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Feynman Diagrams

– Use Feynman diagrams to visualize Green functions and interactions
– general vs. diagonal basis:

Gij(z, z
′) = i, z j, z′

→ . . .

wijkl(z, z
′) = l, z k, z′

i, z j, z′

wij(z, z
′) = i, z j, z′ → . . .

– Hartree–Fock selfenergy becomes:
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Generating the Selfenergy: Hedin’s Equations

selfenergy approximations that solve
the Martin–Schwinger hierarchy can
be derived from a closed set of
equations

two equivalent, formally exact
approaches based on:

L. Hedin, Phys. Rev. 139, A796 (1965).

– the screened
interaction/
vertex:

– the bare
interaction/
vertex:
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quick & easy

SOA, 2B
Second-Order (Born) Approximation

– all diagrams up to second order in the
interaction

– easiest way to include correlation effects

– combination with the GKBA → N2
t -scaling

– applicable to a wide range of systems

Computation

simple matrix multiplication

Numerical Scaling

• general basis:
O
(

N2
t N5

b

)
• diagonal basis:
O
(

N2
t N4

b

)
Accuracy Range

• weak to moderate
coupling

• no filling
dependence

from screened approach:
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Third-Order Diagrams

Derivation of third-order terms from Hedin’s equations (screened approach):
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N. Schlünzen, S. Hermanns, M. Scharnke, and M. Bonitz, submitted, arXiv:1902.07038 (2019). 4



the nitpicker

TOA
Third-Order Approximation

– all diagrams up to third order in the
interaction

– more involved calculation

– applicability range restricted to moderate
basis size

Computation

matrix multiplication +
numerical integration

Numerical Scaling

• general basis:
O
(

N3
t N5

b

)
• diagonal basis:
O
(

N3
t N4

b

)
Accuracy Range

• moderate to
strong coupling

• no filling
dependence
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it all comes down to bubbles

GWA
GW Approximation

– easiest way to decribe dynamical-screening
effects

– sums up polarization-bubble diagram series

– computationally demanding, but scaling
advantage for diagonal basis sets

Computation

matrix multiplication + numerical integra-
tion, solution by iteration or inversion

Numerical Scaling

• general basis:
O
(

N3
t N6

b

)
• diagonal basis:
O
(

N3
t N3

b

)
Accuracy Range

• moderate to
strong coupling

• around half filling

screened approach for xc 7→ :
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Getting the T Matrices from the Bare Approach

Truncation of the bare-vertex recursion by 7→ + :

The selfenergy becomes:

7→ ±i~ + i~ + i~

The selfenergy derivative starts off three diagram series:

N. Schlünzen, S. Hermanns, M. Scharnke, and M. Bonitz, submitted, arXiv:1902.07038 (2019).
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climbing the ladder I

TPP
Particle–Particle

T -Matrix Approximation

– sums up the diagrams of the Born series

– computationally expensive → applicable only
to moderate basis size

– becomes exact in the limit of low (large)
density

Computation

matrix multiplication + numerical integra-
tion, solution by iteration or inversion

Numerical Scaling

• general basis:
O
(

N3
t N6

b

)
• diagonal basis:
O
(

N3
t N6

b

)
Accuracy Range

• moderate to
strong coupling

• low/large density

7→ ±i~ + i~ + i~

7→ i~

= ± (i~)2 + (i~)2

± (i~)3 + (i~)3 + . . .

T
pp
(

1, 2
)

= w
(

1
)

G
(

1, 2
)

G
(

1, 2
)

w
±
(

2
)

+ w
(

1
)

G
(

1, 3
)

G
(

1, 3
)

T
pp
(

3, 2
)

ΣTPP
(

1, 2
)

= i~T
pp
(

1, 2
)

G
(

2, 1
)

8



climbing the ladder II

TPH, TEH
Particle (Electron)–Hole
T -Matrix Approximation

– sums up a series of particle–hole diagrams

– computationally demand and reach similar to
TPP

– specifically designed to describe systems
around half half filling

Computation

matrix multiplication + numerical integra-
tion, solution by iteration or inversion

Numerical Scaling

• general basis:
O
(

N3
t N6

b

)
• diagonal basis:
O
(

N3
t N6

b

)
Accuracy Range

• moderate to
strong coupling

• around half filling
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it’s a matter of patience

FLEX
Fluctuating-Exchange Approximation

– merges the diagram series of the TPP, the
TPH and the GWA

– combines advantages of its ingredients

– highest computational demands of the
presented approximations

Computation

matrix multiplication + numerical inte-
gration, solution by iteration or inversion,
avoid double counting of mutual terms

