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Abstract

We present results of Monte-Carlo simulations for finite 2D single and bilayer systems.
Strong Coulomb correlations lead to arrangement of particles in configurations resembling a
crystal lattice. For binary layers, there exists a particularly rich variety of lattice symmetries
which depend on the interlayer separation d. We demonstrate that in these mesoscopic
lattices there exist two fundamental types of ordering: radial and orientational. The
dependence of the melting temperature on d is analyzed, and a stabilization of the crystal
compared to a single layer is found.

Introduction. The properties of a finite number of charged particles (N � 100) in
a single “two-dimensional” layer have been the subject of intensive threoretical and
experimental investigation in the last decade [1-5]. In particular, if at low temperature
the density parameter rs is increased, transitions from a Fermi liquid to a so-called
Wigner molecule, see e.g. [3] and, further, to a Wigner crystal have been found [4, 5, 6].
The interplay between the long-range Coulomb interaction and a shallow confinement
potential plays in these systems a prominent role making conventional effective single-
particle approximations unreliable. In this connection the predictions of both classical
and quantum Monte Carlo methods which treate N-body correlations rigorously, are
of great importance, in particular for the theoretical understanding of the solid-liquid
crossover. Recently, a new 2D system has attracted the attention of several groups,
namely, bilayer structures. The phase diagram of bilayer systems is far more rich
compared to single layers. In particular, the formation of Wigner lattices in electronic
or ionic bilayers has been predicted, both by classical [7] and quantum-mechanical [8]
studies and revealed the existence of distinct structural phases: rectangular, square,
rhombic and triangular staggered lattices. The transition between these phases takes
place at specific values of the interlayer distance d, when one of the phases becomes
energetically favorable and may proceed in continuous or discontinuous manner. How-
ever, these predictions have been made for macroscopic systems. Here, we extend
the analysis of bilayer stuctures to finite-size systems (e.g. electrons or ions in quan-
tum dots and radio frequency traps, respectively). Our previous inverstigation of
finite single layer structures [4, 5] has revealed that these mesoscopic systems have
a richer phase diagram than their macroscopic counterpart, and that the phase dia-
gram strongly depends on the particle number. In this paper, we demonstrate that
different crystalline structures are stable in different ranges of the interlayer distance.
Moreover, we find that melting may procced in several stages, and the crystal may be
stabilized by choosing a proper value of d.

Model and characteristic parameters. We consider a system of N charged particles
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of the same type interacting via the repulsive Coulomb potential located in two 2D
layers which are a distance d apart. In each layer a circular symmetric parabolic
potential of strength ω0 is applied. The system is described by the hamiltonian
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where rij ≡ ri−rj, m
∗ and εb are the effective electron mass and background dielectric

constant, respectively. We use the following length and energy scales: r0, given by
e2/εbr0 = m∗ω2r2

0/2, and Ec - the average Coulomb energy, Ec = e2/εbr0. After the
scaling transformations {r → r/r0, E → E/Ec, d → d/r0} the hamiltonian becomes
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where n ≡ √
2 l20/r

2
0 = (a∗

B/r0)
1/2, a∗

B is the effective Bohr radius, and l20 = �/(m∗ω0),
is the extension of the ground state wave function of noninteracting trapped electrons.
Further, we define rs ≡ r0/a

∗
B = 1/n2 [5] and introduce the dimensionless temperature

T ≡ kBT/Ec which is related to the classical coupling parameter as Γ ≡ 1/T [1]. To
make reliable calculations in the crystal phase, where the Coulomb energy strongly
exceeds the kinetic energy, we use classical and path integral (PIMC) Monte Carlo
simulations in the classical and quantum regions of the phase diagram, respectively.

Phase boundary of the mesoscopic Wigner crystal in a single layer, d = 0. Our
simulations revealed that the structure of the clusters in the crystal phase strongly
depends on the particle number and results from the competition of two ordering ten-
dencies: for large particle numbers, a triangular lattice is energetically favorable. In
contrast, for small N , the particles tend to form shells. For intermediate particle num-
bers, N > 40, only the outer electrons form shells, while the inner part goes over to a
triangular lattice structure. These configurations are remarkably stable and are visible
even outside the crystal phase. To distinguish the solid and liquid phases, we used
the standard Lindemann criterion which is based on the analysis of the magnitude of
the inter-particle distance fluctuations, see e.g. [1]. Indeed, our simulations show that
these fluctuations exhibit jumps (see Fig 3.a below) which allow us to locate the phase
boundary of the crystal. When leaving the crystal, the relative distance fluctuations
increase several times which results from particles exchanging their lattice sites or un-
dergoing inter-shell transitions. Interestingly, we find two distinguished crystal phases:
first, a completely ordered state and second, a partially (only radially) ordered phase
where shells can rotate with respect to each other. The transition between the two
phases will be called orientational melting (“OM”), whereas the transition from the
radially ordered state to the liquid-like state is radial melting (“RM”). We underline
that this phase still resembles the crystal (it still exhibits shell structure). Neverthe-
less, it is characterized by essentially increased inter-shell exchanges of particles and,
therefore, this “Wigner molecule” phase [3] may not be identified with a crystal.
The results for the phase boundaries in the density-temperature plane are summarized
in Fig. 1 for various particle numbers. Consider first the line of radial melting “RM”.
At low densities, n < 0.03, we are in the classical regime, and the phase boundary
is given by critical values of the coupling parameter Γ which, in Fig. 1 corresponds
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to straight lines from the origin. We found that Γ deviates from the 2D bulk value,
Γ∞ = 137, e.g. [1], and strongly depends on the cluster size. Further increase of
Γ, (reduction of the slope of the straight line), eventually leads to the second phase
boundary, labelled “OM” which corresponds to freezing of the inter-shell rotation. At
sufficiently low temperature, the electron behavior in this phase is dominated by quan-
tum effects. This becomes particularly clear if the density parameter n is increased.
In this case, we observe increasing quantum (zero-point) fluctuations. When the line
“OM” is reached again a jump of the relative distance fluctuations is observed which
corresponds to “cold” orientational melting [5]. Finally, increasing n further, leads to
the line “RM”, i.e. to cold radial melting of the crystal. From the figure it is clear
that each of the two crystal phases exists up to a maximum temperature. This tem-
perature is comparatively low. Using typical parameters of 2D GaAs semiconductors,
the maximum temperature of the radially ordered phase is in the range of 1 . . . 5K.

