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Abstract

A novel path integral representation of the many-particle density operator is presented
which makes direct Fermionic path integral Monte Carlo simulations feasible over a wide
range of parameters. The method is applied to compute the energy of a dense hydrogen
plasma in the region of intermediate coupling and degeneracy and is compared to analytical
and experimental results.

Many interesting phenomena in dense plasmas occur in situations where Coulomb
and quantum effects are important simultaneously. Among the most promising theo-
retical approaches to these systems are path integral quantum Monte Carlo (PIMC)
techniques. However, for Fermi systems, they are hampered by the so-called sign
problem which lead to the incorporation of additional assumptions (restricted PIMC
concept [1]). In this work we demonstrate that, for many current problems in dense
warm plasmas (kBT > 0.1Ry), rigorous direct PIMC simulations can be carried out
with acceptable efficiency. Here, we report results for the internal energy of par-
tially ionized hydrogen over a broad range of coupling and degeneracy parameters,
Γ = (4πne/3)

1/3e2/4πε0kBT and χ = neλ
3
e [λe is the electron thermal wave length

λ2
e = 2π�

2β/me].
Thermodynamic quantities are computed from the partition function which, for a

binary mixture of Ne electrons and Ni protons is conveniently written as [2]

Z(Ne, Ni, V, β) =
Q(Ne, Ni, β)

Ne!Ni!
, Q(Ne, Ni, β) =

∑
σ

∫

V

dq dr ρ(q, r, σ; β). (1)

Here, q ≡ {q1, q2, ..., qNi} comprises the coordinates of the protons, and σ =
{σ1, ..., σNe} and r ≡ {r1, ..., rNe} the electron spins and coordinates, respectively.
The density matrix ρ in Eq. (1) is represented in standard way by a path integral [3]

ρ(q, r, σ; β) =
1

λ3Ni
i λ3Ne

∆

∑
P

(±1)κP

∫

V

dr(1) . . . dr(n) (2)

×ρ
(
q, r, r(1); ∆β

)
. . . ρ

(
q, r(n), P̂ r(n+1); ∆β

)
S(σ, P̂σ′),

where ∆β ≡ β/(n + 1), λ2
∆ = 2π�

2∆β/me, r(n+1) ≡ r and σ′ ≡ σ. The electron
spin gives rise to the spin part of the density matrix S, whereas exchange effects are
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accounted for by the permutation operator P̂ and the sum over the permutations
with parity κP . Following Refs. [4, 2], we use a modified representation (3) of the
high-temperature density matrices on the r.h.s. of Eq. (2)

∑
σ

ρ(q, r, σ; β) =
1

λ3Ni
i λ3Ne

∆

Ne∑
s=0

ρs(q, [r], β), (3)

ρs(q, [r], β) =
Cs

Ne

2Ne
e−βU (q,[r],β)

n∏
l=1

Ne∏
p=1

φl
ppdet |ψn,1

ab |s,

U(q, [r], β) = U i(q) +

n∑
l=0

Ue
l ([r], β) + Uei

l (q, [r], β)

n + 1
,

which is suitable for efficient direct fermionic PIMC simulations of plasmas. The error
of Eq. (3) is of the order (βRy)2χ/(n+1) and vanishes with growing number of beads.
Further, U i, Ue

l and Uei
l denote the sum of the binary interaction potentials Φab between

protons, electrons at vertex “l” and electrons (vertex “l”) and protons, respectively,
for which the Kelbg potential [5] was found to be a very good approximation [6].

In Eq. (3), φl
pp ≡ exp[−π|ξ(l)

p |2]
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Fig. 1: Pressure of an ideal plasma of degener-
ate electrons and classical protons. PIMC sim-
ulation results with varying particle number are
shown: N = 32 (triangles), N = 50 (squares)
and N = 90 (circles) are compared to the exact
analytical result (dashed line).

arises from the kinetic energy density
matrix of the electron with index p,
and we introduced dimensionless dis-
tances between neighboring vertices on
the loop, ξ(1), . . . ξ(n). Thus, explic-
itly, [r] ≡ [r; r + λ∆ξ(1); r + λ∆(ξ

