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Interacting electrons in a one-dimensional random array of scatterers:
A quantum dynamics and Monte Carlo study
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The quantum dynamics of an ensemble of interacting electrons in an array of random scatterers is treated
using a numerical approach for the calculation of average values of quantum operators and time correlation
functions in the Wigner representation. The Fourier transform of the product of matrix elements of the dynamic
propagators obeys an integral Wigner-Liouville-type equation. Initial conditions for this equation are given by
the Fourier transform of the Wiener path-integral representation of the matrix elements of the propagators at
the chosen initial times. This approach combines both molecular dynamics and Monte Carlo methods and
computes numerical traces and spectra of the relevant dynamical quantities such as momentum-momentum
correlation functions and spatial dispersions. Considering, as an application, a system with fixed scatterers, the
results clearly demonstrate that the many-particle interaction between the electrons leads to an enhancement of
the conductivity and spatial dispersion compared to the noninteracting case.
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[. INTRODUCTION interaction parameter space has been demonstrated in these
publications.

Noninteracting electrons in an array of fixed random scat- The purpose of this paper is twofold) We present our
terers are known to experience Anderson localization at tem@pproach, which does not rely on small system sizes. This
perature T=0 in one-dimensional systems. In two- can be applied to a wide variety of different physical sys-
dimensional systems single-parameter scaling theory predict§Ms, such as plasmas, liquids, and solidsAs an illustra-
that all states are localized as welln three-dimensional ~tion, we study the problem described above. In particular, in
arrays of random scatterers localization appears at the baf@iS Paper we investigate the influence of the many-particle
extremities, while the center may consist of delocalizedMeraction on electronic transport. We consider, as a case

states, indicating a disorder driven metal-insulator transitior?tutqy' a one—ld]mtlansmq:;]ll dtlrs],ordelredt array of tscatte\r/s_rtshmtfr—
in three dimensions only. acting repulsively wi e electron system. Withou

This picture has been challenged by recent eXperimemelectron-electron interaction such a system shows Anderson

which suggest a metal-insulator transition also in disordere&jcahzaﬂon' Itis the purpose of this application to study the
| SUGYe . ffect of the long-range, electron-electron Coulomb interac-
two-dimensional  electron  systerhs. A theoretical

e . . tion on the mobility of the electrons.
explanatior indicated that the Coulomb interaction between Anderson localization at temperatuFe= 0 relies on quan-

the electrons plays a central role in this effect. Moreover, th ., coherence of electron trajectories and results from inter-
experimental study of persistent currents in mesoSCOPiggrence. The key parameter in the physics of electron inter-
metal ring$ yields currents that are two orders of magnitudeference phenomena is the dephasing time of electrons. At
larger than predicted by theories based on noninteractinfnite temperatures the electron coherence is destroyed by
electrons. These findings suggest that it is the many-particlepoth ~ the  electron-electron  and phonon-electron
interaction that leads to delocalization tendencies. To the beskattering:?~°To study the influence of these effects on ki-
of our knowledge, this has first been suggested by Pollak andetic electron properties in a random environment, we have
co-workers®” simulated the quantum dynamics in a one-dimensional ca-
Evidence for this influence of the Coulomb interaction hasnonical ensemble at finite temperature for both interacting
been obtained by examining the problem of two interactingand noninteracting electrons using a gquantum-dynamics
electrons in a one-dimensional disordered bfitds, how-  Monte Carlo scheme. The main quantities calculated in this
ever, not clear whether this schematic model is able to yielghaper are the temporal momentum-momentum correlation
answers for more realistic systems described by an ensembfienctions, their frequency-domain Fourier transforms, and
of many electrons. Therefore, attempts have been made the time dependence of the spatial dispersions. We discov-
calculate directly the conductivity of a disordered system ofered that the results strongly depend on the electron-electron
many electrons. Numerical results for the ensemble-averagedteraction, clearly demonstrating the delocalizing influence
logarithm of the conductance have been obtained for smabthf the many-particle interaction even at finite temperatures.
systems by applying a Hartree-Fock-based diagonalization Our approach also treats the positions of the scattering
scheme for electrons withdti® and with spint* An increase  centers as dynamical variables. We are, therefore, able to
of the conductivity for certain regions in the disorder- generate various initial conditions, including the scenario of
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“electron bubbles” as an interesting side result. ) &l £

We start in Sec. Il by presenting the quantum-dynamics A(M)=J dfe_'(pgm)<q— E‘A‘(H §>, (4)
Monte Carlo approach used in this work, which is based on
the Wigner representation of quantum statistical mechanics. )
It treats both electrons and scatterers on an equal footingind similarly for the operatoff. Hence the problem of the
Details of our model, relevant correlation functions and thenumerical calculation of the canonically averaged time cor-
system of reduced units are introduced in Sec. Ill. Numericatelation function is reduced to the computation of the spec-
results for the momentum-momentum correlation function intral density.
the time and frequency domains and for the spatial disper- To obtain the integral equation fo#, let us introduce a
sion are given in Sec. IV. Finally, Sec. V contains a discusair of dynamic f,q)-trajectories
sion of our results.

