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Kadanoff–Baym equations and non-Markovian Boltzmann
equation in generalized T-matrix approximation
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A recently developed method@Semkatet al., Phys. Rev. E59, 1557~1999!; Kremp
et al., in Progress in Nonequilibrium Green’s Functions~World Scientific, Sin-
gapore, 2000!, p. 34# for incorporating initial binary correlations into the
Kadanoff–Baym equations~KBE! is used to derive a generalized T-matrix approxi-
mation for the self-energies. It is shown that the T-matrix obtains additional con-
tributions arising from initial correlations. Using these results and taking the time-
diagonal limit of the KBE, a generalized quantum kinetic equation in binary
collision approximation is derived. This equation is a far-reaching generalization of
Boltzmann-type kinetic equations: It self-consistently includes memory effects~re-
tardation, off-shell T-matrices! as well as many-particle effects~damping, in-
medium T-matrices! and spin-statistics effects~Pauli-blocking!. © 2000 Ameri-
can Institute of Physics.@S0022-2488~00!01908-3#

I. INTRODUCTION

Nonequilibrium properties of many-particle systems have traditionally been describe
kinetic equations of the Boltzmann-type. Despite their fundamental character, these equ
have well-known principal shortcomings, e.g.,~i! the short-time behavior (t,tcor—the correlation
time! cannot be described correctly,~ii ! the kinetic or the quasiparticle energy is conserved inst
of the total~sum of kinetic and potential! energy,~iii ! no bound states are contained, and~iv! in the
long-time limit, they yield the equilibrium distribution and thermodynamics of ideal particles

An important generalization are the well-known Kadanoff–Baym equations derived
Kadanoff and Baym,3 and Keldysh.4 However, the original KBE contain no contribution from
initial correlations. Therefore, the KBE are unable to describe the initial stage of the evo
(t0<t<tcor) and the influence of initial correlations which can be important for ultrafast re
ation processes.

To include initial correlations into the KBE, various methods have been used, inclu
analytical continuation of the equilibrium KBE to real times3,5–8 and perturbation theory with
initial correlations.5,9,10 A convincing solution has been presented by Danielewicz,5 who devel-
oped a perturbation theory for a general initial state and derived generalized KBE which tak
account arbitrary initial correlations. Finally, a straightforward and very intuitive method w
does not make use of perturbation theory but uses the equations of motion for the G
functions instead, has been developed in Refs. 1 and 2. While perturbative approaches
stricted to situations where the coupling is weak, our method is valid for arbitrary cou
strength. In particular, it allows to consider systems with strong coupling, such as Cou
systems at low temperatures and/or high density~e.g., metals and dense plasmas! and nuclear
matter, and to include bound states. In Sec. II we briefly recall the main ideas of our method
this, Sec. III is devoted to the application of our approach to the T-matrix approximation. In
IV we derive a non-Markovian Boltzmann equation in binary collision approximation.

a!Electronic mail: Michael.Bonitz@physik.uni-rostock.de
74580022-2488/2000/41(11)/7458/10/$17.00 © 2000 American Institute of Physics
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II. INITIAL CORRELATIONS IN THE KADANOFF–BAYM EQUATIONS

Starting point of our approach is the first equation of the Martin–Schwinger hierarchy11

~Sac2Uac!Gcb5dab6 i\ Vad,ceGce,bd , ~1!

with

Sac5S i\
]

]ta
1

\2¹a
2

2ma
D dac , ~2!

together with an initial condition forGce,bd

Gce,bdu tc5te5tb5td5t0
5Gcb~ t0!Ged~ t0!6Gcd~ t0!Geb~ t0!1Cce,bd~ t0!. ~3!

Summation/integration over repeated indices is implied. Here,C denotes initial binary correlation
in the system, andU is an external potential. The self-energy is defined by

SacGcb56 i\ Vad,ceGce,bd56 i\ Vad,ceH GcbGed6
dGcb

dUde
J . ~4!

Considering Eq.~4! in the limit t5t8→t0 , we get explicitly

E d t̄ Sac~ t0 , t̄ !Gcb~ t̄ ,t0!56 i\ Vad,ce$Gcb~ t0!Ged~ t0!6Gcd~ t0!Geb~ t0!1Cce,bd~ t0!%. ~5!

