ADIABATIC PREPARATION OF A CORRELATED SYMMETRY-BROKEN INITIAL STATE with the generalized kadanoff–baym ansatz

Riku Tuovinen¹, Denis Golež², Michael Schüler², Philipp Werner², Martin Eckstein³, and Michael Sentef¹ ¹ Max Planck Institute for the Structure and Dynamics of Matter, Germany ² University of Fribourg, Switzerland

³ Friedrich-Alexander University Erlangen-Nürnberg, Germany

Solving the Two-time Kadanoff–Baym Equations, Kiel, March 11th 2019

TRANSIENT SPECTROSCOPY OF ORDERED PHASES

Charge-density wave

Superconductivity

Excitonic insulator

F. Schmitt *et al.*, Science **321**, 1649 (2008)

M. Mitrano *et al.,* Nature **530**, 461 (2016)

S. Mor *et al.*, Phys. Rev. Lett. **119**, 086401 (2017)

NONEQUILIBRIUM GREEN'S FUNCTION THEORY^{*†‡}

► Two-time Green's functions $G(t, t') = -i\langle T[\hat{\psi}(t)\hat{\psi}^{\dagger}(t')]\rangle$ (expensive for both CPU and RAM)

$$[i\partial_t - h]G = \delta + \int dt \Sigma G$$
System Many-body effects

► Generalized Kadanoff–Baym Ansatz (GKBA) as cheaper alternative $G^{\leq}(t,t') \approx$ $i \left[G^{R}(t,t')G^{\leq}(t',t') - G^{\leq}(t,t)G^{A}(t,t') \right]$

*A. Stan, N. E. Dahlen, and R. van Leeuwen, J. Chem. Phys. **130**, 224101 (2009) *S. Hermanns, K. Balzer, and M. Bonitz, Phys. Scr. **T151**, 014036 (2012) *RT, D. Golež, M. Schüler, P. Werner, M. Eckstein, and M. A. Sentef, Phys. Status

Solidi B (2018) (arXiv:1808.00712)

EXCITONIC INSULATOR (EI) PHASE* Indirect semiconductor (small gap) or -metal (small overlap)

Reduce the gap below exciton binding energy \Rightarrow EI phase

Reduce the overlap \Rightarrow reduce the number of free carriers \Rightarrow less screening \Rightarrow EI phase

\sim BCS superconductivity: electrons form Cooper pairs

^{*}N. F. Mott, Phil. Mag. 6, 287 (1961); L. V. Keldysh and Yu. V. Kopaev, Sov. Phys. Solid State 6, 2219 (1965); D. Jérome, T. M. Rice, and W. Kohn, Phys. Rev. 158, 462 (1967)

MODEL FOR THE EXCITONIC INSULATOR* [†]

One-dimensional two-band system with interband Hubbard interaction

*D. Golež, P. Werner, and M. Eckstein, Phys. Rev. B 94, 035121 (2016)

⁺RT, D. Golež, M. Schüler, P. Werner, M. Eckstein, and M. A. Sentef, Phys. Status Solidi B (2018) (arXiv:1808.00712)

STARTING POINT: HARTREE-FOCK STATE

$$\alpha = 2 \quad \bigoplus_{k \neq 0}^{t_{hop}} (1 + \alpha) = c_{0} + c_{0}$$

STARTING POINT: HARTREE–FOCK STATE + SEEDING

$$\begin{split} k^{\mathrm{M}}(\tau - \tau') &\equiv -\mathrm{i}k(-\mathrm{i}\tau, -\mathrm{i}\tau') \qquad (k = G, \Sigma) \\ (-\partial_{\tau} - h_{\mathrm{eq}})G^{\mathrm{M}}(\tau - \tau') &= \delta(\tau - \tau') + \int_{0}^{\beta} \mathrm{d}\bar{\tau}\Sigma^{\mathrm{M}}(\tau - \bar{\tau})G^{\mathrm{M}}(\bar{\tau} - \tau') \end{split}$$

$$\begin{split} k^{\mathrm{M}}(\tau - \tau') &\equiv -\mathrm{i}k(-\mathrm{i}\tau, -\mathrm{i}\tau') \qquad (k = G, \Sigma) \\ (-\partial_{\tau} - h_{\mathrm{eq}})G^{\mathrm{M}}(\tau - \tau') &= \delta(\tau - \tau') + \int_{0}^{\beta} \mathrm{d}\bar{\tau}\Sigma^{\mathrm{M}}(\tau - \bar{\tau})G^{\mathrm{M}}(\bar{\tau} - \tau') \end{split}$$

"Phase diagrams" using different self-energy approximations HF 2B

$$\begin{split} k^{\mathrm{M}}(\tau - \tau') &\equiv -\mathrm{i}k(-\mathrm{i}\tau, -\mathrm{i}\tau') \qquad (k = G, \Sigma) \\ (-\partial_{\tau} - h_{\mathrm{eq}})G^{\mathrm{M}}(\tau - \tau') &= \delta(\tau - \tau') + \int_{0}^{\beta} \mathrm{d}\bar{\tau}\Sigma^{\mathrm{M}}(\tau - \bar{\tau})G^{\mathrm{M}}(\bar{\tau} - \tau') \end{split}$$