Il. WIGNER REPRESENTATION OF TIME CORRELATION 19-(7P1,91,1), P 7:P1,d1,1)}
FUNCTIONS

According to the Kubo formula the conductivity is the and

Fourier transform of the current-current correlation function.
Generally, time correlation function€a(t)=(F(0)A(t)) {0,(7:P2,02.1),p(7:P2.02,1)}

for a pair of dynamic variabled=(t)=(F(t)) and A(t)

=<A(t)) are among the most interesting quantities in thestarting at r=t from the initial condition{q,,p;} and
study of the dynamics of electrons in disordered systems ofq,,p,} propagating in “negative” and “positive” time di-
scatterers, such as transport coefficients, chemical reactioBction, respectively:
rates, equilibrium and transient spectroscopy, etc. Our start-

ing point is the general operator expression for the canonical

ensemble-averaged time correlation functn: d_E: EF[_(’T)]' @: pA7)
dr 2 q- " dr  2m

CFA(t):Z—lTr{IEeiI:ltz/ﬁAe—il:ltC/ﬁ}, (1)

whereH is the Hamiltonian of the system expressed as a surith

of the kinetic-energy operatdi, and the potential-energy

operatorU. Time is taken to be a complex quantity=t P(T=t:p1,01,)=p1;  G(r=t;py,a1.)=0s, (5

—i#Bl2, whereB=1/kgT is the inverse temperature wikt

denoting the Boltzmann's constant. The operatorandA  gnd

are quantum operators of the dynamic quantities under con-

sideration and=Tr{e A"} is the partition function. -
The Wigner representation of the time correlation func- @

tion in a v-dimensional space can be written as dr

Cra(t)=(2mh) 2

1~ dg_ pdn
=—5Fla(D) g == 5
with
Xf fdMldMZF(Ml)A(MZ)W(Ml;Mz;t;ihﬁ)y
2
where we introduce the short-hand notation for the phasephile

space pointu;=(p;,q;),(i=1,2), andp andq comprise the
momenta and coordinates, respectively, of all particles in the

PT=t;ps, 02, )=p2;  GQu(7=1;p,02,0)=0y, (6)

system. In the definitio2), W(u;u,:t;i% 8) is the spec- 4
tral density expressed as w(s,q)= (2mh)"h
C g _5-1 i(p1é1 /) mi(Paép 1) ~ 2sq’
WiksinziGINE) =2 f deldfze' e ><f dQ'U<q—q’>s‘”(—ﬁq +F(@)Va(s),
fl iHt* /% 52 (7)
X < q:+ > e’ ¢ )
& & 5(s) is the Dirac delta function ané(q)=—VU with U
X{ gt 5jeeMai— 5 ), (3 being the total potential.
A Then, as has been proved in Refs. 180 pbeys the
andA(u) denotes Weyl's symbbi of the operatoi following integral equation:
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W( a1 pa5ti7 8) =W(Po,do;Po.do;i%8)
1t _
+—f drf dsw(s,q,)
2J)o
XW(HT_S!a;BT!aT;T;ihB)
1t ~
——f de dsw(s,q,)
2Jo

XW(P,,0,;P,— S, 5% B), ®)

where Eq.(8) has to be supplemented by an initial condition

for the spectral density,V_V(,ul;Mz;iﬁ,@)EW(Ml;Mz;t

=0;inB), which can be expressed in the form of a finite

difference approximation of the path integt&r2°

Wisiuziih®)~ [ [ ooy, [ | do---a,

XW (g 2301, - Gnilis - Gniifi)
9
with
W(p1im2:01, - - - Gni0Y, - - OniihB)
1 . - .
EZ<Q1|975K|Q1>97Eu(q1)<Q1|eieK|Q2>
X e V@) .. em V(g le”K|qg,) o(p,;0n.07)
x(gzle”K|q;)e”U@(g;le”|qp)
xe~ V@ ..e~ V) (qrle”X|q,)e(py;ap, 1),
(10
where
1 px ) q/_q//
e A — 2\vl2 (=
e(p;g',9")=(2\7)"“ex 277< 7 i
P q'—q"
XT'FI’JT N >}, (11)

where(x|y) denotes the scalar product of two vectars.