Since the time integration is performed along the Keldysh-Schwinger contour, only time
contributions ofS survive on the lhs~left-hand side!. The last term on the rhs shows that the
must exist, in addition to the Hartree–Fock contributions~first two terms!, another time-local part
which is related to initial correlations. That means, the self-energy has the structure (Ŝ denotes the
self-energy in the adjoint equation!

Sab5Sab
HF1Sab

C 1Sab
IN , ~6!

Ŝab5Sab
HF1Sab

C 1Ŝab
IN , ~7!

with the time-local terms~here, we give the time arguments explicitly!

Sab
IN ~ t,t8!5Sab

IN ~ t,t0!d~ t02t8!, ~8!

Ŝab
IN ~ t,t8!5Ŝab

IN ~ t0 ,t8!d~ t2t0!. ~9!

The further steps aim at the determination of these initial correlation terms and are ske
here, for details, we refer to Refs. 1 and 2. Inserting~4! into ~1!, one obtains a Dyson–Schwinge
equation fort,t8.t0

~Sac2Uac2Sac!Gcb5dab , ~10!

which can be cast into the formGac
21Gcb5dab . Functional differentiation of this equation wit

respect to the external potentialU yields a Bethe–Salpeter equation fordG/dU. Performing the
same steps for the adjoint equation to~1! as well, a solution fordG/dU, which incorporates initial
binary correlations, is obtained

dGab

dUdc
5GadGcb1Gae

d@Se f
C 1Se f

IN1Ŝe f
IN#

dUdc
Gf b6GaeGc fCe f,ghGgbGhd , ~11!
 24 Jan 2003 to 139.30.43.211. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



inger
corre-

way
ng the
,

tion
within
opens

ages

than

ner-

tional

7460 J. Math. Phys., Vol. 41, No. 11, November 2000 Semkat, Kremp, and Bonitz

Downloaded
whereC has the time structure

Cab,cd~ tatb ,tctd!5Cab,cd~ t0!d~ ta2t0!d~ tb2t0!d~ tc2t0!d~ td2t0!. ~12!

III. GENERALIZED T-MATRIX APPROXIMATION

In the previous section we have obtained a formal decoupling of the Martin–Schw
hierarchy by introduction of the self-energy. Furthermore, our approach shows, that initial
lations can, in principle, be straightforwardly included into this quantity. The next step on the
to a quantum kinetic equation is to choose a suitable approximation for the self-energy. Amo
standard schemes are the random phase approximation~RPA!, describing dynamical screening
and the T-matrix~or binary collision! approximation. The determination ofS in these schemes
without inclusion of initial correlations is well-known. For example, the T-matrix approxima
leads to a non-Markovian Boltzmann equation. In Ref. 12, this equation has been derived
the density operator technique. The nonequilibrium Green’s functions approach, however,
the possibility to derive two-time quantum kinetic equations with their well-known advant
~e.g., they fully include the kinetic and spectral one-particle properties!. One-time equations are
obtained by taking the time-diagonal limit of the two-time equations in a much simpler way
within the density operator technique.

In the following, we will use the nonequilibrium Green’s functions theory to derive a ge
alization of the usual T-matrix approximation, which includes initial binary correlations.

According to Eqs.~4! and ~11!, the self-energy is determined by the functional equations13

Sab56 i\ Vad,ceH dcbGed6debGcd1Gc fGegCf g,bhGhd6Gc f

d@S f b1Ŝ f b
IN#

dUde
J , ~13!

Ŝab56 i\H daeGcd6dacGde1GdgCag, f hGf cGhe6
d@Ŝa f1Sa f

IN#

dUed
Gf cJ Vce,bd , ~14!

Sab
IN 56 i\ Vad,ceH Gc fGegCf g,bhGhd6Gc f

dS f b
IN

dUde
J , ~15!

Ŝab
IN 56 i\H GdgCag, f hGf cGhe6

dŜa f
IN

dUed
Gf cJ Vce,bd . ~16!

