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A nonequilibrium Green’s functions approach to the collective response of correlated Coulomb systems
at finite temperatures is presented. It is shown that solving Kadanoff-Baym-type equations of motion
for the two-time correlation functions including the external perturbing field allows one to compute the
plasmon spectrum with collision effects in a systematic and consistent way. The scheme has a “built-in”
sum-rule preservation and is simpler to implement numerically than the equivalent equilibrium approach
based on the Bethe-Salpeter equation.

PACS numbers: 73.20.Mf, 05.30.–d
The dynamic properties and the plasmon spectrum of
Coulomb systems continue to attract the interest of re-
searchers in many fields, in particular, condensed matter
theory, e.g., [1–4], plasma physics, e.g., [5–7], and elec-
tronic bilayer liquids [8]. This is due to the fact that the
density response to an external perturbation, given, e.g., by
the dynamic structure factor S�q, v�, is a sensitive indica-
tor of the state of a charged particle system which can be
directly measured in x-ray or light scattering and electron-
energy-loss experiments. This is particularly valuable for
strongly coupled many-body systems, such as dense plas-
mas, metals, or semiconductors at low temperature.

In recent years there has been considerable progress
in the theoretical account of the impact of correlations
among the carriers on collective excitations, i.e., in theo-
ries which go beyond the mean-field level [time-dependent
Hartree/Vlasov or random phase approximation (RPA)]. It
is now commonly accepted that any model has to obey
certain consistency requirements which, in particular, are
related to the preservation of sum rules for the inverse di-
electric function; see Refs. [1–4] for a discussion. Among
the successful approaches, we mention attempts to con-
struct local field corrections (see references in [4]), kinetic
theory concepts to incorporate collisions into the dielectric
function, e.g., [9], and Green’s functions methods origi-
nally developed by Baym and Kadanoff [10] and others.
The latter approach is of particular interest as it allows
for a systematic first principles treatment of correlations,
and sum-rule preservation is easily guaranteed by using
so-called conserving approximations for the Green’s func-
tions [4,10,11].

In most Green’s functions treatments [1–4,10,11],
linear response theory is used which relates the density
response function to the retarded one-particle–one-hole
Green’s function of the unperturbed system, the calculation
of which is the central problem. This task is accomplished
by solving a Bethe-Salpeter equation (BSE), the quality
of the results being determined by the choice of the
four-point particle-hole-irreducible (PHI) vertex K . While
high-level approximations for K have been investigated
for metals at zero temperature [4,11], finite-temperature
treatments are restricted to much simpler approximations
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[2]. Moreover, the collective response from a nonequi-
librium state, which is of high interest, e.g., in laser ex-
cited semiconductors or laser plasmas, is completely out
of reach in the BSE approach.

In this Letter, we present a scheme which allows (i) the
computation of the linear response at finite temperature
fully including vertex corrections, (ii) the nonlinear
response to a strong perturbation, and (iii) the response
from an arbitrary nonequilibrium state. Our approach is
based on directly computing the time-dependent density
fluctuations of the electron gas under an external per-
turbing field, from which we obtain the density response
function. We calculate the nonequilibrium (two-time)
one-particle Green’s functions by solving a generalized
Kadanoff-Baym-type equation with the external per-
turbing field included. If the unperturbed system is in
equilibrium, sum rules are again preserved by adopting
conserving approximations of the self-energy [10].

There is a one-to-one equivalence between levels of ap-
proximations in the two approaches. For each choice of the
approximate self-energy in the present approach, its for-
mal functional derivative with respect to the one-particle
Green’s function gives the equivalent PHI vertex in the
Bethe-Salpeter approach. However, in investigations in-
volving more sophisticated approximations, our approach
has the advantage that the self-energies are formally much
simpler, and hence easier to implement numerically, than
their equivalent PHI vertices. We underline that this effi-
cient and conserving calculational scheme is not limited to
the problem of plasma oscillations but is of interest also for
current studies of finite temperature spin modes in Fermi
liquids [12] and finite temperature collective excitations in
nuclei [13]. In the following, to avoid confusion in ter-
minology, we append the suffix “BS” to the labels of the
approximations in the Bethe-Salpeter approach.