In this expression the origindaunknown density matrix of
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diagonal matrix element in Eq410). As a result, in Eq(10)
one matrix element, for example|;|e” <€|q5) has to be re-

placed by the antisymmetrized expressitu|e” <€|qs)a
which can be written as the following sum of determinants
involving the single-particledensity matrix,

N
<Qi|e_6K|qé>AESZO Crdet(a.le” *agp)ls
v
exp( - ;Iqi,a— Qé,b|2>

Here Cy=N!/s!(N—s)!, and |q; ,—q5,| denotes the dis-
tance between the verticeg andq; of particlesa andb,
respectively. As a result of the summation over spin variables
and all possible exchange permutations, the determinant car-
ries a subscrips denoting the number of electrons having the
same spin projection. To improve the accuracy of the ob-
tained expression, in the total potentidlbeing the sum of
all pair interactiondJ ,,, we will replaceuabﬁugﬁ where
Ugf, is the proper effective quantum pair potential, see below.
For more details on the path-integral concept, we refer to
Refs. 21-25, for recent applications of this approach to cor-
related Coulomb systems, cf. Refs. 26-29.

Let us now come back to the integral E§). One readily
checks that its solution can be represented symbolically by
an iteration series of the form

N
=SZ,0 csde

S

(12

W= W KW =W K W7 Kt,sziv_vn

+KLKBK2W+ - - - (13

3 20T
whereW! and W are the initial guantum spectral densities
evolving classically during time interval®,t] and[0,7{],
respectively, whereai(:f+1 are operators that govern the

I
propagation from timer; to 7; ;1.
Since the time correlation functior(d) are linear func-

tionals of the spectral density, for them the same series rep-
resentation holds,

Cra(t)=(2mh) 2

the correlated systera#(K™Y) has been decomposed into
2n factors, each at arRtimes higher temperature, with the
inversee= B/2n and the corresponding high-temperature de-
Broglie wavelength squarex?=2x#2e/m. This leads to a
product of known high-temperatutereakly correlategden-
sity matrices, however, at the price ofi 2dditional integra-
tions over the intermediate coordinate vectdower the
“path”). This representation is exact in the limit-o, and,
for finite n, an error of order 1 occurs. where  ¢(u1;p2)=F(u1)A(n2) and the parentheses
Expression(10) has to be generalized to properly account(- - |- - -) denote integration over the phase spdges u.},
for spin effects. This gives rise to an additional spin part ofas indicated in the first line of the equation.
the density matrix, whereas exchange effects can be ac- Note that the mean valug(t) of a quantum operatdf
counted for by the antisymmetrization of only one off- can be represented in a form analogous to (&4):

><f JdMldﬂzd’(,U«l;Mz)W(Ml;Mz;t;iﬁ,B)
= (AW = (S| W) +($]KE W) +($[K KZW™)

+(¢|K! KTZ’KZV_VTl)—i- o (14)

T3 T.
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() — —2v
F(t)=(2mh) » Ersenble

F )+ F (1) . e
XJ' fdﬂldﬂsz(ﬂliﬂzitﬂﬁﬂ), . i et

(19

which allows us to increase the efficiency of the simulations.
In the following section, we apply this scheme to a system of
interacting electrons and random scatterers.

Enserble
IIl. QUANTUM DYNAMICS without e-e
interaction
As an application, in this work we will consider a system
composed of heavy particlésalled scatterejsvith massmg g

and negatively charged electrons with mass. To avoid
bound-state effects due to attraction, we consider in this case
study only negatively charged scatterers, assuming a positive FIG. 1. lllustration of the quantum-dynamics scheme for com-
background for charge neutrality. The influence of electronutation of the correlation functio@ (7). The quantum dynamics
scatterer attraction will be studied in a further publication. Scheme generates particle trajectofiesig arrows in phase space
The possibility to convert a series such as Bef) intoa P~d starting from an initial state at=.0. The two arrows indicate
form convenient for a probabilistic interpretation allows usdlfferent_ensembles_ used f_or averaging over the initial §tates that do
to apply Monte Carlo methods to its evaluation. According to_(do no) includee-e interaction: |nter_act|ng ensembl@oninteract-
the general theory of Monte Carlo methods for solving linear"d ensemble Al raf‘d"m!y chosen umets, ... 4Gy, .- b, @
integral equations, e.g., Ref. 30, one can simultaneously caf2!" °f dynamic trajectorieshort arrowsis propagated in positive
culate all terms of the iteration seri€s4). Using the basic and negative time d|_rect|on, e.g., from to ti+T/_2 anc_i b= 2,
ideas of Ref. 30 we have developed a Monte Carlo schem rESpeCtlvely'CFA.(T). 'S aver?ged over alk trajectories. Bold
which provides domain sampling of the terms giving theg?::t?ﬁg Zgomfe:r;(ilticgrt]e(non)mteractmg dynamics includingne-
main contribution to the serie€l4), cf. Refs. 18,19. This '

sampling also reduces the numerical expenses for calculatinlg led b | hods. The bh ;
the integrals in each term. For simplicity, in this work, we F9: 1) sampled by Monte Carlo methods. The phase cofactor

take into account only the first term of the iteration seriesCf the complex-valued functio was taken into account by

