

$$\begin{split} &\sum_{l} \left[\mathrm{i}\hbar \frac{\mathrm{d}}{\mathrm{d}z_{1}} \delta_{il} - h_{il}(z_{1}) \right] G_{lj}(z_{1}, z_{2}) \\ &= \delta_{\mathcal{C}}(z_{1}, z_{2}) \delta_{ij} + \sum_{l} \int_{z_{3}} \Sigma_{il}(z_{1}, z_{3}) G_{lj}(z_{3}, z_{2}) \end{split}$$

$$\begin{split} &\sum_{l} G_{il} \Big(z_1, z_2 \Big) \left[-\mathrm{i} \hbar \frac{\overleftarrow{\mathrm{d}}}{\mathrm{d} z_2} \delta_{lj} - h_{lj} \Big(z_2 \Big) \right] \\ &= \delta_{\mathcal{C}} \Big(z_1, z_2 \Big) \delta_{ij} + \sum_{l} \int_{z_3} G_{il} \Big(z_1, z_3 \Big) \Sigma_{lj} \Big(z_3, z_2 \Big) \end{split}$$

$$\Sigma_{ij}^{\rm xc} \left(z_1, z_2 \right) = \mathrm{i} \hbar \sum_{mpq} w_{ipqm} \left(z_1 \right) \int_{\mathcal{C}} \mathrm{d} z_3 \sum_n G_{mn} \left(z_1, z_3 \right) \Lambda_{nqpj} \left(z_3, z_2, z_3 \right) \Lambda_{nqpj} \left(z_3, z_2, z_3 \right) \Lambda_{nqpj} \left(z_3, z_3, z_3 \right) \Lambda_{nqpj} \left(z_3, z_3 \right) \Lambda_{nq$$

$$\begin{split} \Lambda_{ijkl} & \left(z_1, z_2, z_3 \right) = \delta_{\mathcal{C}} \left(z_1, z_2 + \right) \delta_{\mathcal{C}} \left(z_3, z_2 \right) \delta_{ik} \delta_{jl} \\ & + \int_{\mathcal{C}} \mathrm{d} z_4 \mathrm{d} z_5 \sum_{mn} \frac{\delta \Sigma_{il} \left(z_1, z_2 \right)}{\delta G_{mn} \left(z_4, z_5 \right)} \int_{\mathcal{C}} \mathrm{d} z_6 \sum_p G_{mp} \left(z_4, z_6 \right) \\ & \int_{\mathcal{C}} \mathrm{d} z_7 \sum_q G_{qn} \left(z_7, z_5 \right) \Lambda_{pjkq} \left(z_6, z_7, z_3 \right) \end{split}$$

$$\begin{split} G_{ij} \Big(z_1, z_2 \Big) &= G_{ij}^{(0)} \Big(z_1, z_2 \Big) + \\ &+ \int_{\mathcal{C}} \mathrm{d} z_3 \mathrm{d} z_4 \sum_{mn} G_{im}^{(0)} \Big(z_1, z_3 \Big) \Sigma_{mn} \Big(z_3, z_4 \Big) G_{nj} \Big(z_4, z_2 \Big) \end{split}$$