We consider a correlated electron gas in a neutralizing
background under the influence of an external potential U
described by the Hamiltonian Ĥ � Ĥsys 1 Ĥext, with
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Here k, q are momenta, ek is the one-particle energy, and
V �q� and U�q� are the spatial Fourier components of the
Coulomb potential and the external potential, respectively.
ay (a) are Heisenberg creation (annihilation) operators
evolving with the total Hamiltonian Ĥ. (Spin degrees of
freedom are not of interest for our analysis, so spin indices
will be suppressed.) The nonequilibrium properties of the
inhomogeneous electron gas are defined by the two-time
correlation functions
G,�k 1 q, t1; k, t2� � i�ay
k�t2�ak1q�t1�� ;

G.�k 1 q, t1; k, t2� � 2i�ak1q�t1�ay
k�t2�� ,

(2)

where the statistical averaging is over the density operator
of the initial state. In particular, the density is given by
n�q, t� � 2i

P
k G,�k 1 q, t; k, t�. The time evolution

of G. and G, is governed by the Kadanoff-Baym equa-
tions (KBE) [10],
µ
ih̄

≠

≠t1
2 ek1

∂
G_�k1t1; k2t2� �

X
q

U�2q, t1�G_�k1 2 q, t1; k2t2� 1
X
k̄

SHF�k1t1; k̄t1�G_�k̄t1; k2t2�

1 I_�k1t1; k2t2� (3)
(to be supplemented with the adjoint equation), where SHF

is the Hartree-Fock self-energy, and the collision integrals
I_ contain the short-range correlation effects (see below).

As we are interested in the dynamical response of
the electron gas to a longitudinal electrostatic pertur-
bation, we choose U�q, t� � U0�t�dq,q0. Before the
onset of the field, t , t0, the system is homogeneous,
G_�k1t1; k2t2� � dk1,k2; however, for t . t0, the field
gives rise to harmonic modulations

G_
m1,m2

�kt1t2� � G_�k 1 m1q0, t1; k 1 m2q0, t2� , (4)

where m1 and m2 are integers running from 2` to `.
q0 enters Gm1,m2 as a parameter and will be omitted. Be-
cause of the symmetry properties G_

m11n,m21n�kt1t2� �
G_

m1m2
�k 1 nq0, t1t2� and G_

m1,m2
�kt1t2� �

2G_�
m2,m1

�kt2t1�, only the matrix elements G_
n0, n �

0, 61, 62, . . . are independent. As a result, Eq. (3)
transforms into a system of equations for the functions
G_

n0, i.e., one of the two momentum arguments of G_ in
Eq. (3) has been replaced by the discrete “level” index
n. Obviously, this representation closely resembles the
multilevel/multiband kinetic equations (Bloch equations)
familiar from atomic or semiconductor optics, if written
in terms of two-time correlation functions, e.g., [14].
Only here, G00 corresponds to the spatially homogeneous
state, while G,

n0 describes transitions of an electron from
the momentum state k 1 nq0 at t � t1 into state k at
t � t2; cf. definition (2). In particular, the equal-time
components of G,

00 and G,
m0 yield, respectively, the

homogenous density component n0�t� � 2i
P

k G,
00�ktt�

and the field-induced fluctuations

dn�q, t� �
X

mfi0

dnm � 2i
X
mfi0

dq,mq0

X
k

G,
m0�ktt� . (5)

In situations where a perturbation treatment of the external
field is applicable, the leading order of the Fourier com-
ponents of the density is dnm � O�Um

0 �. Since the main
subject of our paper is the effect of correlations (collisions)
on the plasmon spectrum, we will focus on the weak-field
(linear response) limit below. Then, we neglect all compo-
nents of G_ except G_

00 and G_
10. Up to first order in the

field, the equations for G_
10 read, for any fixed q0 (summa-

tion over m � 0, 1 and integration over t̄ from 2` to ` is
implied),
µ
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_
1m�kt1t̄�GA
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µ
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≠t2
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10�kt1t2� � U0�t2�G_
11�kt1t2� 1 G_