Notice especially that, due to the structure of the self-energy, the arguments of the func
derivative in the equations forS and Ŝ are the same in both cases

S1Ŝ IN5Ŝ1S IN5SC1S IN1Ŝ IN5S̃. ~17!

We now introduce an effective two-particle potentialJ by

dS̃ab

dUcd
5

dS̃ab

dGe f

dGe f

dUcd
56 i\ Ja f ,be

dGe f

dUcd
, ~18!

and define a generalized T-matrix16

Tab,cd5Jab,cd6 i\ Jae,c fGf gGheTgb,hd6Jae,c fGf gGheCgb,hd . ~19!
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In terms of Feynman diagrams, Eq.~19! reads~the shaded block denotes the initial correlationC)

Comparing Eq.~19! with the solution~11! for dG/dU, one obtains the relation

dS̃ab

dUcd
56 i\ GdeTae,b fGf c . ~20!

So we could identifyT with the correlated part of the two-particle function without the bare ini
correlationC. The equation for the self-energy now takes the form

Sab56 i\ Vad,ce$dcbGed6debGcd1Gc fGegCf g,bhGhd1 i\ Gc fGegTf g,bhGhd%. ~21!

Functional differentiation of this equation yields a relation forJ, which depends onT and on the
quantity dŜ IN/dG[6 i\ F. Inserting this relation into Eq.~19!, and evaluating the functiona
derivativedŜ IN/dG, one arrives at two coupled equations forT andF, where self-energies andJ
have been eliminated. Keeping only the ladder-type terms, these equations can be written

Tab,cd5Vab,cd1Fab,cd1Vab,e fGegGf hCgh,cd1 i\ Vab,e fGegGf hTgh,cd , ~22!

Fab,cd5Cab,e fGegGf hVgh,cd1 i\ Fab,e fGegGf hVgh,cd . ~23!

Equations~22! and ~23! can be solved easily~see the Appendix!, yielding an explicit expression
for T

Tab,cd5Tab,cd1 i\ Tab,e fGegGf hCgh,i j GikGjl Tkl,cd1Tab,e fGegGf hCgh,cd1Cab,e fGegGf hTgh,cd ,

~24!

or, in terms of Feynman diagrams

Here,T denotes the well-known ‘‘ladder T-matrix’’ which obeys

Tab,cd5Vab,cd1 i\ Vab,e fGegGf hTgh,cd , ~25!

The systems~22! and~23! can be regarded as a generalization of the usual T-matrix equation~25!,
where Eq.~24! shows explicitly the corrections which are due to initial correlations.

If we now insert Eq.~24! into the equation for the self-energy~21!, we obtainS in T-matrix
~binary collision! approximation
 24 Jan 2003 to 139.30.43.211. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Sac56 i\ Tab,cdGdb6 i\ Tab,e fGegGf hCgh,cdGdb6~ i\!2 Tab,e fGegGf hCgh,i j GikGjl Tkl,cdGdb ,

~26!

and analogouslyŜ

Ŝac56 i\ Tab,cdGdb6 i\ Cab,e fGegGf hTgh,cdGdb6~ i\!2 Tab,e fGegGf hCgh,i j GikGjl Tkl,cdGdb ,

~27!

Comparing these results with the predicted structure of the self-energies, Eqs.~6! and~8!, the
time-local contributions are identified as

Sac
IN56 i\ Tab,e fGegGf hCgh,cdGdb , ~28!

Ŝac
IN56 i\ Cab,e fGegGf hTgh,cdGdb , ~29!

or, diagrammatically

Interestingly, the correlation partSC of the self-energy contains an initial correlation contributio
too

Sac
C 56 i\ Tab,cdGdb6~ i\!2 Tab,e fGegGf hCgh,i j GikGjl Tkl,cdGdb , ~30!

and, again in diagrams

With Eqs.~26!–~30! we have found a generalization of the T-matrix approximation. In additio
the usual ladder term, the self-energies contain explicitly contributions of initial correlations

All relations derived so far are valid on the Keldysh–Schwinger contour. In order to obtai
Kadanoff–Baym equations and kinetic equations for the Wigner function, it is now necess
specify the position of the time arguments of Green’s functions on the contour. Then we o
 24 Jan 2003 to 139.30.43.211. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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from the Dyson equation~10! the well-known Kadanoff–Baym equations for the correlati
functionsg: ~in the following, small letters denote quantities on the physical time axis, and
time arguments will be shown explicitly!