(14), which is related to the propagation of the initial quan-ntroducing the weight functioil **°of the initial configu-
tum distribution(10) according to the Hamiltonian equation 'ations for the subsequent dynamic evolution. In principle,
of motion. This term, however, does not describe pure clas_t-he method is also applicable to liquids or plasmas by assign-
sical dynamics but accounts for quantum efféctand, in "9 Smaller masses to the scatterers.

fact, contains arbitrarily high powers of Planck’s constant. 1his approach allows us to generate, in a controlled way,

The remaining terms of the iteration series describe momen2rious kinds of initial conditions of the many-body system,

tum jumpg8192that account for higher-order corrections to N particular (i) those which are characteristic of the fully
the classical dynamics of the quantum distributit0), interacting systenfi.e., including scatterer—scatteres-@,
which are expected to be relevant in the limit of high density.€/ectron-scattererets), and electron-electrorete) | and(ii)
A detailed investigation of the conditions for which the con- tN0S& which result if some aspects of these interactions are
tribution of the next terms of the iteration series should bddnored. In all cases, the short-time dynamics can then be
taken into account is presented in Refs. 32,33. followed by mcluo!lng or exclu_dlng thee_(e) mteract!on. _
The dynamical evolution of this system is studied along For the numerical calculations we introduce dimension-
the trajectory pair in phase spat®,(6) on time scales less less units, using the maximum value of the time characteris-
than a maximum time’. This time is chosen small enough tic for the short-time dynamics; as the unit of the dynamic
such that the system of scatterers is practically stationar}me t,Of the system. So the dimensionless time defined by
within the time interval G<t<t’. The initial states of the ¢=U/t" will always vary between 0 and _I%L' As a unit of
system evolution are proper equilibrium states and thus rd€ngth we .takze the reC|pr(2)caI wave number’, determined
late to physical times much larger thah So the initial ~ PY the ratiok”=2mcE,/%%, whereE, is the characteristic
microstates(particle configurations in phase spacan be €nergy scale of the pairtlcles. Example for one electron in an
randomly generated, and an ensemble averaging should lexternal potential field=V,U(q), and the operator expo-
performed with the canonical density operator of thenent of the time evolution propagator exgHt/4) can be
electron-scatterer system, where the latter has been computgslyritten as
by a path-integral Monte Carlo methdd according to the
probability distribution, which is proportional tp¥| (10).

So, due to the time reversibility, it is more convenient to start Ht _ h? t 1
generation of the trajectori¢&qs. (5) and (6)] from time = | 2_meA+V°U(q) P P TVE R C R
=0, starting from initial particle configuratior{pointst; on (16)
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where A is the Laplace operatoly, is the characteristic The (e-e), (e-s), and (&-s) interactions are taken in the
strength of the interaction potentiall =#/2E(t, and &  form of the Kelbg potentiat®3’ which is the exact quantum

=V/2EgM =Vt' /A pair potential of an ensemble of weakly nonideal and weakly
The tensor of the electrical conductivity is given by degenerate charged particles:
© B .. ) 1 2
a'ay(w)Zf dte"“t‘E‘J dN(J,J (t+iRN)), (17) u(xab)zx—{l—efxabJr \/;xab[l—erf(xab)]}, (22
0 0 ab