1m�kt1t2�SHF
m0 �kt2�

1 GR
1m�kt1t̄�S_

m0�kt̄t2� 1 G_
1m�kt1 t̄�SA

m0�kt̄t2� ,

(6)

whereas G_
00 obey the “conventional” spatially homogeneous field-free equations. In Eq. (6), G_

11�kt1t2� �
G_

00�k 1 q0, t1t2�, the retarded and advanced functions are defined by (F denotes G or S)

F
R�A
l1l2

�kt1t2� � 6Q�6�t1 2 t2�	 3 
F.
l1l2

�kt1t2� 2 F,
l1l2

�kt1t2��, l1,2 � 0, 1 , (7)

and the Hartree-Fock self-energy is

SHF
l0 �kt� � dl1V�q0�

X
p

�2i�G,
10�ptt� 2

X
p

�2i�G,
l0�k 2 p, tt�V �p�, l � 0, 1 . (8)
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The self-energies S
_
10 and S

R�A
10 are of first order in the

field and are obtained from the respective “00” components
by replacing one G00 at a time by G10 and summing over
all terms generated this way, and S11 follows from S00
by replacing G00 by G11. The equations for G00 and G10
are to be supplemented by the proper initial conditions for
G_

00 corresponding to a correlated spatially homogeneous
electron gas; see below. Furthermore, G10�kt0t0� � 0.

Let us now consider how the dielectric linear response
functions can be determined from the solution of Eqs. (6)
and what their properties are. Using Eq. (5), we find in
linear response

X
k

G,
10�ktt� � idnq0 �t� �

Z `

2`
dt̄ xR�q0, t, t̄�U0�t̄� ,

(9)

where xR is a retarded susceptibility which, in general,
depends on two times. If the unperturbed system is in
a stationary state, xR�t, t̄� ! xR�t 2 t̄�, allowing one to
apply the convolution theorem to Eq. (9) with the result
(v dependence denotes the Fourier component)

xR�q0, v� �

P
k G,

10�k, v�
U0�v�

, (10)

which immediately yields the retarded inverse dielectric
function and the dynamic structure factor

eR21�v, q0� � 1 1
V �q0�
U0�v�

X
k

G,
10�k, v� , (11)

S�v, q0� � 2
1

pn0U0�v�

X
k

ImG,
10�k, v� . (12)

Now, the quality of the plasmon spectrum (12) computed
from G10�t1t2� is fully determined by the approximation for
the field-free self-energies S00 in Eqs. (6). In particular, if
S

HF
00 � S

_
00 � 0 (noninteracting electrons gas), Eq. (10)

reduces to the familiar Lindhard polarization, xR � PR0.
Further, if only the Hartree mean field is included, S

HF
00 �

S
H
00, one recovers the RPA-BS result (full ring sum), xR �
PR0

12VPR0 , or, equivalently,

xR � x� 1 x�VxR , (13)

with x� � PR0. Finally, with the Fock and correlation
terms, SF and S

_
00, included also, one again recovers

Eq. (13), but with a more general expression for x�, the
proper (irreducible) polarization:

where Eq. (14) starts with PR0 (first diagram) but now
contains exchange and correlation corrections (second
diagram) in terms of the particle-hole T matrix T which
obeys the Lippmann-Schwinger equation (15) with the
general interaction kernel K (see below). One readi-
ly recognizes in Eq. (13) the familiar field-free
1770
Bethe-Salpeter equation which thus is a direct con-
sequence of the Kadanoff-Baym equations with weak
external field (6). We underline that this result applies
to equilibrium and arbitrary nonequilibrium situations
(notice that all derivations are performed on the Keldysh
contour, and directed lines denote full Green’s functions
with self-energy insertions) [15].

As we demonstrate below, this connection between the
BS and KB approaches is particularly fruitful for the di-
electric response of a correlated electron gas: (i) as the
BS approach is a standard formalism for the investiga-
tion of correlation effects, e.g., [7], it can be used to clas-
sify approximations and their properties; (ii) there exists a
one-to-one correspondence between the self-energies S

_
00

and the PHI vertex K in Eq. (14); (iii) based on the in-
ternal consistency of the Kadanoff-Baym formalism, the
properties of the plasmon spectrum are completely deter-
mined by the approximation for S

_
00: in particular, density

conservation of S
_
00 (which is trivial to meet) guarantees

satisfaction of the f sum rule [4].
A valuable practical advantage of the present scheme is

that simple approximations for S
_
00 correspond to rather

complex approximations for K which allows for efficient
computation of the plasmon spectrum of correlated sys-
tems by solving the KBE (6). We demonstrate this below
on the example of the (density conserving) second Born
approximation

where Vst is the statically screened Coulomb potential
(dashed lines in the diagram) and P

_
00 is the nonequi-

librium generalization of the Lindhard polarization
bubble, P

_
00�ktt0� � 2i

P
p G_

00�k 1 p, tt0�G+
00�pt0t�.

