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Abstract

Classical Molecular Dynamics simulations (MD) for a one-component weakly degenerate
plasma are presented. Using an effective quantum pair potential (Kelbg potential), the
dynamic structure factor and the dispersion of Langmuir waves are computed. The influence
of the coupling strength Γ and degree of degeneracy ρΛ3 on these properties is discussed.
The results are compared with predictions of mean-field theories.

The dielectric properties and the oscillation spectrum of charged particle sys-
tems have been studied in great detail for many decades, e.g. [1, 2, 3]. i). In
the case of weakly correlated classical plasmas, where the coupling parameter Γ =
(4πρ/3)1/3e2/4πε0kBT (ρ is the electron density) is small, the appropriate description
is given by the Vlasov theory. ii) On the other hand, weakly correlated quantum plas-
mas with ρΛ3 > 1, (Λ is the DeBroglie wave length), are well described by the random
phase approximation (RPA). These two mean-field theories neglect correlation effects,
in particular they do not take into account plasmon damping due to collisions. The
latter effect becomes essential for increasing coupling, Γ > 1. iii) Strong coupling in
classical plasmas can be efficiently studied using molecular dynamics simulations, e.g.
[2, 3]. However, this powerful method is not applicable to quantum systems. iv) Al-
ternative approaches to the dielectric properties of quantum systems, such as density
functional or quantum kinetic theory, e.g. [1, 4], are usually successful up to moderate
coupling, rs ≡ r̄/aB � 1, where r̄ and aB denote the mean inter-particle distance and
the Bohr radius, respectively, but fail in the region of the quantum liquid or solid, e.g.
[5].

This brief survey shows that plasmas in the region of moderate coupling and de-
generacy are difficult to describe reliably by means of established methods. In this
paper, we analyze the dynamic structure factor and the Langmuir plasmon dispersion
for weakly degenerate plasmas, ρΛ3 ≤ 1, at intermediate coupling, Γ ≤ 4. For these
parameters, it is possible to perform classical MD simulations using effective quantum
pair potentials. Such potentials have been rigorously derived from the two-particle
Slater sum using Morita’s method by Kelbg and co-workers [6]. In this paper we alter-
natively use the Kelbg potential and the Coulomb potential which allows us to study
the influence of quantum diffraction effects on the dynamic properties of an OCP. We
find that quantum effects tend to soften the wave vector dispersion.

The dielectric and dynamic properties of an N-particle system can be derived from
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the density-density correlation function A(�k, t), which is defined as [1]:

A(�k, t) =
1

N
〈ρ�k(t)ρ−�k(0)〉, ρ�k(t) =

N∑
i=1

ei�k�ri(t). (1)

Here, ρ�k(t) is the spatial Fourier component of the density which is computed from
the trajectories �ri(t) of all particles. The dynamical structure factor is just the Fourier
transformation of the density-density correlation function

S(�k, ω) =
1

2π

+∞∫
−∞

dt eiωt A(�k, t). (2)

The trajectories of particles �ri(t) can be directly obtained by numerically solving clas-
sical (Newton’s) equations of motion for the interacting N-body system which include
all binary Coulomb forces, e.g. [2]. To include quantum diffraction effects, one can
replace the Coulomb potential by an effective quantum potential derived by Kelbg [6]

UKELBG(r, T ) = 4πe2

(
1− exp(−r2/λ2)

r
+

√
π

λ
erfc(r/λ)

)
, λ =

Λ√
2π

. (3)

The Kelbg potential (3) is fi-
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Fig. 1: Dynamical structure factor an OCP at Γ = 1
and ρΛ3 = 0.1 from MD simulation with Coulomb and
Kelbg potential.

nite at zero distance, correctly ac-
counting for the Heisenberg un-
certainty. Most importantly, it is
the exact quantum potential in
the case of small Γ and we ex-
pect that, also at moderate cou-
pling, it accounts for the domi-
nant quantum effects. This po-
tential is used in the MD sim-
ulations shown below. Further-
more, the long range part of the
interaction was computed in stan-
dard way by using Ewald summa-
tion procedure and 3-dimensional
lookup tables, for details cf. [7].

We have performed a series of
simulations for varying values of
Γ and ρΛ3, using the Coulomb
and the Kelbg potential, respec-
tively. Fig. 1. shows the dy-
namical structure factors S(q, ω),
where q is the dimensionless wave
number, q = |k|r̄. In the figure,
also the results for Vlasov and
RPA theories are plotted. The structure factor is clearly peaked at the frequency
of the optical (Langmuir) plasmon. The width of the peak, i.e. the damping of the
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oscillations, increases rapidly with growing wave number. As expected, the mean-field
results have narrower plasmon peaks which is due to the neglect of inter-particle colli-
sions - their widths is solely due to collisionless Landau damping. In contrast, the MD
results fully include Landau and collisional damping. Further, as a result of the in-
creased damping, the plasmon peak obtained in the MD simulations is shifted to lower
frequencies. Comparison of the simulation results with Coulomb and Kelbg potential
shows only slight differences which are most pronounced at large wave numbers. The
reason is that the interaction potentials differ only at small distances.