according to the quantum Kubo formufawhere e— +0.  wherexa,=|rap|//Nap, With X being the thermal wavelength
The current operator is given by )\gbzhzﬁlz,uab, Map the reduced massu;bl
=m;'+m, !, V3=e,e, /)4, ande,, e, being the respec-
“ e e tive charges. The erk) stands for the error function. Note
Ja:zl €q (t)_z p, ' (18) that the Kelbg potential is finite at zero distance and coin-
cides with the Coulomb potential at distances larger than
with g® being thea component of the velocity operator of \,;. This potential has recently been successfully applied to
the electron. In the Wigner representation, this tensor readshe computation of thermodynarffc?® and dynamic
properties® of dense quantum plasmas by means of path-
av((") integral Monte Carlo and classical molecular dynamics
&2 oEt methods, respectively. It is, therefore, expected to provide an
0 accurate description of the full Coulomb interaction between
(19 . e .
all particles within the quantum dynamics approach of the
where present paper.
Due to the large difference in the masses of electrons and
¢M(t,)\)=(373a(t+iﬁ)\)> heavy scatterers, we can use two simplifications. The first
one consists in the antisymmetrization of the density matrix
_ —2v only for electron spins and space coordinates. The second
(27h) f duaduady(ma)dalp2) one, as we mentioned above, is the use of the adiabatic ap-
: : roximation for the dynamical evolution, where the positions
KWy po; G BiiAN), (20 gf the heavy scatte¥ers in each initial configuratipon were
and the spectral densiw(uq;u,;t;i%B;i%\) is defined as  fixed during the electron-dynamics time given by the scale
in Eq. (3) by replacingt? by =,=t,+i%\, andt. by 7, t’. The dynamic evolution has been realized according to
=t,—i%(B—\). The dimensionless conducuwty tensor is relations(5),(6). Let us stress, that the Kelbg potential ap-
denoted byoa (). pearmg in _the canonical density operator gsed for ensemble
Our model of correlated electrons interacting with an ar-2veraging in Eq(10) has to be taken at the inverse tempera-

ray of random scatterers is described by the foIIowingture GE_'B’/ZH' while the simul_ation of the dynamic evol_ution,
Hamiltonian: according to Eqs(5) and(6), involves the Kelbg potential at

the temperature B
N0 LD N T ™ oo To simplify the computations we included in E¢L2)
H=Het Hest Hos=(Ket Uee) + Uest (Kt Uso), only the dominant contribution to the sum over the total
electron spins corresponding tas=N/2 electrons having
spin up and down, respectively. The contribution of the other
terms decreases rapidly with particle number and vanishes in
the thermodynamic limit. To further speed up the conver-
(|Qi _Qj|) gence of the numerical calculations, we bounded the integra-

Mo tion over the variables)y, ,q;,dy ,q, responsible for oscil-
lations of the functioney in Eq. (11) and checked the
insensibility of the obtained results to these operations.

Ne Ne

T oy ©)= fdte'wt ftf d\ (L, >\)—

TR e

1#] Nee

Ne Ng
He—szz 2 fgsu
i=1j=1

1 mg

1Qi—Qj
Hos= ZMmSEMEé ( o ) (21)

- 17 IV. NUMERICAL RESULTS

In the problem at hand we choosg/m,~1/2000<1, there- We now apply the numerical approach explained above to
fore, on the time scal€’ the scatterers are practically fixed. o problem of an interacting ensemble of electrons and dis-
Hes is the Hamiltonian of the scatterers ané§®  ordered scatterers in one dimension. In all calculations and
=Vgt' Ik, £°=Vg5t'Ih and &°=V{5t'/h are the con- figures, times, frequencies, and distances are measured in
stants of the binary interaction between electronsatomic units. The average distance between electrBgs,
(e-e) u(|gi—qj|/Nee), electrons and scatterers-§) u(|g; = 1/nay, was varied between 12.0 and 0.55, with the densi-
—Qjl/Nes), and between scatterers-§) u(|Q;—Qjl/\ss),  ties of electrons and heavy scatterers taken to be equal. The
respectively.q; represent the positions of the electrons ( results obtained were practically insensitive to the variation
=1,... Ng) andQ; those of the scattererg€1,... Ng). of the particle number in the Monte Carlo cell from 30 to 50
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s>+ 1 - (e-e) interacting dynamics
1.0 L= 2 (¢ noninteracting dynamics 10 FIG. 2. Temporal momentum-momentum
0 4 % 120 160 200 0 4 % 120 160 200 correlation for interacting ensembles for the case
10 1.0 of interacting(1) and noninteracting2) dynam-
b) a0 ics. Temperatures ardgT/|V§®=0.28 [Figs.
05 i OSJ 2(a),(b)] andkgT/|V5®|=0.45[Figs. 2c),(d)].
By ! A ' Il 1
A ooffy ¢ ag
g I#‘ v M
& osfl g-; 5
1 2 I‘
i Rs=2.6 05 Rs=2.6
Lo}
0 s 1 160 20 T @ @ w1
Time Time

and also of the number of high-temperature density matricesons. Figure 2 shows momentum-momentum correlation

(determined by the number of factar} in Eq. (10), ranging  functions corresponding to the situations | and Il introduced

from 10 to 20. Estimates of the average statistical error gavghove, i.e., to interacting ensembles with interactingves

the value of the Oer_(sjer 5-7 %. We studied two dlﬁere.nt tem-l) and noninteracting:urves 2 dynamiCS, respective|y_ F|g_

peratures: kgT/|V5*|=0.45 and 0.28, corresponding to yre 2 allows us to compare the obtained functions for two

