and an ensemble averaging shoul
performed with the canonical density operator of t
electron-scatterer system, where the latter has been comp
by a path-integral Monte Carlo method21 according to the
probability distribution, which is proportional touCu ~10!.
So, due to the time reversibility, it is more convenient to st
generation of the trajectories@Eqs.~5! and ~6!# from time t
50, starting from initial particle configurations~pointst j on
16512
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Fig. 1! sampled by Monte Carlo methods. The phase cofac
of the complex-valued functionC was taken into account by
introducing the weight function30,34,35of the initial configu-
rations for the subsequent dynamic evolution. In princip
the method is also applicable to liquids or plasmas by ass
ing smaller masses to the scatterers.

This approach allows us to generate, in a controlled w
various kinds of initial conditions of the many-body syste
in particular ~i! those which are characteristic of the ful
interacting system@i.e., including scatterer-scatterer (s-s),
electron-scatterer (e-s), and electron-electron (e-e)# and~ii !
those which result if some aspects of these interactions
ignored. In all cases, the short-time dynamics can then
followed by including or excluding the (e-e) interaction.

For the numerical calculations we introduce dimensio
less units, using the maximum value of the time characte
tic for the short-time dynamics,t8 as the unit of the dynamic
time t of the system. So the dimensionless time defined
u5t/t8 will always vary between 0 and 1. As a unit o
length we take the reciprocal wave numberk21, determined
by the ratiok252meE0 /\2, whereE0 is the characteristic
energy scale of the particles. Example for one electron in
external potential fieldŨ5V0U(q), and the operator expo
nent of the time evolution propagator exp(2iĤt/\) can be
rewritten as

Ĥt

\
5H 2

\2

2me
D1V0U~q!J t

\
5H 2

1

2M
D1j0U~q!J u,

~16!

FIG. 1. Illustration of the quantum-dynamics scheme for co
putation of the correlation functionCFA(t). The quantum dynamics
scheme generates particle trajectories~long arrows! in phase space
p2q starting from an initial state att50. The two arrows indicate
different ensembles used for averaging over the initial states tha
~do not! includee-e interaction: interacting ensemble,~noninteract-
ing ensemble!. At randomly chosen timest1 , . . . ,t i ,t i 11 , . . . ,tK , a
pair of dynamic trajectories~short arrows! is propagated in positive
and negative time direction, e.g., fromt i to t i1t/2 and t i2t/2,
respectively.CFA(t) is averaged over allK trajectories. Bold
~dashed! arrows indicate~non!interacting dynamics including~ne-
glecting! e-e interaction.
4-4



f
ad

is

ar
ing

d.

n

(

e

kly

h

e
in-
an
to

th-
ics

an
en

the

and
first
trix
ond
ap-

ns
re

ale
to

p-
ble

ra-
,

t

tal

her
s in
er-
gra-

to
dis-
and
d in

,
si-
The

ion
0
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where D is the Laplace operator,V0 is the characteristic
strength of the interaction potential,M5\/2E08t, and j0

5V0/2E0M5V0t8/\.
The tensor of the electrical conductivity is given by

sag~v!5E
0

`

dteivt2etE
0

b

dl^ĴgĴa~ t1 i\l!&, ~17!

according to the quantum Kubo formula,16 where e→10.
The current operator is

Ĵa5(
i 51

Ne

eq̇i
a~ t !5(

i 51

Ne e

me
pi

a , ~18!

with q̇a being thea component of the velocity operator o
the electron. In the Wigner representation, this tensor re

sag~v!5E
0

`

dteivt2etE
0

b

dlfag~ t,l![
k2

e2

s̃ag~v!

2E0t8
,

~19!

where

fag~ t,l!5^ ĴgĴa~ t1 i\l!&

5~2p\!22nE dm1dm2Jg~m1!Ja~m2!

3W~m1 ;m2 ;t; i\b; i\l!, ~20!

and the spectral densityW(m1 ;m2 ;t; i\b; i\l) is defined as
in Eq. ~3! by replacingtc* by t15t11 i\l, and tc by t2

5t22 i\(b2l). The dimensionless conductivity tensor
denoted bys̃ag(v).