Increasing the degener-
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Fig. 2: Wave number dispersion of Langmuir waves for var-
ious coupling and degeneracy parameter from MD simula-
tions with the Coulomb and Kelbg potentials. Furthermore,
results from the Vlasov and RPA approximations are shown.
ω0(q) denotes the well-known analytical low q limit of the
Vlasov theory, see text.

acy, we observe that the
peak of the structure fac-
tor moves towards lower fre-
quencies. A more quan-
titative comparison can be
made by following the plas-
mon peak when the wave
number is varied. The re-
sulting wave number dis-
persion of Langmuir oscilla-
tions is shown in Fig. 2 for
a dense OCP with three val-
ues of the coupling strength.
In the limit of small wave
numbers, all models tend
to the same frequency, the
plasma frequency ωpl. (No-
tice that simulation results
are available only for finite
wavenumbers, q ≥ qmin,
where qmin is limited by the
size of the simulation box.)
With increasing wave num-
ber, the frequency is ex-
pected to grow. In partic-
ular, the Vlasov theory pre-
dicts, for small wave num-
bers, krD < 1, the behavior
ω0(q) = ωpl

√
1 + q2/Γ. Our

results show that, for Γ =
0.5 and q ≤ 0.7 this formula
works satisfactorily. How-
ever, for larger wave num-
bers, the plasmon frequency
grows more slowly until it
reaches a maximum around
q ≈ 1. For Γ = 0.5, the plasmon dispersion is overall well reproduced by the RPA
result which we found to be significantly more accurate than the Vlasov theory.

Let us now consider larger values of the coupling parameter Γ, cf. the upper two
figure parts. Here, the differences between the mean field theories and the simulations
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are becoming more prononounced: the MD results yield an essentially lower plasmon
frequency than the RPA and the Vlasov theory. Further, with increasing coupling
strength the dispersion curves become more flat and their maxima decrease. Finally,
let us analyze the influence of quantum effects by comparing the simulations with
the Coulomb and Kelbg potentials: we generally find that the dispersion curves with
the Kelbg potential are below those for the Coulomb case. This difference grows
with increasing plasma degeneracy at constant Γ confirming that this is a quantum
diffraction effect.

Finally, in Fig. 3 we study
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Fig. 3: Optical dispersion relations for different cou-
pling and degeneracy parameter for the OCP with
Kelbg potential. Symbols are MD results, lines the
best fits.

the dependence of the dispersion
relations for the Kelbg poten-
tial on the degeneracy parame-
ter ρΛ3 for two values of the cou-
pling parameter. Again we con-
firm that increasing degeneracy
leads to a lowering (softening)
of the plasmon dispersion. One
may attempt to construct a fit
for the plasmon dispersion which
improves the above approxima-
tion ω0(q). Fig. 3 shows the best
fit constructed according to the
ansatz ω(q)/ωpl = (1 + aq2 +
bq4)1/2, where the points with
smallest wave vector were given
the largest weight [8]. The fit pa-
rameters for two values of Γ and
various degeneracies are summa-
rized in the table.

In summary, we have pre-
sented classical MD simulations
with the Kelbg potential which
allowed us to compute the optical
plasmon dispersion of a weakly
degenerate moderately correlated
one-component plasma. The
main conclusion is that increase
of coupling and degeneracy in-
fluence the dispersion in similar
way: they reduce the plasmon
frequency. The physical reason
is simple: with increasing Γ, the
Coulomb interaction is screened
more and more. Thus, the binary interaction is dominated by short-range effects which
tends to soften the collective mode. Similarly, increase of the degeneracy leads to a
growth of the electron wave length which, again, increases the efficiency of short-range
binary interaction.
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Γ ρΛ3 a b
1.0 0.1 1.013 ± 0.031 -0.260 ± 0.023
1.0 0.5 1.074 ± 0.041 -0.288 ± 0.013
1.0 1.0 0.975 ± 0.055 -0.259 ± 0.018
4.0 0.1 0.169 ± 0.015 -0.034 ± 0.006
4.0 1.0 0.121 ± 0.007 -0.025 ± 0.003

Tab. 1: Fit parameters of the Langmuir dispersion curves shown on Fig. 3. The fit equation
was taken in the form ω(q)/ωpl = (1+aq2+bq4)1/2. q is in units of r̄. The fit parameters for
Γ = 1 and ρΛ3 = 0.1 are less reliable, because of the absence of data for big wave vectors.
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