Neel@p~2.2 andNee/ap~3.5, respectively. The strengths temperatures.

the ratioVg®:Vg®:Vg°~0.7:1:32. o manifestation of localization tendencies even at finite tem-
According to the Kubo formuf& our calculations include perature. Note that at higher temperatuiight-hand panel

two different stages(i) generation of the initial conditions these oscillations are less pronounced compared to lower

(configuratio_n of scatterers and glectr))rin; the canonical temperaturegleft-hand panél The damping times of these
ensemble with probability proportional to the quantum den-conerent oscillations are clearly different for the noninteract-

sity matrix, and(i) generation of the dynamic trajectories on jng and interacting dynamics. We observe that the electron-
the time scald’ in phase space, starting from these initial gjectron interaction leads to a strong reductioarve 1 of

configurations. _ this damping time as compared te-¢) noninteracting elec-

_The results presented below are related to three differeRtons (curve 2. Furthermore, for the noninteracting dynam-
situations. The first two situations refer to the generation of.g the appearance of deep aperiodic modulations is seen.
initial configurations used for ensemble averaging, where thgpe dynamics of ¢-€) noninteracting electrons leads to at
(e-e) interaction is fully included(called “interacting en- |east one large oscillation and several damped small ones,
semble’), while the electron dynamics was simulated in casgeflecting a strong spatial confinement of the electron system
| with (e-e) interaction (*interacting dynamics) and, in i, this case. For interacting dynamics both, the first aperiodic
case Il,without (e-e) interactions(*noninteracting dynam-  modulation and the subsequent damped coherent oscillations
ics”). For reference a third situation Ill, was studied wheregre |ess pronounced.
the (e-e) interaction is neglected completely, i.e., both, inthe  The damping time for coherent oscillations increases with
initial ensembleg“noninteracting ensemblg”and in the dy-  increasing density and decreasing temperature. The physical
namical evolution, see also Fig. 1 for illustration. As we reason of this phenomenon is the tendency towards ordering
mentioned before, to avoid the influence ef) bound-state  of the scatterers, which is obvious from the corresponding
effects, we have considered only a system of negatively,ir distribution functions ds) presented in Fig. 3, which
charged heavy scatterers here. The influenceea) (attrac-  develop periodic modulations for higher densities.
tion on localization will be studied in a further publication. AsS an interesting side result, F|g 4 presents the influence
of the choice of initial conditions. In the left column, we
show the momentum-momentum correlation functions corre-
sponding to situations Il and I, i.e., interactirigurves 1}

First, we discuss the influence ad-g) interactions on the and noninteractingcurves 2 ensembles and, in both cases,

temporal quantum momentum-momentum correlation funcdynamics without electron-electron interaction. The analysis

A. Temporal quantum momentum-momentum
correlation functions
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LS LS “bubble” with frequencies defined by the eigenvalues of the
a) 9 resulting potential-energy profile of this well. On the other
10 10 hand, for the typical configurations of interacting ensembles
(cf. Fig. 3 the scatterers and electrons are both distributed
=0 more or less uniformly in space and the potential profile
0.5 0.5 shows only small-scale random spatial inhomogeneities.
In the case of noninteracting ensembles we can see high-
00 00 frequency coherent oscillations with frequencies defined by
0 0 5 10 15 the potential forming the “bubble,” while for interacting en-
20 — 20 sembles with their spatial small-scale potential profile only
i b) a aperiodic oscillationgcf. Fig. 2, curves Pare seen.
1sp it 15
i
00 10 e 1.0 B. Fourier transform of the momentum-momentum time
=f..v , correlation functions
0.5 f Ry =2.6 0.5 fi Figures 5—7 present the real and imaginary parts of the
1 H diagonal elements of the electrical conductivity tensor versus
0'00' 5 4 6 8 10 0'00' 2 4 6 8 10 frequency, i.e., the real and imaginary parts of the Fourier
r r transform of the temporal momentum-momentum correlation