Our model of correlated electrons interacting with an
ray of random scatterers is described by the follow
Hamiltonian:

Ĥ5Ĥe1Ĥe-s1Ĥs-s5~K̂e1Ũe-e!1Ũe-s1~K̂s1Ũs-s!,

Ĥe52
1

2M (
i 51

Ne

D i1(
iÞ j

Ne

j0
e-euS uqi2qj u

le-e
D ,

Ĥe-s5(
i 51

Ne

(
j 51

Ns

j0
e-suS uqi2Qj u

le-s
D ,

Ĥs-s5
1

2M

me

ms
(
j 51

Ns

D j1(
iÞ j

Ns

j0
s-suS uQi2Qj u

ls-s
D . ~21!

In the problem at hand we chooseme /ms;1/2000!1, there-
fore, on the time scalet8 the scatterers are practically fixe
Ĥs-s is the Hamiltonian of the scatterers andj0

e-e

5V0
e-et8/\, j0

e-s5V0
e-st8/\ and j0

s-s5V0
s-st8/\ are the con-

stants of the binary interaction between electro
(e-e) u(uqi2qj u/le-e), electrons and scatterers (e-s) u(uqi
2Qj u/le-s), and between scatterers (s-s) u(uQi2Qj u/ls-s),
respectively.qi represent the positions of the electronsi
51, . . . ,Ne) andQj those of the scatterers (j 51, . . . ,Ns).
16512
s

-

s

The (e-e), (e-s), and (s-s) interactions are taken in th
form of the Kelbg potential,36,37 which is the exact quantum
pair potential of an ensemble of weakly nonideal and wea
degenerate charged particles:

u~xab!5
1

xab
$12e2xab

2
1Apxab@12erf~xab!#%, ~22!

wherexab5urabu/lab , with l being the thermal wavelengt
given by lab

2 5\2b/2mab , mab the reduced massmab
21

5ma
211mb

21 , V0
ab5eaeb /lab andea , eb being the respec-

tive charges. The erf(x) stands for the error function. Not
that the Kelbg potential is finite at zero distance and co
cides with the Coulomb potential at distances larger th
lab . This potential has recently been successfully applied
the computation of thermodynamic26–28 and dynamic
properties38 of dense quantum plasmas by means of pa
integral Monte Carlo and classical molecular dynam
methods, respectively. It is, therefore, expected to provide
accurate description of the full Coulomb interaction betwe
all particles within the quantum dynamics approach of
present paper.

Due to the large difference in the masses of electrons
heavy scatterers, we can use two simplifications. The
one consists in the antisymmetrization of the density ma
only for electron spins and space coordinates. The sec
one, as we mentioned above, is the use of the adiabatic
proximation for the dynamical evolution, where the positio
of the heavy scatterers in each initial configuration we
fixed during the electron-dynamics time given by the sc
t8. The dynamic evolution has been realized according
relations~5!,~6!. Let us stress, that the Kelbg potential a
pearing in the canonical density operator used for ensem
averaging in Eq.~10! has to be taken at the inverse tempe
turee[b/2n, while the simulation of the dynamic evolution
according to Eqs.~5! and~6!, involves the Kelbg potential a
the temperature 1/b.

To simplify the computations we included in Eq.~12!
only the dominant contribution to the sum over the to
electron spins corresponding tos5N/2 electrons having
spin up and down, respectively. The contribution of the ot
terms decreases rapidly with particle number and vanishe
the thermodynamic limit. To further speed up the conv
gence of the numerical calculations, we bounded the inte
tion over the variablesqM ,q18 ,qM8 ,q̃1 responsible for oscil-
lations of the functionw in Eq. ~11! and checked the
insensibility of the obtained results to these operations.

IV. NUMERICAL RESULTS

We now apply the numerical approach explained above
the problem of an interacting ensemble of electrons and
ordered scatterers in one dimension. In all calculations
figures, times, frequencies, and distances are measure
atomic units. The average distance between electronsRs
51/nea0, was varied between 12.0 and 0.55, with the den
ties of electrons and heavy scatterers taken to be equal.
results obtained were practically insensitive to the variat
of the particle number in the Monte Carlo cell from 30 to 5
4-5
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FIG. 2. Temporal momentum-momentum
correlation for interacting ensembles for the ca
of interacting~1! and noninteracting~2! dynam-
ics. Temperatures arekBT/uV0

e-su50.28 @Figs.
2~a!,~b!# andkBT/uV0

e-su50.45 @Figs. 2~c!,~d!#.
ice

av
m
o
s
a

n
n

ia

re
o
th

s

re
he

e

e

.

