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Abstract

Using a novel path integral representation of the many-particle density operator, we calculate the pair distribution
function of Fermi systems which are both strongly coupled and strongly degenerate. Numerical results are presented for a
dense two-component electron–proton plasma at temperatures k T)0.1 Ry. q 2000 Elsevier Science B.V. All rightsB

reserved.
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There is growing interest in the thermodynamic
properties of Fermi systems in many fields, including
plasmas, astrophysics, solids and nuclear matter, see

w xRefs. 1–3 for an overview. Among the phenomena
of current interest are Fermi liquids, metallic hydro-
gen, plasma phase transition, bound states etc., which
occur in situations where both Coulomb and quan-
tum effects are relevant.

A theoretical approach which is well suited to
describe this region is the path integral quantum

Ž .Monte Carlo PIMC method. There has been re-
markable recent progress in applying these tech-

w xniques to Fermi systems, see e.g. Refs. 1,2,4–6 .
However, these simulations are hampered by the
notorious fermion sign problem. To overcome this
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difficulty, additional assumptions such as the fixed
node and restricted path concepts have been intro-

w xduced 7 which, however, are difficult to verify.
Recently, we have presented a new path integral
representation for the N-particle density operator
w x8–10 which avoids these additional approximations
and is based on a direct fermionic path integral
Monte Carlo procedure. Using this concept we com-
puted the pressure and energy of a degenerate
strongly coupled electron–proton plasma in broad
range of densities and temperatures, k T)0.1 Ry,B
w x8–10 . Further, this method was successfully ap-
plied to Wigner crystallization of few-electron sys-

w xtems in traps 11 .
In this work we apply our PIMC method to the

computation of the pair distribution functions. As an
Ž .illustration, we present numerical results i for an

ideal electron–proton plasma which are compared to
Ž .analytical predictions, ii for a nonideal plasma over

Ž .a wide range of coupling and degeneracy and iii
investigate the formation of hydrogen atoms and
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molecules and their vanishing with increased temper-
Ž .ature or pressure Mott effect .

The pair distribution function of a binary mixture
of N electrons and N ions is defined by the densitye i

matrix r

1
ag R , R s dq dr d R yQŽ . Ž .ÝHag 1 2 1 1Z Vs

=d R yQg r q ,r ,s ;b , 1Ž . Ž .Ž .2 2

� 4where bs1rk T , and q' q ,q , . . . ,q com-B 1 2 Ni

prises the coordinates of the ions, and s s
� 4 � 4s , . . . ,s and r' r , . . . ,r denote the electron1 N 1 Ne e

spins and coordinates, respectively. The indices a

and g label the particle species, i.e. ase,i and
gse,i, and the coordinates Q denote one of the
following: Q e sr and Q i sq . Furthermore,1,2 1,2 1,2 1,2

w xZ is the partition function given by 13

Q N , N ,bŽ .e i
Z N , N ,V ,b s ,Ž .e i N !N !e i

with Q N , N ,b s dq dr r q ,r ,s ;b .Ž . Ž .ÝHe i
Vs

2Ž .

The exact density matrix is, for a quantum system, in
general, not known but can be constructed using a

w xpath integral representation 13 ,

r q ,r ,s ;bŽ .
1 kP Ž1. Žn.s "1 dr PPP drŽ .Ý H3 N 3 Ni el l Vi D P

= Ž . Ž . Ž .1 n nq1ˆr q ,r ,r ;Db PPP r q ,r , Pr ;DbŽ . Ž .
ˆ X

=SS s , Ps , 3Ž .Ž .
Ž . 2 2where Db ' br n q 1 and l s 2p " Dbrm .D e

Further, r Žnq1.'r and s
X ss , i.e. the electrons are

represented by fermionic loops with the coordinates
Ž . w x w Ž1. Žn. xbeads r ' r,r , . . . ,r ,r . The electron spin
gives rise to the spin part of the density matrix SS ,
whereas exchange effects are accounted for by the