o i . functions. The real part of the Fourier transform character-
FIG. 3. e-e, e-s, ands-s pair distribution functions for the in- ;o5 the Ohmic absorption of electromagnetic energy and has
teracting ensemble, for the same parameters as in Fig. 2. the physical meaning of electron conductivity, while the
imaginary part presents( 1)w, wheree is the permittivity
of the equilibrium configurations and pair distribution func- of the system.
tions for the noninteracting ensemiigght column of Fig. Curves 1 and 2 of Fig. 5 show an opposite behavior for
4) shows that the main contributions to the ensemble avervanishing frequency. Most remarkably, the low-frequency
aging originate from absolutely different particle configura-conductivity related to the interacting dynamicsirve 1 is
tions, if compared to the case of the interacting ensemblepositive, while that for the noninteracting dynamicsirve 2
discussed above. Thee-) noninteracting electrons are has a maximum at some finite frequency related to the co-
gathered mainly in the extended deepest potential well, whil&erent oscillations in the time domain. For lower frequency it
the heavy scatterers form a potential barrier confining thehanges sign. However, the real part of the conductivity has
electrons. The typical initial configuration for equilibrium to be non-negative. The negative contributions are due to
averaging, therefore, contains a so-called “electron bubble.Weakly damped very slow oscillations with time scales ex-
The (e-e) noninteracting electrons oscillate inside this ceeding the scal¢’ considered for the calculation of the

4
©)
3
5 Rs=2.6
=3 Lo 2
v A
1 i ‘\J‘Z“’*L-_
I ~——
] 3 -
1
0 oL FIG. 4. Left column: Temporal momentum-
0 5 10 15 20 momentum correlation functions for the case of
noninteracting dynamics and interactii and
g ay
AT noninteracting (2) ensembles. Temperature is
e d) kgT/|VG®|=0.45. Right column: pair distribution
3 8es functions for the noninteracting ensembles.
\ .
) ﬁ A Rs =0.55
& o0 2 fi A
§' ’ E " H"I N S e
SHRNYYY
1y |‘l v ‘,‘ ‘\l VES nlt
T e
------ 1 - (e-e) interacting ensemble = .. ‘!
===« 2 - (e-e) noninteracting ensemble 1. "
4 2-(e-€) teracting bl o Lk
0 40 80 120 160 200 0 1 2 3 4 5
Time r
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FIG. 5. Real part of the Fourier transform of
the temporal momentum-momentum correlation
functions of Fig. 2.

tivity in the vicinity of zero frequency resembles the charac-
teristic features of Anderson localizatidne., a vanishing

overcome this deficiency of our model one has to increaseero-frequency conductivity and enhanced oscillations re-
the timet’ and/or to take into account the slow motion of the lated to the maximum in the real part at finite frequenfoy
heavy particles, which will destroy the coherent oscillationnoninteracting dynamics of electrons. Treed) interaction,

of the light electrons trapped by the heavy particles and thuen the other hand, leads to a strong increase of the conduc-
suppress these negative values. In fact, we found that calctivity at low frequencies and less pronounced oscillations.

lations performed for longer and longer times lead to de-
creasing negative contributions for low frequencies.
Nevertheless, let us stress that the results obtdirigg. 2

Let us note that the high-frequency tails of the real and
imaginary parts of the Fourier transforms presented in Figs.
5 and 6 coincide with each other, as the main contribution is

and 5 allow us to conclude that the behavior of the conduc-due to the fast trajectories with high virtual energy. This

0.03 o

th2
i a)
0.02 ‘,'||
x i
s \
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v PR
£ oofay
kY ot
: AP
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—~ 003
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M N
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-0.015
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Frequency
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FIG. 6. Imaginary part of the Fourier trans-
form of the temporal momentum-momentum cor-
relation functions of Fig. 2.
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0.05 -
|
1
0.04 ‘4 a) o.02 i ,h’{ <)
ni { ',‘l=2
N nh N BT
2 oomf @ 2O
g i1 Rs=2.6 S S Lot
& 0.02 : Al 2 00 " KN APt
~ i1 & ] S AN
= . R > i JY T e
001}, AT, i *
U : 7
I "y, al
LY e, | . .
0.0 ¥y Worinomnrnrn RS -0.02 [T FIG. 7. Real partleft column and imaginary
H h - .
001 I i! part (right column of the Fourier transform of
00 0.25 05 0.75 1.0 0.0 025 0.5 0.75 10 the temporal momentum-momentum correlation
functions of Fig. 4. Triangles indicate the transi-
0.06 gr tion energies between the lowest energy eigenval-
.04 ! 1 d) ues for an analytical model for the deepest scat-
terer potential that traps the electrofwertical
é é 0.02 f" ; A coordinates of the triangles are arbitrary
= = 'ﬁ L1
= = o,oﬁi el ,..,._i « e
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-0.02
& E 2 ﬁ!
-0.04
------ 1 - (e-e) interacting ensemble
=== 2 - (e-e) noninteracting ensemble
-0.06
0.5 1.0 0.0 05 1.0 15 20
Frequency Frequency