nc

ion
ed

-
wo

e a
m-

wer
e
ct-
on-

-
een.
at
nes,
tem
dic
tions

ith
sical
ring
ing

nce
e
rre-

s,
sis
and also of the number of high-temperature density matr
~determined by the number of factorsn) in Eq. ~10!, ranging
from 10 to 20. Estimates of the average statistical error g
the value of the order 5–7 %. We studied two different te
peratures: kBT/uV0

e-su50.45 and 0.28, corresponding t
le-e /a0;2.2 andle-e /a0;3.5, respectively. The strength
of the three interactions in the system are fixed arbitrarily
the ratioV0

e-e:V0
e-s:V0

s-s;0.7:1:32.
According to the Kubo formula16 our calculations include

two different stages:~i! generation of the initial conditions
~configuration of scatterers and electrons! in the canonical
ensemble with probability proportional to the quantum de
sity matrix, and~ii ! generation of the dynamic trajectories o
the time scalet8 in phase space, starting from these init
configurations.

The results presented below are related to three diffe
situations. The first two situations refer to the generation
initial configurations used for ensemble averaging, where
(e-e) interaction is fully included~called ‘‘interacting en-
semble’’!, while the electron dynamics was simulated in ca
I with (e-e) interaction ~‘‘interacting dynamics’’! and, in
case II,without (e-e) interactions~‘‘noninteracting dynam-
ics’’ !. For reference a third situation III, was studied whe
the (e-e) interaction is neglected completely, i.e., both, in t
initial ensembles~‘‘noninteracting ensemble’’! and in the dy-
namical evolution, see also Fig. 1 for illustration. As w
mentioned before, to avoid the influence of (e-s) bound-state
effects, we have considered only a system of negativ
charged heavy scatterers here. The influence of (e-s) attrac-
tion on localization will be studied in a further publication

A. Temporal quantum momentum-momentum
correlation functions

First, we discuss the influence of (e-e) interactions on the
temporal quantum momentum-momentum correlation fu
16512
s

e
-

t

-

l

nt
f
e

e

ly

-

tions. Figure 2 shows momentum-momentum correlat
functions corresponding to the situations I and II introduc
above, i.e., to interacting ensembles with interacting~curves
1! and noninteracting~curves 2! dynamics, respectively. Fig
ure 2 allows us to compare the obtained functions for t
temperatures.

The traces clearly show coherent oscillations, which ar
manifestation of localization tendencies even at finite te
perature. Note that at higher temperatures~right-hand panel!
these oscillations are less pronounced compared to lo
temperatures~left-hand panel!. The damping times of thes
coherent oscillations are clearly different for the nonintera
ing and interacting dynamics. We observe that the electr
electron interaction leads to a strong reduction~curve 1! of
this damping time as compared to (e-e) noninteracting elec-
trons ~curve 2!. Furthermore, for the noninteracting dynam
ics the appearance of deep aperiodic modulations is s
The dynamics of (e-e) noninteracting electrons leads to
least one large oscillation and several damped small o
reflecting a strong spatial confinement of the electron sys
in this case. For interacting dynamics both, the first aperio
modulation and the subsequent damped coherent oscilla
are less pronounced.

The damping time for coherent oscillations increases w
increasing density and decreasing temperature. The phy
reason of this phenomenon is the tendency towards orde
of the scatterers, which is obvious from the correspond
pair distribution functions (gss) presented in Fig. 3, which
develop periodic modulations for higher densities.

As an interesting side result, Fig. 4 presents the influe
of the choice of initial conditions. In the left column, w
show the momentum-momentum correlation functions co
sponding to situations II and III, i.e., interacting~curves 1!
and noninteracting~curves 2! ensembles and, in both case
dynamics without electron-electron interaction. The analy
4-6



c-

ve
a
bl
e
hi
th

le
is

he
er
les
ted
file

igh-
by
-
nly

the
sus
rier
ion
ter-
has
e

for
cy

co-
y it
has

to
x-

e

INTERACTING ELECTRONS IN A ONE-DIMENSIONAL . . . PHYSICAL REVIEW B 65 165124
of the equilibrium configurations and pair distribution fun
tions for the noninteracting ensemble~right column of Fig.
4! shows that the main contributions to the ensemble a
aging originate from absolutely different particle configur
tions, if compared to the case of the interacting ensem
discussed above. The (e-e) noninteracting electrons ar
gathered mainly in the extended deepest potential well, w
the heavy scatterers form a potential barrier confining
electrons. The typical initial configuration for equilibrium
averaging, therefore, contains a so-called ‘‘electron bubb
The (e-e) noninteracting electrons oscillate inside th

FIG. 3. e-e, e-s, ands-s pair distribution functions for the in-
teracting ensemble, for the same parameters as in Fig. 2.
16512
r-
-
es

le
e

.’’