Numerical Scaling

• general basis:
O
(

N3
t N6

b

)
• diagonal basis:
O
(

N3
t N6

b

)
Accuracy Range

• moderate to
strong coupling

• no filling
dependence
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Computational Remarks

– high-performance computing and massive
parallelization are essential to outgrow toy
models

– NEGF is well-suited, contains high degree of
independent calculations in matrix
multiplication and numerical integration

– possible with multi-core programming on
multiple CPUs

– “cheaper” way ⇒ parallelization on GPUs
– con: memory structure is hard to manage
– salvation: unified memory since NVIDIA
Pascal!

https://wccftech.com/nvidia-pascal-gpu-analysis/
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The Hubbard Model. Correlated Materials

⇒
Ĥ(t) = J

∑
ij, α

hij ĉ
†
iαĉjα + U

∑
i
ĉ†i↑ĉi↑ĉ

†
i↓ĉi↓ +

∑
ij,αβ

fij,αβ(t) ĉ†iαĉjβ

hij = −δ〈i, j〉 and δ〈i, j〉 = 1, if (i, j) nearest neighbors, δ〈i, j〉 = 0 otherwise;
on-site repulsion (U > 0) or attraction (U < 0), U favors doublons (correlations)

• f : excitation (1-particle hamiltonian): EM field, quench, particle impact etc.
• finite inhomogeneous system, size and geometry dependence

12



Ground State Results at Half-Filling

dispersion of 40-site Hubbard chain (2B/SOA):
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band structure for the honeycomb lattice:

J.-P. Joost, N. Schlünzen, and M. Bonitz, phys. stat. sol. (b), doi: 10.1002/pssb.201800498, (2019)
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Computational Scaling

– Nt: number of time steps, Nb: basis size

– scaling of propagation scheme
- full KBE: O

(
N3
t

)
, O
(
N3
b

)
- HF-GKBA: O

(
N2
t

)
, O
(
N3
b

)
– scaling of selfenergy approximations:

HF 2B TOA GW TPP TEH FLEX

order ∼ w1 ∼ w2 ∼ w3 → w∞
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– lattice models greatly reduce numerical complexity
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Selfenergy Approximations in the Hubbard Model
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Performance Test: Interaction – Expansion

– Hartree–Fock misses the slowing-down of the
expansion

– trend: two-time propagation results
underestimate
the slowing-down

– best performance by
TPP, TPPEH, FLEX combined with GKBA
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– initial state: doubly occupied sites at the center

– Hubbard chain of 65 sites with 34 particles

– non-trivial expansion, U -dependent

– mean squared displacement

R2(t) = 1
N

∑
s

ns(t)[s− s0]2

s0: center of the system

– rescaled cloud diameter d(t) =
√

R2(t)− R2(0)

– expansion velocity vexp(t) = d
dt d(t)



Performance Test: Interaction – Relaxation CDW

– Hartree–Fock results are not
sufficient

– two-time results become steady due
to artificial damping

– best performance by GKBA+TOA
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U = 1

– initial state: doubly occupied sites
arranged as a charge density wave

– Hubbard chain of 20 sites with 20 particles
– Relaxation dynamics towards homogeneous
density distribution

– fast build-up of correlations
– observables: double occupation



Performance Test: Density

Results for a ten-site Hubbard chain for the U = 4J ground state:
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low/high density:
– SOA, GWA and TEH slightly off
– excellent agreement for the TPP

around half filling:
– TPP and SOA fail and

underestimate band gap
– GWA becomes strikingly accurate
– TEH slightly overestimates

correlations, precise band gap
FLEX dominated by TEH, no significant
improvement
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around half filling:
– TPP and SOA fail and

underestimate band gap
– GWA becomes strikingly accurate
– TEH slightly overestimates

correlations, precise band gap
FLEX dominated by TEH, no significant
improvement

no “allrounders” ⇒ physical circumstances prescribe the best choice of Σ
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Conclusions

– in many cases Second Born is not sufficient to describe correlations accurately
– going beyond SOA is not straight forward ⇒ no “allrounders”
– controlled choice of selfenergy: dictated by filling and interaction strength, accurate up to U '
bandwidth

– best performance by
– low/large filling: TPP
– half filling: GWA, TEH
– mixed nonequilibrium: TOA

– Hubbard basis drastically reduces numerical effort by scaling and diagram number
– parallelization is crucial and can be done on GPUs

19



Appendix



Finite Band Gap – Size Dependence
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