Proceeding as in Ref. [15], the simple correlation self-
energy (16), together with the Fock mean field, transforms
into the following PHI vertex K in the BSE:

and contains contributions from particle-hole (unscreened)
Coulomb scattering (first diagram, zigzag line denotes bare
Coulomb potential V ), excitation of a particle-hole pair
(second diagram), and scattering between two particle-hole
pairs (last two diagrams). Comparison of Eqs. (16) and
(17) reveals the familiar relation between S and K: K �
V 1 dS00�dG [7,10].

While it is very difficult to solve the BSE with kernel
(17) without further simplifying approximations, solving
Eqs. (6) with the self-energy Eq. (16) and the S10 derived
from it is quite straightforward. We performed numerical
solutions for a strongly correlated electron gas in equilib-
rium using the numerical procedure which was developed
before for the two-time semiconductor Bloch equations
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FIG. 1. Density fluctuation of a strongly correlated electron
gas for two wave numbers. For comparison, the uncorrelated
response for one wave number (dotted line) and the exciting
field (dashes) are shown, too. kF denotes the Fermi momentum,
Ry � 13.6 eV.

[14]. To create a correlated initial state, we run the field-
free program for a time longer than the correlation time
starting from an uncorrelated distribution. After this, the
field U was turned on, where we chose a pulse shape
for U0�t� broad enough to cover the plasmon spectrum.
The thus excited density fluctuation is shown in Fig. 1 for
a 3D electron gas with Brueckner parameter rs � 4 and
temperature kBT � 0.69EF (Fermi energy) for two wave
numbers. For comparison, also the uncorrelated result is
shown (Hartree-Fock self-energies only which is equiva-
lent to RPA-BS plus exchange). While dn�t� depends on
the explicit form of U0�t�, obviously the linear response
quantities eR�v� and S�v�, Eqs. (11) and (12), are inde-
pendent of U0. Figure 2 shows the dynamic structure fac-
tors, corresponding to the results in Fig. 1. Clearly, one
sees that the short-range correlations lead to a damping
of dn�t� in excess of the collisionless Landau damping
(cf. Fig. 1), which corresponds to a redshift and an ad-
ditional broadening of the plasmon peak in the structure
factor (Fig. 2). Remarkably, our numerical scheme pre-
serves the f sum rule for the small (large) wave number
to 0.03% (0.6%). In contrast, neglecting terms in K but
keeping the self-energy insertions in G lead to violation of
the sum rule. For example, for inclusion of the first two
diagrams only (curve “1 1 2” in the inset in Fig. 2) and
the first diagram only (“1”) the corresponding numbers are,
respectively, 2.1% (0.8%) and 1346% (416%), and for still
smaller q0 the error increases rapidly [3].

In summary, we have presented a new self-consistent ap-
proach to the dielectric properties of a correlated electron
gas. Using an “interband” generalization and solving the
problem in the time domain allows one to take maximum
advantage of the self-consistent Kadanoff-Baym scheme:
simple approximations for the collision integrals transform
into complex correlation corrections in the plasmon spec-
trum with “built-in” sum-rule preservation. This scheme is
straightforwardly extendable to higher order correlations.
Moreover, it applies to arbitrary nonequilibrium situations
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FIG. 2. Dynamic structure factor (12) for the correlated elec-
tron gas of Fig. 1 (same line styles). Inset shows S for q0 �
0.62kF and contains two other approximations to the correlations
corresponding to retaining the first diagram in Eq. (17) and first
plus second diagrams, respectively.

and is easily generalized to the nonlinear dielectric re-
sponse in strong fields.
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