‘‘bubble’’ with frequencies defined by the eigenvalues of t
resulting potential-energy profile of this well. On the oth
hand, for the typical configurations of interacting ensemb
~cf. Fig. 3! the scatterers and electrons are both distribu
more or less uniformly in space and the potential pro
shows only small-scale random spatial inhomogeneities.

In the case of noninteracting ensembles we can see h
frequency coherent oscillations with frequencies defined
the potential forming the ‘‘bubble,’’ while for interacting en
sembles with their spatial small-scale potential profile o
aperiodic oscillations~cf. Fig. 2, curves 2! are seen.

B. Fourier transform of the momentum-momentum time
correlation functions

Figures 5–7 present the real and imaginary parts of
diagonal elements of the electrical conductivity tensor ver
frequency, i.e., the real and imaginary parts of the Fou
transform of the temporal momentum-momentum correlat
functions. The real part of the Fourier transform charac
izes the Ohmic absorption of electromagnetic energy and
the physical meaning of electron conductivity, while th
imaginary part presents (e21)v, wheree is the permittivity
of the system.

Curves 1 and 2 of Fig. 5 show an opposite behavior
vanishing frequency. Most remarkably, the low-frequen
conductivity related to the interacting dynamics~curve 1! is
positive, while that for the noninteracting dynamics~curve 2!
has a maximum at some finite frequency related to the
herent oscillations in the time domain. For lower frequenc
changes sign. However, the real part of the conductivity
to be non-negative. The negative contributions are due
weakly damped very slow oscillations with time scales e
ceeding the scalet8 considered for the calculation of th
-
of

is
FIG. 4. Left column: Temporal momentum
momentum correlation functions for the case
noninteracting dynamics and interacting~1! and
noninteracting ~2! ensembles. Temperature
kBT/uV0

e-su50.45. Right column: pair distribution
functions for the noninteracting ensembles.
4-7
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FIG. 5. Real part of the Fourier transform o
the temporal momentum-momentum correlati
functions of Fig. 2.
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dynamics for the noninteracting dynamics~see the tempora
momentum-momentum correlation functions, Fig. 2!. To
overcome this deficiency of our model one has to incre
the timet8 and/or to take into account the slow motion of th
heavy particles, which will destroy the coherent oscillati
of the light electrons trapped by the heavy particles and t
suppress these negative values. In fact, we found that ca
lations performed for longer and longer times lead to d
creasing negative contributions for low frequencies.

Nevertheless, let us stress that the results obtained~Figs. 2
and 5! allow us to conclude that the behavior of the condu
16512
e

s
u-
-

-

tivity in the vicinity of zero frequency resembles the chara
teristic features of Anderson localization~i.e., a vanishing
zero-frequency conductivity and enhanced oscillations
lated to the maximum in the real part at finite frequency! for
noninteracting dynamics of electrons. The (e-e) interaction,
on the other hand, leads to a strong increase of the con
tivity at low frequencies and less pronounced oscillations

Let us note that the high-frequency tails of the real a
imaginary parts of the Fourier transforms presented in F
5 and 6 coincide with each other, as the main contribution
due to the fast trajectories with high virtual energy. Th
-
r-
FIG. 6. Imaginary part of the Fourier trans
form of the temporal momentum-momentum co
relation functions of Fig. 2.
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FIG. 7. Real part~left column! and imaginary
part ~right column! of the Fourier transform of
the temporal momentum-momentum correlati
functions of Fig. 4. Triangles indicate the trans
tion energies between the lowest energy eigenv
ues for an analytical model for the deepest sc
terer potential that traps the electrons~vertical
coordinates of the triangles are arbitrary!.
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means, the (e-e) interaction does not influence the behavi
of the high-frequency tails. Furthermore, we have chec
that the high-frequency tails of the real and imaginary pa
of the Fourier transform can be described by the Drude
ymptotics for free electrons. This reflects the fact that a
the (e-s) interaction@its coupling constant being comparab
to that of the (e-e) interaction# does not affect the behavio
of the high-energy trajectories.