means, thed-e) interaction does not influence the behavior dynamics, cf. Fig. 8. Electron localization in the bubble re-
of the high-frequency tails. Furthermore, we have checke@ults in a very slow growtlicurve 2 of the position disper-
that the high-frequency tails of the real and imaginary partssion in comparison with the case of the small-scale potential
of the Fourier transform can be described by the Drude asprofile (curve 1 of the initial configurations, as seen in Fig.
ymptotics for free electrons. This reflects the fact that als@. The square root of the position dispersion at times of the
the (e-s) interaction[its coupling constant being comparable order of unity yields the typical size of the bubble. However,
to that of the é-e) interactior] does not affect the behavior for larger times,t>80, curve 2 shows a behavior that is
of the high-energy trajectories. typical for particle diffusion. This characteristic change in
The Fourier transform of the correlation functions for pehavior is due to the tail of the electron energy distribution
noninteracting dynamics and both, interacting and noninterfunction and is related to the fact that we are dealing with
acting ensembles, are presented in Figcf7 also Fig. 4. non-self-averaging quantities. For the high-frequency tails of
The most remarkable feature of these figures is the splittinghe Fourier transforms the virtual energy of the trajectories
of the peak related to the coherent electron oscillations fOFnay be large. These exponentially rare fast trajectories can
the noninteracting ensembles. The pOSitionS of the insertegive an exponentia”y |arge contribution to the position dis-
triangles show the energy difference between subsequepkrsion, as the difference in positions of fast trajectories may
eigenenergy levels calculated for an averaged bubble. Thge exponentially large at sufficiently large time. A similar
comparison of the peak and the triangle positions confirmgroblem connected with exponentially large contributions of
the fact that® the Fourier transform of the momentum- exponentially rare events arises in the consideration of clas-
momentum correlation function contains a sum of productsical wave propagation in random media. There, it is well
of & functions and momentum matrix elements related toknowrr™® that in one-dimensional systems the dispersion of
transitions between these energy levels. The imaginary paffave intensities is not self-averaging, as exponentially rare
of the Fourier transform presented in the right column of Fig.configurations of scatterers can give rise to exponentially

7 reflects that these characteristic features are related to th@(ge contributions of intensity at |arge distances from the
resonance oscillations in the “bubble” mentioned above. \wave source.

Figure 5 shows that for noninteracting dynamics, at low
temperatures and moderate densities, &g 2.6 [cf. Figs.
5(b), (d)], a well-resolved absorption peak appears that is V. CONCLUSION

related to the electron energy-level separation. Note that this The guantum-dynamics Monte Carlo approach applied to
peak is present even in the case of interacting ensembleg.one-dimensional system of interacting electrons in an array
However, there, the height of this peak is considerablyof fixed random scatterers at finite temperature gives strong
smaller than in the case of noninteracting ensemti#&s 7). evidence for an enhancement of the quantum mobility of
electrons due to their mutual long-range, many-particle inter-
action and thus substantiates previous expectations drawn
Finally, we discuss the position dispersion of electrons forfrom schematic models.
interacting and noninteracting ensembles and noninteracting As in our approach the temperature is taken to be non-

C. Position dispersion

165124-9
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this case. They manifest themselves both, in the low-
frequency behavior of the momentum-momentum correlation
function related to the conductivity of the electron system
and in coherent oscillations. For nonzero electron-electron
interaction these localization tendencies are relaxed and the
frequency-dependent correlation function has a form not un-
like a Drude behavior. The high-frequency tails resemble a
Drude behavior of free electrons.

For initial conditions describing a noninteracting en-
semble, the scattering centers form electron-bubbles that ac-
commodate the (e-e) noninteracting electrons in their
eigenstates and lead to well-defined coherent oscillations. In
contrast, for configurations describing interacting ensembles,
the scatterers and electrons are both distributed more or less
uniformly in space and the potential profile shows only
6000 small-scale random spatial inhomogeneities. Then the dy-
== 1- (e-e) interacting ensemble namics of interacting electrons in this small-scale random
5000 L 2 - (e-¢) noninteracting ensemble potential profile shows only fast damped oscillations with
much smaller damping time if compared to noninteracting
4000 / dynamics and results in an increased low-frequency conduc-

500

400

300

Coordinate Dispersion

200

tivity.
3000 Rs =0.55 The present work shows that it is possible to treat a sys-
b)

tem of many quantum particles interacting with each other
via the long-range Coulomb potential in a numerically rigor-

2000 A’}/ ous scheme. Here we have considered the heavy patrticles to

Coordinate Dispersion

be essentially immobile species. On the other hand, if their
- mass is being reduced they will take part in the dynamics,
e 2&. m—ﬂ*‘#ﬂ""‘ and we then have a system resembling a plasma of, e.g.,
= electrons and holes. Such calculations are presently under
way and will be published shortly.
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