$$\begin{split} W_{ijkl}^{ns} \Big(z_1, z_2 \Big) &= \sum_{mn} w_{imnl} \Big(z_1 \Big) \int_{\mathcal{C}} \mathrm{d} z_3 \sum_{pq} P_{nqpm} \Big(z_1, z_3 \Big) W_{pjkq} \Big(z_3, z_2 \Big) \\ & \Sigma_{ij}^{\mathrm{xc}} \Big(z_1, z_2 \Big) = \mathrm{i} \hbar \int_{\mathcal{C}} \mathrm{d} z_3 \sum_{mpq} W_{ipqm} \Big(z_1, z_3 \Big) \times \\ & \int_{\mathcal{C}} \mathrm{d} z_4 \sum_n G_{mn} \Big(z_1, z_4 \Big) \Gamma_{nqpj} \Big(z_4, z_2, z_3 \Big) \\ & 3, z_2, z_1 \Big) \qquad P_{ijkl} \Big(z_1, z_2 \Big) = \pm \mathrm{i} \hbar \int_{\mathcal{C}} \mathrm{d} z_3 \sum_m G_{im} \Big(z_1, z_3 \Big) \times \\ & \int_{\mathcal{C}} \mathrm{d} z_4 \sum_n G_{nl} \Big(z_4, z_1 \Big) \Gamma_{mjkn} \Big(z_3, z_4, z_2 \Big) \\ & \Gamma_{ijkl} \Big(z_1, z_2, z_3 \Big) = \delta_{\mathcal{C}} \Big(z_1, z_2 + \big) \delta_{\mathcal{C}} \Big(z_3, z_2 \Big) \delta_{ik} \delta_{jl} + \\ & S \Sigma^{\mathrm{xc}} \Big(z_1 - z_2 \Big) \end{split}$$

$$+ \int_{\mathcal{C}} \mathrm{d}z_4 \mathrm{d}z_5 \sum_{mn} \frac{\delta \Sigma_{ii}^{**}(z_1, z_2)}{\delta G_{mn}(z_4, z_5)} \int_{\mathcal{C}} \mathrm{d}z_6 \sum_p G_{mp}(z_4, z_6)$$
$$\int_{\mathcal{C}} \mathrm{d}z_7 \sum_q G_{qn}(z_7, z_5) \Gamma_{pjkq}(z_6, z_7, z_3)$$

Equations of Motion for the NEGF

Feynman Diagrams

- Use Feynman diagrams to visualize Green functions and interactions
- general vs. diagonal basis:

- Hartree-Fock selfenergy becomes:

CIAU

Christian-Albrechts-Universität zu Kie

selfenergy approximations that solve the Martin–Schwinger hierarchy can be derived from a closed set of equations

two equivalent, formally exact approaches based on:

 the screened interaction/ vertex:

 the bare interaction/ vertex:

L. Hedin, Phys. Rev. 139, A796 (1965).

quick & easy SOA, 2B

Second-Order (Born) Approximation

- all diagrams up to second order in the interaction
- easiest way to include correlation effects
- combination with the GKBA $\rightarrow N_t^2$ -scaling
- applicable to a wide range of systems

Computation

simple matrix multiplication

Numerical Scaling

• general basis: $\mathcal{O}\left(N_t^2 N_b^5\right)$

• diagonal basis: $\mathcal{O}\left(N_t^2 N_b^4\right)$

Accuracy Range

- weak to moderate coupling
- no filling dependence

3

Third-Order Diagrams

Derivation of third-order terms from Hedin's equations (screened approach):

N. Schlünzen, S. Hermanns, M. Scharnke, and M. Bonitz, submitted, arXiv:1902.07038 (2019).

the nitpicker TOA Third-Order Approximation

- all diagrams up to third order in the interaction
- more involved calculation
- applicability range restricted to moderate basis size