The Fourier transform of the correlation functions f
noninteracting dynamics and both, interacting and nonin
acting ensembles, are presented in Fig. 7~cf. also Fig. 4!.
The most remarkable feature of these figures is the split
of the peak related to the coherent electron oscillations
the noninteracting ensembles. The positions of the inse
triangles show the energy difference between subseq
eigenenergy levels calculated for an averaged bubble.
comparison of the peak and the triangle positions confir
the fact that16 the Fourier transform of the momentum
momentum correlation function contains a sum of produ
of d functions and momentum matrix elements related
transitions between these energy levels. The imaginary
of the Fourier transform presented in the right column of F
7 reflects that these characteristic features are related to
resonance oscillations in the ‘‘bubble’’ mentioned above.

Figure 5 shows that for noninteracting dynamics, at l
temperatures and moderate densities, e.g.,Rs52.6 @cf. Figs.
5~b!, ~d!#, a well-resolved absorption peak appears tha
related to the electron energy-level separation. Note that
peak is present even in the case of interacting ensem
However, there, the height of this peak is considera
smaller than in the case of noninteracting ensembles~Fig. 7!.

C. Position dispersion

Finally, we discuss the position dispersion of electrons
interacting and noninteracting ensembles and noninterac
16512
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dynamics, cf. Fig. 8. Electron localization in the bubble r
sults in a very slow growth~curve 2! of the position disper-
sion in comparison with the case of the small-scale poten
profile ~curve 1! of the initial configurations, as seen in Fig
8. The square root of the position dispersion at times of
order of unity yields the typical size of the bubble. Howev
for larger times,t.80, curve 2 shows a behavior that
typical for particle diffusion. This characteristic change
behavior is due to the tail of the electron energy distribut
function and is related to the fact that we are dealing w
non-self-averaging quantities. For the high-frequency tails
the Fourier transforms the virtual energy of the trajector
may be large. These exponentially rare fast trajectories
give an exponentially large contribution to the position d
persion, as the difference in positions of fast trajectories m
be exponentially large at sufficiently large time. A simil
problem connected with exponentially large contributions
exponentially rare events arises in the consideration of c
sical wave propagation in random media. There, it is w
known39 that in one-dimensional systems the dispersion
wave intensities is not self-averaging, as exponentially r
configurations of scatterers can give rise to exponenti
large contributions of intensity at large distances from
wave source.

V. CONCLUSION

The quantum-dynamics Monte Carlo approach applied
a one-dimensional system of interacting electrons in an a
of fixed random scatterers at finite temperature gives str
evidence for an enhancement of the quantum mobility
electrons due to their mutual long-range, many-particle in
action and thus substantiates previous expectations dr
from schematic models.

As in our approach the temperature is taken to be n
4-9
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zero, Anderson localization is not expected to show up in
results for noninteracting electrons in a strict sense. On
other hand, for the considered temperatures~comparable to
or less than the coupling constant of the electron-scatt
potential! localization tendencies are clearly observable

FIG. 8. Electron position dispersion for noninteracting dynam
and interacting~1! versus noninteracting~2! ensembles, cf. Fig. 4.
a

v
.

.

16512
e
e

er

this case. They manifest themselves both, in the lo
frequency behavior of the momentum-momentum correlat
function related to the conductivity of the electron syste
and in coherent oscillations. For nonzero electron-elect
interaction these localization tendencies are relaxed and
frequency-dependent correlation function has a form not
like a Drude behavior. The high-frequency tails resembl
Drude behavior of free electrons.

For initial conditions describing a noninteracting e
semble, the scattering centers form electron-bubbles tha
commodate the@(e-e) noninteracting# electrons in their
eigenstates and lead to well-defined coherent oscillations
contrast, for configurations describing interacting ensemb
the scatterers and electrons are both distributed more or
uniformly in space and the potential profile shows on
small-scale random spatial inhomogeneities. Then the
namics of interacting electrons in this small-scale rand
potential profile shows only fast damped oscillations w
much smaller damping time if compared to noninteract
dynamics and results in an increased low-frequency cond
tivity.

The present work shows that it is possible to treat a s
tem of many quantum particles interacting with each ot
via the long-range Coulomb potential in a numerically rigo
ous scheme. Here we have considered the heavy particl
be essentially immobile species. On the other hand, if th
mass is being reduced they will take part in the dynam
and we then have a system resembling a plasma of,
electrons and holes. Such calculations are presently u
way and will be published shortly.
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