Interestingly, the phase bound-
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Fig. 1: Phase diagram of the mesoscopic 2DWigner
crystal. “OM” (“RM”) denotes the orientational
(radial) melting curves for N = 12, 19, 20. Insert
shows an enlarged picture of the low-density region.
Dotted straight lines indicate the radial melting
transition of a macroscopic classical and quantum
WC. Brueckner parameter follows from the density
by rs = 1/n2. Shown error bars are typical for all
curves.

ary of the crystal significantly varies
with the number of particles. This
dependence is particularly strong for
the orientational melting transition,
and we find that crystals in so-called
magic clusters have unusually high
stability. The reason is that these
clusters have the highest angular
symmetry (the particle numbers on
the shells have a common divisor).
This is a peculiarity of mesoscopic
systems; the strong number depen-
dence of the melting properties van-
ishes in the limit of a macroscopic
system where also the two crystal
phases merge into one.

Bilayers, d 	= 0. Let us now
turn to electron crystallization in
two parallel 2D layers. We study
a classical bilayer cystal using stan-
dard MC simulations. The particles

are arranged into two parallel layers each containing an equal number of particles. For
zero separation, d = 0, we have just one 2D “atom”. For example, for 2N = 38, this
is a cluster with one electron in the trap center and three shells containing 7, 13 and
17 electrons, respectively. In the opposite limit, d → ∞, the system consists of two
independent clusters with N = 19 particles and shell configuration {1, 6, 12}. Below
we provide a detailed investigation of the stuctural changes between these two limits
for the case N = 19.

Different crystalline structures can be identified from snapshots of instantaneous
configurations (see insets in Fig. 2). In Fig. 3.c we also show particle configurations
in both layers projected onto the same plane. To characterize the stuctural symmetry
in each layer we use a suitable order parameter given by
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where the first sum is taken over the Nl particles in the inner part of the crystal (all
particles except those on the outer shell), and the sum over k runs over all intralayer
neighbors of particle j within a circle of radius R. m = 2, 3 . . .; and θjk is the an-
gle between some fixed axis and the vector connecting the j−th particle and its k−th
neighbor. For a triangular lattice, the order parameter G6 approaches one, whereas for
a square(rhombic) lattice, G4 becomes close to unity. We also consider the magnitude
of the relative intra/inter-layer distance fluctuations, Eq. (4) which, in the vicinity of
orientational and radial melting, exhibit a strong increase, thus providing a suitable
quantitative criterion for these phase transitions (see Fig. 3.a,b). We define the inter-
layer (l 	= m, C = NlNm) and intralayer [l = m and i 	= j, C = Nl(Nl − 1)] distance
fluctuations, ulm, and the radial fluctuations with respect to the trap center, ul, as

ulm ≡ 1
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where Nl and Nm are the number of particles in layer l and m, respectively; rij is the
projection of the distance between particles i and j onto one of the layers; and 〈. . .〉
denotes an ensemble average.

First, we start to decrease the in-
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Fig. 2: Order parameterGm(R), Eq. (3), character-
izing the angular lattice symmetry for several val-
ues of d. Symbols denotem = 4 (diamonds),m = 5
(squares) and m = 6 (triangles). Insets show the
corresponding particle configuration in one layer.

terlayer distance from the limit d →
∞. The configuration {1, 6, 12} cor-
responding to two independent clus-
ters does not change up to d ≈ 0.9.
The temperature dependence of the
inter(intra)-layer pair distance fluc-
tuations ulm(ul), Eq. (4), for d = 1.4
are shown in Fig. 3.a. The two
jumps in the behavior of the fluctu-
ations correspond to the two melt-
ing transitions. First, orientational
melting takes place in both layers si-
multaneously. That means that the
shells with 6 and 12 particles are
orientationally disordered and can
rotate relative to each other, as in
the single-layer system. This melt-
ing takes place at a temperature
To ≈ 2.5 · 10−3. Notice that the in-
tra and interlayer fluctuations differ
significantly which shows that inter-
layer correlations are comparatively
small which allows the shells in the
two layers to rotate independently of

each other (Fig. 3.a, upper part). Radial melting sets in at a higher temperature,
Tr ≈ 6.5 · 10−3 - the same temperature as was found for single-layer systems [5].