ˆpermutation operator P and the sum over the permu-
Žtations with parity k . In the fermionic case minusP

.sign , the sum contains N !r2 positive and negativee

terms leading to the notorious sign problem.

w xFollowing Refs. 4,8–10 , we use a modified rep-
resentation of the high-temperature density matrices

Ž .on the r.h.s. of Eq. 3 which is suitable for efficient
direct fermionic PIMC simulations of plasmas
w x14,15 :

Ne1
w xr q ,r ,s ;b s r q , r ,b ,Ž . Ž .Ý Ý s3 N 3 Ni el li Ds ss0

w xr q , r ,bŽ .s

s Nn eCNe yb UŽq ,w r x ,b . l n ,1< <s e f det c ,Ł Ł sp p abNe2 ls1 ps1

w xU q , r ,bŽ .

n e eiw x w xU r ,b qU q , r ,bŽ . Ž .l lisU q q ,Ž . Ý
nq1ls0

4Ž .

where U i, U e and U ei denote the sum of the binaryl l

interaction potentials F ab between ions, electrons at
Ž .vertex ‘l’ and electrons vertex ‘l’ and ions, respec-

tively. The error of thermodynamic quantities com-
Ž .puted using Eq. 4 vanishes with growing number of

Ž . w x Ž . lbeads at least as 1r nq1 10 . In Eq. 4 , f 'p p
w < Ž l . < 2 xexp yp j , where we introduced dimensionlessp

Ž .distances between neighboring vertices beads on
Ž1. Žn. w x wthe loop, j , . . . ,j . Thus, explicitly, r ' r;rq

Ž1. Ž Ž1. Ž2.. xl j ;rql j qj ; . . . . We underline thatD D

Ž .the density matrix 4 does not contain an explicit
sum over the permutations and thus no sum of terms
with alternating sign. Instead, the whole exchange
problem is contained in a single exchange matrix
given by

p 2n ,1 n< < < < < < < <c ' exp y r yr qy , 5Ž . Ž .s sab a B a2½ 5lD

where y n sl Ýn j Žk .. As a result of the spina D ks1 a

summation, the matrix carries a subscript s denoting
the number of electrons having the same spin projec-

w xtion. For more details, we refer to Refs. 8,9,14,15 .
We now explain how to compute the pair distribu-

Ž .tion function in our scheme. Using the result 4 for
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Ž .the density matrix, the pair distribution functions 1
become

1
ag R , R s dq dr dj d R yQŽ . Ž .Hag 1 2 1 1

J V

= g w xd R yQ r q , r ,b , 6Ž .Ž .Ž .2 2

w xJ N , N ,b s dq dr dj r q , r ,b . 7Ž . Ž .Ž .He i
V

Ž .Expression 6 is well suited for numerical evalua-
w xtion using Monte Carlo techniques, e.g. 4,5 . In our

Ž .Monte Carlo MC scheme we used three types of
steps, where either electron or ion coordinates, r ori

q or individual electronic beads j Žk . were movedi i

until convergence of the pair distributions was
reached. In the simulations we used 50 protons and
50 electrons. To simplify the computations, we in-
cluded only the dominant contribution in the sum
over the total electron spin s corresponding to ss
Nr2 electrons having spin up and down, respec-

Žtively. The contribution of the other terms is small
.and vanishes in the thermodynamic limit. For the

pair potential F ab in the high-temperature density
w x2matrix we used the Kelbg potential 17 which was

found to give excellent results for the thermody-
w xnamic functions of dense hydrogen 9 . For more

w xdetails, we refer to Refs. 9,10,14,15 .
As a first test, we consider a mixture of ideal

electrons and protons for which the pair distribution
functions are known analytically, see below. Fig. 1
shows our numerical results for the three functions
g , g and g as a function of the interparticleee i i e i

distance rsR yR . As expected, the functions g1 2 ei
Žand g are identical to one the fluctuations at smalli i

distances reflect the statistical error of the MC simu-
.lation, no smoothening has been applied. . In con-

trast, the electron–electron correlation function de-
cays at small distances reaching 0.5 at rs0 which
is the expected result for particles with spin 1r2.