E d t̄$sac~ t, t̄ !2sac
HF~ t, t̄ !%gcb

: ~ t̄ ,t8!5 E
t0

t

d t̄$sac
. ~ t, t̄ !2sac

, ~ t, t̄ !%gcb
: ~ t̄ ,t8!1E

t0

t8
sac

: ~ t, t̄ !

3$gcb
, ~ t̄ ,t8!2gcb

. ~ t̄ ,t8!%, ~31!

E d t̄ gac
: ~ t, t̄ !$scb

† ~ t̄ ,t8!2scb
HF~ t̄ ,t8!%5 E

t0

t

d t̄$gac
. ~ t, t̄ !2gac

, ~ t, t̄ !%ŝcb
: ~ t̄ ,t8!1E

t0

t8
gac

: ~ t, t̄ !

3$ŝcb
, ~ t̄ ,t8!2ŝcb

. ~ t̄ ,t8!%. ~32!

The self-energies read in T-matrix approximation

sac
: ~ t,t8!56 i\ tab,cd

: ~ t,t8!gdb
" ~ t8,t !6 i\ tab,cd

C;IN ~ t,t8!gdb
" ~ t8,t !6 i\ tab,cd

IN ~ t,t8!gdb
A ~ t0 ,t !,

~33!

ŝac
: ~ t,t8!56 i\ tab,cd

: ~ t,t8!gdb
" ~ t8,t !6 i\ tab,cd

C;IN ~ t,t8!gdb
" ~ t8,t !6 i\ t̂ ab,cd

IN ~ t,t8!gdb
R ~ t8,t0!,

~34!

sac
HF~ t,t8!56 i\ ~vab,cd6vab,dc!gdb

: ~ t,t8!d~ t2t8!, ~35!

where the initial correlation contributions are given by

tab,cd
IN ~ t,t8!5E d t̄ tab,e f

R ~ t, t̄ !G e f,gh
R ~ t̄ ,t0!cgh,cd~ t0!d~ t02t8!, ~36!

t̂ ab,cd
IN ~ t,t8!5E d t̄ cab,e f~ t0!G e f,gh

A ~ t0 , t̄ !tgh,cd
A ~ t̄ ,t8!d~ t02t !, ~37!

tab,cd
C;IN ~ t,t8!5 i\E d t̄ d t̄̄ tab,e f

R ~ t, t̄ !G e f,gh
R ~ t̄ ,t0!cgh,i j ~ t0!G i j ,kl

A ~ t0 , t̄̄ !tkl,cd
A ~ t̄̄ ,t8!, ~38!

while the greater–less and the retarded–advanced T-matrices obey the equations

tab,cd
: ~ t,t8!5 i\E d t̄ vab,e fG̃e f,gh

R ~ t, t̄ !tgh,cd
: ~ t̄ ,t8!1 i\E d t̄ vab,e fG e f,gh

: ~ t, t̄ !tgh,cd
A ~ t̄ ,t8!,

~39!

tab,cd
R/A ~ t,t8!5vab,cdd~ t2t8!1 i\E d t̄ vab,e fG̃e f,gh

R/A ~ t, t̄ !tgh,cd
R/A ~ t̄ ,t8!, ~40!

where we introduced the abbreviations

G e f,gh
R/A ~ t,t8!5geg

R/A~ t,t8!gf h
R/A~ t,t8!, G e f,gh

: ~ t,t8!5geg
: ~ t,t8!gf h

: ~ t,t8!, ~41!

G̃e f,gh
R/A ~ t,t8!56Q@6~ t2t8!#$G e f,gh

. ~ t,t8!2G e f,gh
, ~ t,t8!%. ~42!

