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Quantum Kinetic Theory of Laser Plasmas
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Abstract

A quantum kinetic equation for plasmas in laser fields is presented. Nonequilibrium proper-
ties like the electron–ion collision frequency and collisional absorption are calculated on the
basis of a numerical solution of this equation as well as using perturbation theory.

1 Generalized kinetic equation

The classical kinetic theory of plasmas in time dependent electric fields was developed
in important papers of Silin [1] and later by Klimontovich [2]. In these papers kinetic
equations for ultrafast processes where derived and applied to the determination of
transport properties of plasmas in strong high–frequency electric fields. At the same
time Oberman and Dawson [3] developed a mean field theory for these systems.

The recent developments in the field of short-pulse laser technology make this
problem again very acute. The aim of the present paper is to give a generalization to
a quantum kinetic description.

An important problem is the energy transfer between the plasma and the field
described by the well–known eqs.
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where the electric current density j is determined by the Wigner distribution
f(p,R, t). The Wigner distribution follows usually from a quantum mechanical
Boltzmann–like kinetic equation. In a strong high-frequency field, however, such an
equation is not adequat (for a detailed discussion see [4]), and more general kinetic
equations have to be derived.

In order to find a more general kinetic equation we started from the time–diagonal
Kadanoff-Baym equation and used the self–energy in Second Born approximation for
a statically screened potential [4] which results in{
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with the distribution functions having arguments ka +Qa(t, t̄).
This kinetic equation is more general than Boltzmann–like kinetic equations. It is

a non–Markovian equation which conserves the full energy. The time dependent field
modifies the collision integral in several ways. (i) There are shifts of the momenta,

Qa(t, t
′) = −ea

∫ t

t′ dt1 E(t1), produced by the field during the collision time (intra-
collisional field contribution). (ii) In addition to the usual collisional energy broadening
there appears a field dependent broadening given by
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(iii) An important feature is the nonlinear dependence of the collision integral on the
field strength which leads to interesting effects. We find by Fourier expansion of the
collision integral that Coulomb collisions in a strong electric field
– are accompanied by emission and absorption of multiple photons, and
– give rise to generation of higher harmonics in the time dependence of the distribution
function.

Finally let us remark that a generalization of the collision integral to dynamical
screening leads to a more complicated expression which we considered in Ref. [5].

2 Transport properties. Electron–ion collision frequency

In order to study the trans-
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Fig. 1: Time evolution of the kinetic energy for different
field strengths

port properties of the laser
plasma we have to find so-
lutions of the kinetic equa-
tion by numerical or per-
turbation methods. Let us
first consider the behavior
of the energy of the plasma.
Using numerical solution of
the non–Markovian kinetic
equation (1), we find the
time evolution of the ki-
netic energy which is given
in Fig. 1. In the initial time

an uncorrelated plasma was adopted, i.e., we have only kinetic energy. Then there is an
increase of the kinetic energy because of the build–up of correlation energy. Without
electric field the kinetic energy would reach a stationary value, but in a laser plasma
we observe the well–known collisional absorption.

The collisional absorption is usually determined by the electron–ion collision fre-
quency which is for the case of high field frequencies, ω0, defined by νei(E) =
4π 〈j · E〉ω2

0/ 〈E2〉ω2
pl. In order to discuss this quantity in detail we consider the special

situation ω0 >> ωpl , v0 >> vth with v0 and vth being quiver velocity and thermal
velocity, respectively [4, 5]. In this case the influence of the collisions is small and,
following an idea of Silin, we can now determine the distribution function and the elec-
trical current density by perturbation theory with respect to the collision integral [6].
Using the collision integral including dynamical screening we find for the electron–ion
collision frequency [7]
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The classical limit of this expression
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Fig. 2: Electron ion collision frequency in a hy-
drogen plasma as a function of v0/vth at T =
7 · 104K.

is well known. It was given first by
Klimontovich [2] and later re–derived
by Decker et al. [8]. The classi-
cal limit is connected with the usu-
ally divergency difficulties and there-
fore cut off procedures are necessary.
In our quantum mechanical expression,
however, the divergencies of the clas-
sical theory are avoided without any
arbitrary cut-off procedures. Diver-
gencies at small wave numbers q do
not occur on behalf of the application
of a screened potential and the factor
exp[−n2meω

2
0/2kBTq2]. Divergencies

at large q cannot exist because quan-
tum mechanics provides for a conver-
gence factor exp[−�

2q2/8mekBT ]. To
compare with the classical relations it
is obvious to introduce by the relations n2meω

2
0/2kBTq2 = 1 and �

2q2/8mekBT = 1
effective cutoffs qmax = ωo/vth and qmin = Λe. These parameters are just the cutoffs in
the Silin theory.

The behavior of the collision fre-
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Fig. 3: Electron ion collision frequency in a
nonequilibrium hydrogen plasma (ω0/ωpl = 3,
v0/vth = 0.2, ne = 1021cm−3).

quency (3) and the modifications by
quantum mechanics are represented in
Figs. 2 and 3. Here the solid curve
corresponds to the relation (3). The
dashed line gives the result for the case
of static screening. The dotted lines
are high field and low field asymptotic
results of the classical theory of Silin.
We observe remarkable deviations of
the classical results; however, the de-
viations are decreasing with increas-
ing temperatures. The importance of
quantum effects in dependence of the
temperature is demonstrated in Fig. 3.
All classical theories [1, 2, 8, 9] break
down at lower temperatures due to the
cut off procedures. Semiclassical theories with Kelbg’s quantum potential like molecu-
lar dynamic simulation in [10] and HNC calculation in [11] are in reasonable agreement
with our calculations in a much wider range of temperatures.
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The perturbation theory presented above involves strong approximations (e.g. use
of an oscillating Maxwell distribution function for the electrons) applied to the general
kinetic equation.

The numerical solution of the
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Fig. 4: Electron ion collision frequency vs. field
strength at the initial time and after 25 fs.

kinetic equation shows a strong
anisotropy and non-Maxwellian behav-
ior of the distribution function [12].
Therefore it is interesting to determine
the collision frequency with the time
dependent distribution function from
the numerical solutions. The result
is given in Fig. 4 and shows a rapid
decrease of νei during the first few
laser periods. The nonequilibrium
plasma exhibits strongly increased
inverse bremsstrahlung absorption and
emission of higher field harmonics [12].
In the long–time limit, t > 100fs,
a Maxwellian distribution function
is reached and νei approaches the
analytical curves given above.
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