An interesting feature is the maximum of g . Itee

appears around the thermal wavelength l and has ae

height slightly above 1. At first sight this is surpris-
ing as it is in contrast to the familiar analytical result

2 A rigorous justification for the use of the Kelbg potential in
w xPIMC simulations is given in Ref. 18

Fig. 1. PIMC result for the pair distribution functions for an ideal
plasma of degenerate electrons and classical proton at nL3 s4.

for the pair distribution function of an ideal Fermi
w xsystem at zero temperature, e.g. 16 ,

21 3 R pF
g R s1y sin xyxcos x , xs ,Ž . Ž .0 32 "x

8Ž .

where p is the Fermi momentum and R the inter-F

particle distance R yR . Obviously, g F1 for all1 2 0

R. To find an explanation for the discrepancy be-
tween the PIMC result and the behavior of the zero

Ž .temperature formula 8 , we briefly recall the deriva-
tion of the analytical result which can be easily
extended to finite temperature and even nonequilib-
rium. Consider the one-particle and two-particle den-
sity operators which follow from the N-particle den-

w xsity operator by a partial trace, e.g. 3,19 ,

1
ˆ ˆF sV Tr r , Tr F s1,ˆ1 2 . . . N 1 1V

1
2ˆ ˆF sV Tr r , Tr F s1. 9Ž .ˆ12 3 . . . N 12 122V

Assuming homogeneity, we introduce the momen-
tum representation, with the orthonormal basis func-

< : 3 < : ² <tions ps , with Ý Hd p ps s p s1, and ob-s

tain

1
X X Xˆ² < < : Xps F s p s f p ,s d pyp d ,Ž . Ž .1 s ,sn

d3p
f p ,s sn. 10Ž . Ž .ÝH 32p "Ž .s
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For the two-particle density operator of an ideal
BoserFermi system we obtain

ˆ X X X X² < < :p s p s F s p s p1 1 2 2 12 2 2 1 1

1
Xs f p ,s f p ,s d p ypŽ . Ž . Ž .�1 1 2 2 1 12n

=d p ypX
d X d X "d p ypXŽ . Ž .2 2 s ,s s ,s 1 21 1 2 2

=d p ypX
d X d X , 11Ž . Ž .42 1 s ,s s ,s1 2 2 1

Ž .for arbitrary distribution functions f p,s . To de-
Ž .rive the pair distribution function from Eq. 11 we

first compute the two-particle Wigner distribution for
the spin diagonal matrix elements, s ss

X, s ss
X ,1 1 2 2

Ž .by Fourier transforming Eq. 11 with respect to the
difference momenta pX yp and pX yp , with the1 1 2 2

result

1
Wf p , p ;R ;s ,s s f p ,s f p ,sŽ . Ž . Ž .12 1 2 1 2 1 1 2 22n

=

i
Ž .p yp R1 2

"1"d e .s ,s½ 51 2

12Ž .

The pair distribution function is then obtained by
Ž .summing 12 over s ,s and integrating over1 2

p , p ,1 2

1 2< <g R s1" f R ,Ž . Ž .2

i3d p p R
"f R s f p ,s e . 13Ž . Ž . Ž .ÝH 32p "Ž .s

This is the pair distribution function of a macro-
scopic ideal BoserFermi gas with an arbitrary distri-

Ž .bution function f p,s . Obviously, for fermions,
Ž .g R is always less or equal unity. If the distribution

function is isotropic,

f R ™f RŽ . Ž .
`4p " dp pR

s p f p ,s sin ,Ž .ÝH 3R "0 2p "Ž .s

and, inserting the zero temperature step function
Ž . Ž .leads immediately to Eq. 8 . Inserting Eq. 13 into

Ž .the normalization condition 9 yields a correction
due to the exchange correlations

1 1 d3p
2ˆTr F s1" f p ,s ,Ž .ÝH12 122 3nNV 2p "Ž .s

14Ž .
Ž .violating the normalization 9 . This shows that the

Ž .result 13 is strictly valid only in the thermody-
namic limit where the exchange correction to the
normalization vanishes. To reduce the finite size
effects, we therefore, performed simulations with
increasing particle number and indeed observed a
decrease and broadening of the peak.