"Phase diagrams" using different self-energy approximations HF 2B

$$\begin{split} k^{\mathrm{M}}(\tau - \tau') &\equiv -\mathrm{i}k(-\mathrm{i}\tau, -\mathrm{i}\tau') \qquad (k = G, \Sigma) \\ (-\partial_{\tau} - h_{\mathrm{eq}})G^{\mathrm{M}}(\tau - \tau') &= \delta(\tau - \tau') + \int_{0}^{\beta} \mathrm{d}\bar{\tau}\Sigma^{\mathrm{M}}(\tau - \bar{\tau})G^{\mathrm{M}}(\bar{\tau} - \tau') \end{split}$$

$$\begin{split} k^{\mathrm{M}}(\tau - \tau') &\equiv -\mathrm{i}k(-\mathrm{i}\tau, -\mathrm{i}\tau') \quad (k = G, \Sigma) \\ (-\partial_{\tau} - h_{\mathrm{eq}})G^{\mathrm{M}}(\tau - \tau') &= \delta(\tau - \tau') + \int_{0}^{\beta} \mathrm{d}\bar{\tau}\Sigma^{\mathrm{M}}(\tau - \bar{\tau})G^{\mathrm{M}}(\bar{\tau} - \tau') \end{split}$$

EQUILIBRIUM BY GKBA: ADIABATIC SWITCHING*

^{*}RT, D. Golež, M. Schüler, P. Werner, M. Eckstein, and M. A. Sentef, Phys. Status Solidi B (2018) (arXiv:1808.00712)

EQUILIBRIUM BY GKBA: ADIABATIC SWITCHING*

*RT, D. Golež, M. Schüler, P. Werner, M. Eckstein, and M. A. Sentef, Phys. Status Solidi B (2018) (arXiv:1808.00712)

EQUILIBRIUM BY GKBA: ADIABATIC SWITCHING*

*RT, D. Golež, M. Schüler, P. Werner, M. Eckstein, and M. A. Sentef, Phys. Status Solidi B (2018) (arXiv:1808.00712)

NUMERICAL INTERMEZZO

• Here for simplicity symmetric interaction $v_{ijkl} = v_{ij}\delta_{il}\delta_{jk}$

► 2B self-energy

$$\Sigma_{2B} = \sum_{k=1}^{\infty} + \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \frac{(k) \pi_{k} (k') C_{k} (k') C_{k}}{(k') C_{k} (k') C_{k}}$$

$$= \xi \sum_{kl} v_{ik}(t) v_{jl}(t') G_{ij}(t,t') G_{lk}(t',t) G_{kl}(t,t') \qquad (\xi \in \{1,2\}) \\ - \sum_{kl} v_{ik}(t) v_{jl}(t') G_{il}(t,t') G_{lk}(t',t) G_{kj}(t,t')$$

- Contract indices to manipulate into entrywise- or normal matrix products (python: opt_einsum)
- ► Use external linalg libraries for products (vs. looping)
- Combine with the dissection algorithm*

^{*}E. Perfetto and G. Stefanucci, Phys. Status Solidi B (2019) (arXiv:1810.03412)

REMARK: GKBA + INITIAL CORRELATIONS*

In principle, the collision integral should include the vertical track of the time contour

$$I(t) = \int_{t_0}^t d\bar{t} [\Sigma^{>}(t,\bar{t})G^{<}(\bar{t},t) - \Sigma^{<}(t,\bar{t})G^{>}(\bar{t},t)] - i \int_{t_0}^{\beta} d\tau \Sigma^{\uparrow}(t,\tau)G^{\uparrow}(\tau,t)$$

^{*}D. Karlsson, R. van Leeuwen, E. Perfetto, and G. Stefanucci, Phys. Rev. B 98, 115148 (2018)

REMARK: GKBA + INITIAL CORRELATIONS*

In principle, the collision integral should include the vertical track of the time contour

$$I(t) = \int_{t_0}^t d\bar{t} [\Sigma^{>}(t,\bar{t})G^{<}(\bar{t},t) - \Sigma^{<}(t,\bar{t})G^{>}(\bar{t},t)] - i \int_{t_0}^{\beta} d\tau \Sigma^{\uparrow}(t,\tau)G^{\uparrow}(\tau,t)$$

*D. Karlsson, R. van Leeuwen, E. Perfetto, and G. Stefanucci, Phys. Rev. B 98, 115148 (2018)

Phase oscillations: N=24, Delta=2, U=3, V=1 (lambda=5), beta=100

Nambu-Goldstone mode

 $Im \phi$

Phase oscillations: N=24, Delta=2, U=3, V=1 (lambda=5), beta=100

OUT-OF-EQUILIBRIUM: POPULATIONS AND ORDER

OUT-OF-EQUILIBRIUM: POPULATIONS AND ORDER

SUMMARY

- ► Ultrafast experiments available in, e.g., transition-metal dichalcogenide materials exhibiting the EI phase
- Theoretical description is a challenge (electronic correlations, transient regime, ...)
- Generalized Kadanoff–Baym Ansatz computationally tractable (assess validity vs. full KBE)
- Equilibrium: symmetry-broken correlated initial state with nonzero excitonic order parameter (using the GKBA)
- Out-of-equilibrium: light-induced population inversion and melting of the excitonic condensate

RT, D. Golež, M. Schüler, P. Werner, M. Eckstein, and M. A. Sentef, Phys. Status Solidi B (2018) (arXiv:1808.00712)