Computation

matrix multiplication + numerical integration

Numerical Scaling

• general basis: $\mathcal{O}\left(N_t^3 N_b^5\right)$

• diagonal basis: $\mathcal{O}\left(N_t^3 N_b^4\right)$

Accuracy Range

- moderate to strong coupling
- no filling dependence

$\Sigma^{(3)}(1,2)$

$$\begin{split} &= (h)^3 G(1,2) w (1,3) G(3,4) G(4,3) w (4,5) G(5,6) G(6,5) w (6,2) \\ &\pm (h)^3 w (1,3) G(3,5) G(6,3) w (5,6) G(6,4) Q (4,6) w (4,2) G (1,2) \\ &\pm (h)^3 w (1,5) G(3,6) G (6,5) w (6,3) G (1,4) w (4,2) G (4,3) G (3,2) \\ &+ (h)^3 w (1,3) G (1,4) w (4,2) G (4,5) G (5,2) w (5,6) G (5,3) G (3,6) \\ &\pm (h)^3 w (1,3) G (1,4) w (4,6) G (6,7) G (7,6) w (7,2) G (4,3) G (3,2) \\ &+ (h)^3 w (1,3) G (1,4) w (4,6) G (6,5) w (5,2) G (4,2) G (4,3) G (3,2) \\ &\pm (h)^3 w (1,3) G (1,4) w (4,6) G (6,5) w (5,2) G (4,2) G (4,3) G (3,2) \\ &\pm (h)^3 w (1,3) G (1,4) w (4,6) w (5,2) G (5,6) G (6,2) G (4,3) G (3,2) \\ &+ (h)^3 w (1,3) G (1,4) w (4,6) G (6,5) w (5,2) G (6,2) G (4,3) G (3,2) \\ &+ (h)^3 w (1,3) G (1,4) w (4,6) G (4,5) w (5,2) G (5,2) G (5,3) G (3,6) \\ &+ (h)^3 w (1,3) G (1,4) w (4,6) G (4,5) w (5,2) G (5,2) G (5,3) G (3,6) \\ &+ (h)^3 w (1,3) G (1,4) w (4,6) G (4,5) w (5,2) G (5,2) G (5,3) G (3,6) \\ &+ (h)^3 w (1,3) G (1,4) w (4,6) G (4,5) w (5,2) G (5,2) G (5,3) G (5,3) \\ &+ (h)^3 w (1,3) G (1,4) w (4,6) G (4,5) w (5,2) G (5,2) G (5,3) G (5,3) \\ &+ (h)^3 w (1,3) G (1,4) w (4,6) G (4,5) w (5,2) G (5,2) G (5,3) G (5,3) \\ &+ (h)^3 w (1,3) G (1,4) w (4,6) G (4,5) w (5,2) G (5,2) G (5,3) G (5,3) \\ &+ (h)^3 w (1,3) G (1,4) w (4,6) G (4,5) w (5,2) G (5,2) G (5,3) G (5,3) \\ &+ (h)^3 w (1,3) G (1,4) w (4,6) G (4,5) w (5,2) G (5,2) G (5,3) G (5,3) \\ &+ (h)^3 w (1,3) G (1,4) w (4,6) G (4,5) w (5,2) G (5,3) G (5,3) \\ &+ (h)^3 w (1,3) G (1,4) w (4,5) G (4,5) w (4,5) W (4,5) G (4,5) W (5,5) G (5,5) G (5,5) G (5,5) \\ &+ (h)^3 w (1,3) G (1,4) w (4,5) G (4,5) w (4,5) W (4,5) W (4,5) G (4,5) \\ &+ (h)^3 w (1,3) H (4,5) H (4,5) H (4,5) W (4,5) W (4,5) H ($$

it all comes down to bubbles
GWA
GW Approximation

- easiest way to decribe dynamical-screening effects
- sums up polarization-bubble diagram series
- computationally demanding, but scaling advantage for diagonal basis sets

Computation

matrix multiplication + numerical integration, solution by **iteration** or **inversion**

Numerical Scaling

• general basis: $\mathcal{O}\left(N_t^3 N_b^6\right)$

• diagonal basis: $\mathcal{O}\left(N_t^3 N_b^3\right)$

- moderate to strong coupling
- around half filling

The selfenergy derivative starts off three diagram series:

N. Schlünzen, S. Hermanns, M. Scharnke, and M. Bonitz, submitted, arXiv:1902.07038 (2019).

The selfenergy derivative starts off three diagram series:

N. Schlünzen, S. Hermanns, M. Scharnke, and M. Bonitz, submitted, arXiv:1902.07038 (2019).

climbing the ladder I TPP Particle-Particle T-Matrix Approximation

- sums up the diagrams of the Born series
- computationally expensive \rightarrow applicable only to moderate basis size
- becomes exact in the limit of low (large) density

Computation

matrix multiplication + numerical integration, solution by **iteration** or **inversion**