Let us now turn to the case of interacting elec-
trons and protons. Notice that to obtain converging
results for the pair distribution functions, requires
significantly larger computer time than for the ther-
modynamic functions. This time increases rapidly
with improved spatial resolution of the pair distribu-
tions. Therefore, a compromise is necessary, and
fluctuations of the pair distributions are unavoidable.

Fig. 2. Qualitative picture of the density-temperature plane of
Ž w x.partially ionized hydrogen from Ref. 20 . Calculations were

performed inside the dashed area and along the adjacent vertical
and horizontal lines. In particular, dots a–d indicate the simula-
tions points of Fig. 3. Parameters r , a , r , l , and l denoteD 0 s e p e p

the Debye radius, Bohr radius, Brueckner parameter, Landau
length and thermal wavelength, respectively. a and b denote the

w xdegree of ionization and dissociation respectively, cf. 20 .
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By performing a series of calculations with varying
spatial resolution and bead numbers we determined
the optimal parameters. In particular, we found that
for temperatures above 0.1 Rydberg it is sufficient to
use ns6 beads. As another test, we compared our
thermodynamic results to that of recent restricted

w xPIMC simulations 21 and found very good agree-
w xment in this temperature range 22 .

Let us now discuss the results for a nonideal
hydrogen plasma. In contrast to the ideal case, due to
Coulomb repulsion, at small distances g and gee i i

decay to zero. However, the decay of g is essen-ee

tially different from that of the proton-proton func-
tion due to quantum exchange and tunneling effects
in the electron subsystem which compete with the
Coulomb repulsion. We have performed a series of
calculations over a wide range of values of the

Ž .1r3 2classical coupling parameter Gs 4p n r3 e re

4pe kT and degeneracy xsnl3, for temperatures0

TG10,000 K, which is indicated in Fig. 2. In partic-
ular, we performed detailed calculations inside the
shaded area and along various isotherms and iso-
chors. The most interesting situations are presented
below in Figs. 3, 4 and 5. For example, the points
a–d refer to qualitatively different physical situa-
tions, the corresponding results for the pair distribu-
tion functions are presented in Fig. 3. Fig. 3a corre-
sponds to the case of weak coupling and strong
degeneracy where both density and temperature are
very high. Next, in Fig. 3b, both coupling and degen-
eracy are strong, whereas Fig. 3c corresponds to

Žweak coupling and weak degeneracy high tempera-
.ture . Finally, Fig. 3d shows the pair distribution

functions for strong coupling and weak degeneracy
Ž .comparatively low temperature and low density .
Here, we observe distinct peaks of the electron–elec-

Fig. 3. Pair distribution functions for an electron–proton plasma for four combinations of the coupling and degeneracy parameters G and x .
Ž . Ž . Ž .Figure parts a – d correspond to the points a–d in Fig. 2. the values are given adjacent to the figures . The corresponding densities and

Ž . 26 y3 Ž . 23 y3 Ž . 23 y3 Ž .temperatures are a Ts60.5 Ry, ns3.57P10 cm , b Ts0.94 Ry, ns7P10 cm , c Ts4.5 Ry, ns1.43P10 cm and d
20 y3 Ž .Ts0.07 Ry, ns2.8P10 cm . Lines styles are shown in inset of a . Notice the varying length scales and varying scaling of the

electron–ion functions.
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Fig. 4. Electron–electron, ion–ion and electron–ion pair distribution functions of a correlated hydrogen plasma for two temperatures and
Ž . 22 y3 Ž . 22 y3 Ž . 20 y3 Ž .various densities: a Ts50,000 K, ns10 cm , b Ts20,000 K, ns10 cm , c Ts20,000 K, ns10 cm and d

Ts20,000 K, ns1023 cmy3.

tron and ion–ion functions, close to rs1.4 a ,B

clearly indicating the formation of H -molecules.2
Ž .The strong peak of g notice the scaling is causedei

by hydrogen atoms which is confirmed by consider-
2 Ž .ing r g r which is peaked close to 1a . On theei B

other hand, in cases a-c, no distinct peaks of g , gee i i

and r 2 g are observed and thus no bound statesei

exist, which is a consequence of high temperature
orrand high density.