(1) +
ξ(2)); . . .]. A crucial point is that the
sum over the permuations in Eq. (2)
has been converted into a determinant
of the exchange matrix

||ψn,1
ab ||s ≡ ||e−

π

λ2
∆

|(ra−rb)+yn
a |2 ||s, (4)

where yn
a = λ∆

∑n
k=1 ξ

(k)
a , and the sub-

script s denotes the number of electrons
having the same spin projection. Using
Eq. (3), all thermodynamic functions
can be computed [2, 6]. We demon-

strate our numerical scheme for a two-component electron-proton plasma. In the
simulations we used Ne = Np = 50 and n = 6 . . . 20. To test the MC procedure we
first consider a mixture of ideal electrons and protons for which the thermodynamic
quantities are known analytically, e.g. [7]. Fig. 1 shows our numerical results for the
pressure together with the theoretical curve. The agreement, up to values of the de-
generacy parameter χ as large as 10 is evident and improves with increasing particle
number. This clearly proofs that our method correctly samples the fermionic permuta-
tions. Furthermore, we note that our scheme is numerically efficient which is primarily
due to the representation (3) and the determinant (4) allowing for fast generation of a
MC sequence of N-particle configurations. In particular, the acceptance probability of
new configurations is proportional to the absolute value of the ratio of the exchange
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determinants of two subsequent configurations, while the sign of the determinants is
included into the weight function of each configuration.

Let us now turn to the case of interacting electrons and protons. We have performed
a series of calculations in which the classical coupling parameter Γ was kept constant
while the degeneracy parameter χ was varied. For definiteness, the comparison is
restricted to a H-plasma in the density-temperature region with the following borders
0.2 < Γ < 1.6 and 0.25 < neΛ

3
e < 5 which may be called “rhombus of moderate

nonideality degeneracy” [6]. With respect to analytical treatment this region is of
particular difficulty since none of the known limiting expressions is valid. The results
of our calculations are given in Fig. 2. A very interesting result is that the energy
curves in Fig. 2 become almost parallel to each other as the degeneracy increases.

In contrast, for Γ > 0.6, re-
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Fig. 2: Comparison of Padé calculations (lines without
symbols) of the internal energy with the direct PIMC
results (lines with full circles). Also shown are data
points from restricted PIMC simulations [1] vs. our sim-
ulation results for 4 values of Γ: from top to bottom:
Γ = 0.169, 0.338, 0.672, 1.35. (The last point appears on
both figure parts.)

duction of the degeneracy be-
low χ ∼ 1 leads to a rapid de-
crease of the energy which is
due to the formation of atoms
and molecules which is also
clearly seen in the pair distri-
bution functions, cf. [2]. Our
analyis shows that, for weak
coupling (cf. Γ ≤ 0.4) and
small degeneracy parameters,
χ < 0.5, there is good agree-
ment with analytical theories
[2], however, with increasing
χ and Γ, the deviations are
growing rapidly. This figure
also contains data points of
recent restricted path integral
calculations of Militzer et al.
[1] (cf. the large triangles)
compared to our results (large
squares) for values of the cou-
pling parameter in the range
of 0.17 . . . 1.35. Evidently, the
agreement is very good. A
more detailed comparison is
given in Ref. [6].

Finally, we have included
in Fig. 2 results of improved
Padé approximations. They
are analytically exact up to
quadratic terms in the density
and interpolate between the
virial expansions and the high-
density asymptotic expressions
and also include bound states by using the chemical picture [6]. Obviously, these
formulas fit the simulation data rather well, demonstrating the usefulness of this ap-
proach.
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Fig. 3 shows our results for the total energy of hydrogen for a constant temperature,
T = 125, 000K, where the degree of ionization is large. Again, a comparison with
RPIMC data is given. Further, analytical results from quantum statistical calculations
are shown which include Hartree-Fock and Montroll-Ward diagrams [7].

The agreement up to densities
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Fig. 3: Energy of dense hydrogen at T = 125, 000K
computed analytically (Hartree-Fock plus Montroll-
Ward terms [7]) and from restricted [1] and direct
PIMC results.

of the order 1023cm−3 is rather
good. However, in the region
of the Mott transition, around
1024cm−3, the analytical model,
as expected, underestimates the
Coulomb interaction. On the
other hand, they are known to
give the correct asymptotics for
the strongly degenerate plasma at
very high densities which will be
explored in more detail elsewhere
[8].

Based on extensive investiga-
tions, we may conclude that our
direct PIMC simulations provide
accurate results for dense plasmas
at T > 0.1Ry and for densities up
to the Mott point where no reli-
able theoretical models exist. The data for densities beyond 1025cm−3 are preliminary
as there more fermionic beads and further improvements of the high temperature
density matrix may be needed.
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