Numerical Scaling

• general basis: $\mathcal{O}\left(N_t^3 N_b^6\right)$

• diagonal basis: $\mathcal{O}\left(N_t^3 N_b^6\right)$

- moderate to strong coupling
- low/large density

climbing the ladder II TPH, TEH Particle (Electron)-Hole T-Matrix Approximation

- sums up a series of particle-hole diagrams
- computationally demand and reach similar to TPP
- specifically designed to describe systems around half half filling

Computation

matrix multiplication + numerical integration, solution by **iteration** or **inversion**

Numerical Scaling

• general basis: $\mathcal{O}\left(N_t^3 N_b^6\right)$

• diagonal basis: $\mathcal{O}\left(N_t^3 N_b^6\right)$

- moderate to strong coupling
- around half filling

$$\begin{aligned} & \int dt = t + i\hbar \ 0 & f = t + i\hbar \ 0$$

it's a matter of patience FLEX

Fluctuating-Exchange Approximation

- merges the diagram series of the TPP, the TPH and the GWA
- combines advantages of its ingredients
- highest computational demands of the presented approximations

Computation

matrix multiplication + numerical integration, solution by **iteration** or **inversion**, avoid double counting of mutual terms

Numerical Scaling

• general basis: $\mathcal{O}\left(N_t^3 N_b^6\right)$

• diagonal basis: $\mathcal{O}\left(N_t^3 N_b^6\right)$

- moderate to strong coupling
- no filling dependence

- high-performance computing and massive parallelization are essential to outgrow toy models
- NEGF is well-suited, contains high degree of independent calculations in matrix multiplication and numerical integration
- possible with multi-core programming on multiple CPUs
- "cheaper" way \Rightarrow parallelization on GPUs
- con: memory structure is hard to manage

HTTPS://WCCFTECH.COM/NVIDIA-PASCAL-GPU-ANALYSIS/

- high-performance computing and massive parallelization are essential to outgrow toy models
- NEGF is well-suited, contains high degree of independent calculations in matrix multiplication and numerical integration
- possible with multi-core programming on multiple CPUs
- "cheaper" way \Rightarrow parallelization on GPUs
- con: memory structure is hard to manage
- salvation: unified memory since NVIDIA Pascal!

Disk II Hemory II J3 cache I3 cache II L1 cache Core

$$\hat{H}(t) = J \sum_{ij,\,\alpha} h_{ij} \,\hat{c}^{\dagger}_{i\alpha} \hat{c}_{j\alpha} + U \sum_{i} \hat{c}^{\dagger}_{i\uparrow} \hat{c}_{i\uparrow} \hat{c}^{\dagger}_{i\downarrow} \hat{c}_{i\downarrow} + \sum_{ij,\alpha\beta} f_{ij,\alpha\beta}(t) \,\hat{c}^{\dagger}_{i\alpha} \hat{c}_{j\beta}$$

 $h_{ij} = -\delta_{\langle i,j \rangle}$ and $\delta_{\langle i,j \rangle} = 1$, if (i,j) nearest neighbors, $\delta_{\langle i,j \rangle} = 0$ otherwise; on-site repulsion (U > 0) or attraction (U < 0), U favors doublons (correlations)

- f: excitation (1-particle hamiltonian): EM field, quench, particle impact etc.
- finite inhomogeneous system, size and geometry dependence

Ground State Results at Half-Filling

C A U Christian-Albrechts-Universitäit zu Kiel Mathematisch-Naturneissenschaftliche Fakultät

dispersion of 40-site Hubbard chain (2B/SOA):

band gap for the infinite 1D chain:

band structure for the honeycomb lattice:

J.-P. Joost, N. Schlünzen, and M. Bonitz, phys. stat. sol. (b), doi: 10.1002/pssb.201800498, (2019)

- N_t : number of time steps, N_b : basis size
- scaling of propagation scheme
 - full KBE: $\mathcal{O}\left(N_{t}^{3}\right)$, $\mathcal{O}\left(N_{b}^{3}\right)$
 - HF-GKBA: $\mathcal{O}\left(N_{t}^{2}\right)$, $\mathcal{O}\left(N_{b}^{3}\right)$
- scaling of selfenergy approximations:

	HF	2B	ТОА	GW	трр	TEH	FLEX	
order	$\sim w^1$	$\sim w^2$	$\sim w^3 \qquad \rightarrow w^\infty$					
N_t -scaling	$\mathcal{O}\left(N_t^1\right)$	$\mathcal{O}\left(N_t^2\right)$	$\mathcal{O}\left(N_{t}^{3} ight)$					
N_b -scaling	$\mathcal{O}\left(N_b^4 ight)$	$\mathcal{O}\left(N_b^5 ight)$		$\mathcal{O}\left(N_b^6 ight)$				w_{ijkl}
	$\mathcal{O}\left(N_b^2\right)$	$\mathcal{O}\left(N_b^4 ight)$		$\mathcal{O}\left(N_b^3 ight)$		$\mathcal{O}\left(N_b^6\right)$		$V_{ij}\coloneqq w_{ijij}$
	$\mathcal{O}\left(N_b^1\right)$	$\mathcal{O}\left(N_b^2\right)$		$\mathcal{O}\left(N_b^3 ight)$				$U_i\coloneqq w_{iiii}$

- lattice models greatly reduce numerical complexity

Selfenergy Approximations in the Hubbard Model

Selfenergy Approximations in the Hubbard Model

Selfenergy Approximations in the Hubbard Model

Performance Test: Interaction – Expansion

- Hubbard chain of 65 sites with 34 particles
- non-trivial expansion, U-dependent
- mean squared displacement

 $R^{2}(t) = \frac{1}{N} \sum_{\boldsymbol{s}} n_{\boldsymbol{s}}(t) [\boldsymbol{s} - \boldsymbol{s}_{0}]^{2}$

 \boldsymbol{s}_0 : center of the system

- rescaled cloud diameter
$$d(t) = \sqrt{R^2(t) - R^2(0)}$$

– expansion velocity $v_{\rm exp}(t) = \frac{{\rm d}}{{\rm d}t} d(t)$

- Hartree–Fock misses the slowing-down of the expansion
- trend: two-time propagation results underestimate
 - the slowing-down
- best performance by TPP, TPPEH, FLEX combined with GKBA

Performance Test: Interaction – Relaxation CDW

- initial state: doubly occupied sites arranged as a charge density wave
- Hubbard chain of 20 sites with 20 particles
- Relaxation dynamics towards homogeneous density distribution
- fast build-up of correlations
- observables: double occupation

- Hartree–Fock results are not sufficient
- two-time results become steady due to artificial damping
- best performance by $\mathsf{GKBA}{+}\mathsf{TOA}$

Results for a ten-site Hubbard chain for the U = 4J ground state:

low/high density:

- SOA, GWA and TEH slightly off
- excellent agreement for the TPP

around half filling:

- **TPP** and **SOA** fail and underestimate band gap
- GWA becomes strikingly accurate
- TEH slightly overestimates correlations, precise band gap

Results for a ten-site Hubbard chain for the U = 4J ground state:

low/high density:

- SOA, GWA and TEH slightly off
- excellent agreement for the TPP

around half filling:

- TPP and SOA fail and underestimate band gap
- GWA becomes strikingly accurate
- TEH slightly overestimates correlations, precise band gap
- **FLEX** dominated by TEH, no significant improvement

no "allrounders" \Rightarrow physical circumstances prescribe the best choice of Σ

- in many cases Second Born is not sufficient to describe correlations accurately
- going beyond SOA is not straight forward \Rightarrow **no "allrounders"**
- controlled choice of selfenergy: dictated by filling and interaction strength, accurate up to $U\simeq$ bandwidth
- best performance by
 - low/large filling: TPP
 - half filling: GWA, TEH
 - mixed nonequilibrium: TOA
- Hubbard basis drastically reduces numerical effort by scaling and diagram number
- parallelization is crucial and can be done on GPUs

Appendix