To analyze the formation of bound states more in
detail, in Figs. 4 and 5 we present additional results
for lower temperatures. In Fig. 4a and 4b, the pair
distribution functions for ns1022 cmy3 and Ts
50,000 K and Ts20,000 K, respectively are shown.
Obviously, at this density, reduction of the tempera-
ture leads to strong enhancement of molecule forma-

Ž .tion compare the peak heights . Finally, Figs. 4b–d
show the density dependence for a constant tempera-
ture Ts20,000 K, starting from relatively low den-
sity, ns1020 cmy3, in Fig. 4c up to high density,
ns1023 cmy3, in Fig. 4d. Clearly, the molecular

peak grows from c to b which is a result of recom-
bination of hydrogen atoms the fraction of which

Ž .decreases with increasing density see Fig. 5 below .
Notice that the molecule peak decreases again from

Žb to d which is due to many-body effects pressure
.dissociation . The latter cause a reduction of the

effective molecule binding energy which eventually
leads to pressure dissociation. Notice that at these
temperatures, molecules and atoms are co-existing.

We, therefore, investigate the formation of hydro-
gen atoms at Ts20,000 K separately in Fig. 5,
varying the density over 6 orders of magnitude.
Clearly, the highest peak of r 2 g is observed forei

ns1019 cmy3, and it decreases steadily. First, at
densities nF1022 cmy3, this decrease is due to

Ž .recombination into molecules cf. Fig. 4 . At still
higher densities, the atomic fraction is reduced fur-

Ž .ther due to many-body effects pressure ionization .
Interestingly, for densities above ns1021 cmy3, the
atomic peak of r 2 g shifts from approximately 1aei B

to about 3a . This arises from a variety of effects,B
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2 ŽFig. 5. Electron–ion pair distribution function times r for a correlated electron–proton plasma at Ts20,000 K for various densities see
.inset . Squares denote the shape of the ground state wave function of an isolated hydrogen atom.

but predominantly from the increased molecule frac-
tion, cf. Figs. 4b–d, which favor a broad peak of
r 2 g in the range from rfa to rf3a . Finally,ei B B

at ns1024 cmy3, the molecules have vanished, and
the electron–ion function again shrinks and its peak
returns to rf1a . This density is close to the MottB

Ž .density approximately given by r fa , cf. Fig. 2 .D B

Correspondingly, the height of the peak is strongly

reduced, and a further increase to ns1025 cmy3

destroys the remaining atoms completely. Finally, it
is interesting to compare the shape of the peak of
r 2 g to that of the hydrogen ground state waveei

Ž .function squares in Fig. 5 . While at low densities
the simulations peaks are broader indicating the pop-
ulation of excited states and molecules, at high densi-
ties, around ns1024 cmy3, we observe that the
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maximum is significantly narrower than the ground
state peak.

In summary, we presented results for the pair
distribution functions of a correlated quantum plasma

Ž .using a modified path integral representation 4 for
the N-particle density matrix. This representation
allows one to avoid additional assumptions for the
density matrix and to perform efficient direct
fermionic simulations for temperatures above ap-
proximately 0.1 Ry. Of special interest is the possi-
bility to compute the pair distribution functions for
dense partially ionized hydrogen. Our results show
that both the formation of atoms and molecules can
be well investigated within our scheme. In particular,
many-body effects on the bound states, modification
of the binding energy, pressure ionization and disso-
ciation are fully included. Further investigations will
focus on quantitative estimates for the bound state
fraction and a more precise analysis of the Mott
transition.
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