Decreasing the interlayer distance to d = 0.9 leads to redistribution of particles
on the shells. The cluster configuration {1, 7, 11} in each layer becomes energetically
favorable, cf. Fig. 2. These changes in the cluster symmetry lead to quite different
temperatures of orientational melting. Now the inner shells in the two layers are
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“frozen” and cannot rotate with respect to each other. However, they can rotate
together relative to the (frozen) two outer shells which is clearly seen in the coinciding
inter and intralayer distance fluctuations, Fig. 3.a, lower part. This is a new type
of disordering transition which is missing in the single-layer system. The critical
temperature of this transition is significantly lower, To ≈ 5 · 10−6, which is a result of
the modified shell configuration. Total melting occures at Tr ≈ 7 · 10−3.

Now we consider
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Fig. 3: Crystallization in a classical bilayer system for varying
interlayer distance d. Left three figures: Relative two-particle
distance fluctuations ulm for particles from the same layer (open
symbols) and from different layers (full symbols) and radial fluc-
tuations ul, Eq. (4). Upper right figure shows snapshots of the
crystal structure for T = 3 · 10−3. Full and open symbols de-
note particles from different layers, thin lines are guide for the eye
to underline the cluster symmetry. Lower right figure shows the
critical temperature of the radial (RM) and orientational (OM)
melting transitions versus d.

the distance d = 0.8.
The interlayer cor-
relations lead to
the formation of
staggered rhombic
lattices in the inner
parts of the clusters.
The interesting point
here is that these
staggered lattices still
have the possibility
to rotate relative
to the outer shells.
This takes place at
To ≈ 4.5 · 10−3. This
essential increase
of the orientational
melting temperature
(compared to the
case d = 0.9) is due
to the fact that the
outer and inner shells
begin to lose angular
symmetry (which is
similar to d = 0.5,
see inset of Fig. 2).
Close inspection of
this figure shows that
some particles (in the
top part) are moved
inbetween the shells which effectively hampers rotation of the shells. The calculated
radial distribution functions (not shown) also confirm this conclusion. In addition to
the peaks corresponding to the two shells (for d ≥ 0.9), here a third maximum arises
inbetween. Radial melting sets in at Tr ≈ 7.5 · 10−3, which is an important increase
of the stability against radial disordering compared to larger values of d, cf. Fig. 3.d.

At interparticle distances in the range d = 0.5 . . . 0.7 the angular shell symmetry
in the system is practically lost and the particle configuration in each layer resembles
a rhombic lattice, cf. Fig. 3.c. This leads to drastic changes in the behavior of the
fluctuations: orientational and radial transitions take place approximatly at the same
temperature, To ≈ 7 . . . 8 · 10−3 and Tr ≈ 7.5 . . . 9 · 10−3, cf. Fig. 3.d. Further decrease
of the interlayer separation up to d = 0.3 gives rise to another symmetry change, to
formation of a rectangular lattice in each layer, cf. Fig. 2. Interestingly however, the
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system as a whole regains spherical symmetry: as is clearly seen in Fig. 3.c, all particles
together arrange into a spherically symmetric cluster of 2N = 38 particles with the
shell configuration {1, 7, 13, 17}. This restoration of spherical symmetry causes the
temperature of the orientational melting to drop significantly around d = 0.3, cf.
Fig. 3.d. The obvious conclusion is that the interlayer correlations already dominate
the behavior of the clusters, and the system has become effectively a single-layer
structure. When d → 0, we again observe all properties of a single-layer crystal,
including the critical values of temperatures for radial and orientational melting, To ≈
1 · 10−6 and Tr ≈ 7.2 · 10−3, respectively.

In summary, we have presented a detailed analysis of Wigner crystallization of
finite electron systems in one and two layers. In particular, we discussed the influence
of interlayer correlations on the crystal phase. We have shown that, when d is reduced,
the clusters first lose spherical symmetry and transform into a rectangular (rhombic)
lattice. Finally, at low d, a spherical arrangement is re-established when all particles
effectively form a single layer. We have found that this intermediate range of d-values
provides an additional stabilization of the Wigner crystal, and the melting temperature
may rise by up to 50% (confirming the previous finding for macroscopic systems [7]).
The same tendency is expected to hold in mesoscopic clusters in the quantum range
(very low temperature): interlayer correlations should significantly reduce the critical
value of rs [5] to about rs → 2

3
rs which should improve prospects for an experimental

observation of electron(hole) crystallization in semiconductor heterostructures even at
zero magnetic field. It remains a challenging task to obtain the dielectric properties of
these strongly correlated quantum systems extending previous work for macroscopic
systems, e.g. [9, 10, 11], which will be important for applications.
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