A further important relation is the optical theorem, which follows from Eqs.~39! and ~40!:

tab,cd
: ~ t,t8!5 i\E d t̄ d t̄̄ tab,e f

R ~ t, t̄ !G e f,gh
: ~ t̄ , t̄̄ !tgh,cd

A ~ t̄̄ ,t8!. ~43!
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Equations~31!–~43! represent the Kadanoff–Baym equations in the generalized binary c
sion approximation. Here, the T-matrix contains contributions which are due to initial bi
correlations. These additional terms can be separated from the ‘‘usual’’ T-matrix, and, in pa
lar, do not influence the structure of the Lippmann–Schwinger equation~40!.

IV. NON-MARKOVIAN BOLTZMANN EQUATION

In the previous section, we presented a far-reaching generalization of the usual T-
approximation by incorporating initial correlations. This way, the Kadanoff–Baym equations
become sufficiently general to describe the evolution of a many-particle system on arbitrar
scales, in particular on ultrashort times after an excitation. Their solutions, the two-time co
tion functions, contain a tremendous amount of information on the statistical and dyna
properties of a strongly correlated many-particle system, fully including damping~lifetime! of the
one and two-particle states.14 However, in many cases the information contained in the Wig
distribution is sufficient. Therefore, in the following, we will derive an equation for this funct
i.e., a kinetic equation in a narrow sense.

For this purpose, we consider the Kadanoff–Baym equations@Eqs.~31! and~32!# in the limit
of equal timest5t8 and subtract them from each other. The result is an equation for the d
bution function which reads, in momentum representation~we consider a homogeneous syste
without external forces!

]

]t
f ~p,t !56E

t0

t

d t̄ $s.~p,t, t̄ !g,~p, t̄ ,t !2s,~p,t, t̄ !g.~p, t̄ ,t !

1g,~p,t, t̄ !ŝ.~p, t̄ ,t !2g.~p,t, t̄ !ŝ,~p, t̄ ,t !%

5I ~p,t !1I IC~p,t !. ~44!

This so-called time-diagonal equation is a very general representation of a kinetic equatio
rhs describes the influence of collisions as well as initial correlations on the Wigner distrib
and is, in principle, determined by the exact self-energy and the two-time correlation funct

In order to obtain a closed kinetic equation, two major tasks remain:~i! An approximation for
the self-energies has to be chosen, and~ii ! the reconstruction problem, i.e., the determination
g: as a functional of the Wigner distribution, has to be solved. The first task has already
dealt with in the previous section, with the result being the generalized T-matrix approxim
given by Eqs.~33!–~43!. Let us now consider the reconstruction problem. In order to obtain
functional relationg:5g:@ f #, we use the generalized Kadanoff–Baym ansatz~GKBA! proposed
by Lipavskýet al.15

g:~p,t,t8!56$gR~p,t,t8! f :~p,t8!2 f :~p,t !gA~p,t,t8!%, ~45!

with f ,5 f and f .516 f . For the productsG : then follows:

G 12
:~ t,t8!5G 12

R ~ t,t8!F12
:~ t8!1F12

:~ t !G 12
A ~ t,t8!, ~46!

where we used the abbreviationsF12
: 5 f :(p1) f :(p2) andG125G(p1 ,p2). From Eq.~46! follow

relations between the functionsG R/A and G̃R/A which were defined in Eqs.~41! and ~42!

G̃12
R ~ t,t8!5G 12

R ~ t,t8!N12~ t8!, ~47!

G̃12
A ~ t,t8!52N12~ t !G 12

A ~ t,t8!, ~48!

where we introduced the Pauli blocking factorN12516 f (p1)6 f (p2).
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Now we insert the self-energies in T-matrix approximation, Eqs.~33!–~38!, into the time
diagonal equation@Eq. ~44!#, replacingt: with the help of the optical theorem~43! andG : by
means of the reconstruction ansatz~46!. The result is the collision integralI

I ~p1 ,t !5~ i\!2E dp2

~2p\!3

dp̄1

~2p\!3

dp̄2

~2p\!3E d t̄ d t̄̄ d t̄̄̄

3$tR~p1p2 t,p̄1p̄2 t̄ !Ḡ12
R ~ t̄ , t̄̄ !tA~ p̄1p̄2 t̄̄,p1p2 t̄̄̄ !G 12

A ~ t̄̄̄ ,t !@ F̄12
. ~ t̄̄ !F12

, ~ t̄̄̄ !2F̄12
, ~ t̄̄ !F12

. ~ t̄̄̄ !#

1tR~p1p2 t,p̄1p̄2 t̄ !Ḡ12
A ~ t̄ , t̄̄ !tA~ p̄1p̄2 t̄̄,p1p2 t̄̄̄ !G 12

A ~ t̄̄̄ ,t !@ F̄12
. ~ t̄ !F12

, ~ t̄̄̄ !2F̄12
, ~ t̄ !F12

. ~ t̄̄̄ !#

2 G 12
R ~ t, t̄ !tR~p1p2 t̄,p̄1p̄2 t̄̄ !Ḡ12

A ~ t̄̄ , t̄̄̄ !tA~ p̄1p̄2 t̄̄̄,p1p2 t !@F12
. ~ t̄ !F̄12

, ~ t̄̄ !2F12
, ~ t̄ !F̄12

. ~ t̄̄ !#

2 G 12
R ~ t, t̄ !tR~p1p2 t̄,p̄1p̄2 t̄̄ !Ḡ12

R ~ t̄̄ , t̄̄̄ !tA~ p̄1p̄2 t̄̄̄,p1p2 t !@F12
. ~ t̄ !F̄12

, ~ t̄̄̄ !2F12
, ~ t̄ !F̄12

. ~ t̄̄̄ !#%,

~49!

with Ḡ12
R/A5G R/A(p̄1 ,p̄2) and tR/A(p1p2 t,p̄1p̄2 t̄)5^p1p2utR/A(t, t̄ )up̄1p̄2&, and the collision inte-

gral arising from initial correlationsI IC

I IC~p1 ,t !5 i\E dp2

~2p\!3

dp̄1

~2p\!3

dp̄2

~2p\!3E d t̄$tR~p1p2 t,p̄1p̄2 t̄ !K~ p̄1p̄2 t̄,p1p2 t !

2K~p1p2 t,p̄1p̄2 t̄ !tA~ p̄1p̄2 t̄,p1p2 t !%

2~ i\!2E dp2

~2p\!3

dp̄1

~2p\!3

dp̄2

~2p\!3

dp̄̄1

~2p\!3

dp̄̄2

~2p\!3

3E d t̄ d t̄̄ d t̄̄̄$tR~p1p2 t,p̄1p̄2 t̄ !K~ p̄1p̄2 t̄,p̄̄1p̄̄2 t̄̄ !tA~ p̄̄1p̄̄2 t̄̄,p1p2 t̄̄̄ !N12~ t̄̄̄ !G 12
A ~ t̄̄̄ ,t !

1G 12
R ~ t, t̄ !N12~ t̄ !tR~p1p2 t̄,p̄1p̄2 t̄̄ !K~ p̄1p̄2 t̄̄,p̄̄1p̄̄2 t̄̄̄ !tA~ p̄̄1p̄̄2 t̄̄̄,p1p2 t !%, ~50!

with

K~p1p2 t,p̄1p̄2 t̄ !5G 12
R ~ t,t0!c~p1p2 ,p̄1p̄2 ;t0!Ḡ12

A ~ t0 , t̄ !. ~51!

With Eqs.~44!, ~49!, and~50! we have obtained a very general quantum kinetic equation.
character of its approximations goes far beyond that of the usual Boltzmann equation. The
sion integralI (p1 ,t) was derived without any approximation with respect to the times and
fully includes retardation and memory effects which is usually referred to as non-Marko
behavior. Many-particle effects, as for instance self-energy and damping,14 and spin statistics
effects~Pauli blocking! are included. So far, no restriction has been introduced with respect t
retarded and advanced propagatorsG R/A. In principle, they are to be determined self-consisten
from their KBE which follow easily from Eq.~10!. However, to avoid this essential complicatio
in most cases approximations are used. For example, in the quasiparticle approximatio
propagators are given explicitly by

G 12
R/A~ t,t8!5

1

~ i\!2
Q@6~ t2t8!#e2 i /\[E121 iG12]( t2t8), ~52!

with E125(p1
2/2m) 1 (p2

2/2m) 1Res1
R1Res2

R andG125Im s1
R1Im s2

R .
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Furthermore, the retarded and advanced T-matrices are many-particle generalizations
familiar T-matrices of quantum scattering theory. They have to be determined from
Lippmann–Schwinger equation~40! which reads in momentum representation

tR/A~p1p2 t,p18p28 t8!5v~p12p18!~2p\!3d~p11p22p182p28!d~ t2t8!

1 i\E dp̄1

~2p\!3

dp̄2

~2p\!3E d t̄ v~p12p̄1!~2p\!3d~p11p22p̄12p̄2!

3G̃R/A~ p̄1 ,p̄2 ;t, t̄ !tR/A~ p̄1p̄2 t̄,p18p28 t8!. ~53!

The collision integralI IC(p1 ,t) contains the terms arising from binary correlations, existing
the system initially. It should be stressed explicitly that the structure of these contributio
completely general and does not depend on parameters characterizing the system, such as
strength or degree of degeneracy. Furthermore, the inclusion of initial correlations does n
pend on their actual form, i.e., the form of the functionc. The damping of the two-particle
propagators leads to a decay of this collision term, i.e., the initial correlations die out on a
scale which is determined by the one-particle damping rates.14

Finally, we want to remark here that our result for the non-Markovian Boltzmann equati
in agreement with the result derived within the framework of the density operator techniqu
Ref. 12.
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APPENDIX: SOLUTION OF THE GENERALIZED T-MATRIX EQUATIONS

We rewrite Eqs.~22! and ~23!, which contain the ladder-type terms of the generaliz
T-matrix ~19!

Tab,cd5Vab,cd1Fab,cd1Vab,e fGegGf hCgh,cd1 i\ Vab,e fGegGf hTgh,cd , ~A1!

Fab,cd5Cab,e fGegGf hVgh,cd1 i\ Fab,e fGegGf hVgh,cd . ~A2!

Due to the structure of Eq.~A1!, T can be split into three parts

Tab,cd5T ab,cd
(A) 1T ab,cd

(B) 1T ab,cd
(C) , ~A3!

T ab,cd
(A) 5Vab,cd1 i\ Vab,e fGegGf hT gh,cd

(A) , ~A4!

T ab,cd
(B) 5Vab,e fGegGf hCgh,cd1 i\ Vab,e fGegGf hT gh,cd

(B) , ~A5!

T ab,cd
(C) 5Fab,cd1 i\ Vab,e fGegGf hT gh,cd

(C) . ~A6!

Obviously, Eq.~A4! coincides with the well-known ladder equation of the T-matrix approxim
tion. Thus, we can identifyT (A) with the usual T-matrixT. The ladder equation~A4! now serves
as a basis for the solution of~A5! and ~A6!. If one assumes forT (B) the form

T ab,cd
(B) 5Tab,e fGegGf hCgh,cd , ~A7!

Eq. ~A5! is valid if ~A4! holds. In order to determineT (C), Eq. ~A2! has to be considered. Thi
equation is fulfilled ifF is of the structure
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Fab,cd5Cab,e fGegGf hTgh,cd , ~A8!

if the adjoint equation to~A4! is valid. Due to the symmetry properties ofT, Eq. ~A4! and its
adjoint are equivalent. Inserting~A8! into Eq. ~A6! and assumingT (C) to be of the structure

T ab,cd
(C) 5Cab,e fGegGf hTgh,cd1 i\ Tab,e fGegGf hCgh,i j GikGjl Tkl,cd , ~A9!

Eq. ~A6! is fulfilled, again under the assumption~A4!. Collecting all parts together,T can be
represented as

Tab,cd5Tab,cd1 i\ Tab,e fGegGf hCgh,i j GikGjl Tkl,cd1Tab,e fGegGf hCgh,cd1Cab,e fGegGf hTgh,cd ,

~A10!

together with the equation for the well-known ‘‘ladder T-matrix’’

Tab,cd5Vab,cd1 i\ Vab,e fGegGf hTgh,cd . ~A11!
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