Quadratic e-ph coupling

Yaroslav Pavlyukh

${ }^{1}$ Department of Physics and Research Center OPTIMAS,
Technische Universität Kaiserslautern, Germany
${ }^{2}$ Institut für Physik, Martin-Luther University Halle-Wittenberg, Germany

Acknowledgements

- Michael Schüler-NEGF for electron-plasmon coupling Phys. Rev. B 93, 054303 (2016), NESSY-code
- Andrea Marini-Functional approach to arbitrary strong e-ph interaction Phys. Rev. B. 98, 075105 (2018)
- Gianluca Stefanucci and Robert van Leeuwen-PSD approximations Phys. Rev. B. 90, 115134 (2014)

Outline

I. $K B E t^{2}+n Q^{2}$-Motivation:
A. Scattering and dephasing
B. Satellites
C. Transient superconductivity
II. Functional approach
A. Generalization of Hedin's eq.
B. Sunrise, Debye-Waller, Fan-Migdal
C. Pitfalls of non-equilibrium: $\langle Q\rangle$
III. Numerical results
A. Single-site: linear vs. quadratic
B. k-space: phonon window

I.A.Scattering and dephasing

I.A.Scattering and dephasing

Flexural phonons in graphene:

- Long wavelength out-of-plane distortions from the elasticity theory (Mariani and von Oppen, 2008)
- Main mechanism limiting the resistivity in suspended graphene at small temperatures (Castro et al., 2010)
- Balance between linear and quadratic coupling can be influenced by the electrostatic gating (Gunst et al., 2017)

Large 2nd-order corrections in carbon materials-ab initio approach:

- Electron-phonon renormalization of the band gap in diamond (Giustino, Louie, and Cohen, 2010)
- Effect of the Quantum Zero-Point Atomic Motion on the Electronic Properties of Diamond and trans-Polyacetylene (Cannuccia and Marini, 2011)

Quadratic coupling of carriers in QD to acoustic phonons:

- Linear coupling generates satellites, but causes no Lorentzian broadening
- Polarization decay and exponential dephasing
- Cumulant expansion (Muljarov and Zimmermann, 2004)

Nonlinear Holstein model:

- Quantum Monte Carlo approach (Li, Nowadnick, and Johnston, 2015)
- Momentum average approximation (Adolphs and Berciu; 2013)

Diagrammatic approach:

- Marini, Poncé, and Gonze, 2015
- Giustino, 2017

I.B.Satellites

Y. Pavlyukh, Padé resummation of many-body perturbation theories, Sci.Rep. 7, 41598 (2017)

I.B.Satellites

1. The Langreth solution (1970): nth order satellite results from the emission of n bosons-real or quasiparticle
2. Forget MBPT, think of scattering processes!
3. Sensitive to doping, can hybridise, is observable spectroscopically
4. Can we influence the strength and the position of satellites by external driving?

Y. P., G. Stefanucci \& R. van Leeuwen, in preparation

I.B.Satellites

J.M. Riley, et al., Spin-polarised electron gas in ferromagnetic EuO, Nature Commun. 9:2305 (2018)

1. Langreth solution: nth order satellite results from the emission of n bosons-real or quasiparticle
2. Forget MBPT, think of scattering processes!
3. Sensitive to doping, can hybridise, observable spectroscopically
4. Can we influence the strength and the position of satellites by external driving?

A. Bostwick et al., Observation of Plasmarons in Quasi-Freestanding Doped Graphene, Science 328, 999 (2010)

I.C. Transient superconductivity

D. M. Kennes, E. Y. Wilner, D. R. Reichman, and A. J. Millis, Nature Phys. 13, 479 (2017)

1. Pumping the IR-active phonon modes
2. Solution by a canonical transformation
3. Effective hopping and Hubbard U depend on n_{B}-number of bosons in the system
4. Can we influence the strength and the position of satellites by external driving?

M.A.Sentef, Phys. Rev. B. 95, 205111 (2017)

II.A. Functional approachgeneralization of Hedin's equations

Outline

- Bosons: photons, phonons, plasmons, etc.
- Specific features of the electron-boson (e-b) coupled systems
- No Wick's theorem for bosons
- 2nd-order equation-of-motion for bosonic Green’s function
- For certain scenarios higher-order diagrammatic theories can be constructed
- No universal "electron-boson" interaction, specific form needs to be derived for each case of interest
- Method of functional derivatives
- Allows to generate many-body perturbation theories even in absence of the Wick's theorem

Electrons

$$
\begin{aligned}
\left\{\hat{\psi}^{\dagger}(\mathbf{x}), \hat{\psi}(\mathbf{y})\right\} & =\delta(\mathbf{x}-\mathbf{y}), \\
\langle\hat{\psi}(\mathbf{x}) \hat{\psi}(\mathbf{x})\rangle & =0
\end{aligned}
$$

Bosons

$\left[\widehat{Q}_{\mu}, \widehat{P}_{v}\right]=i \delta_{\mu \nu}$,
$\left\langle\widehat{Q}_{\mu} \widehat{Q}_{\mu}\right\rangle \neq 0$

- Quick way to derive functional relations between the dressed correlators
- Hedin's equations are derived in this way
- Generalizations for nonlinear e-b interactions in the bosonic displacement

General theory

Electrons

$$
V_{\underline{v}}^{n}(\mathbf{x})
$$

Electron-boson interaction

$$
\begin{aligned}
\widehat{H}_{\mathrm{e}-\mathrm{b}} & =\sum_{n, \underline{v}} \int d \mathbf{x} \hat{\Psi}^{\dagger}(\mathbf{x}) V_{\underline{\underline{v}}}^{n}(\mathbf{x}) \hat{\psi}(\mathbf{x}) \widehat{Q}_{\underline{\underline{v}}}^{n} \\
\hat{\gamma}_{\underline{\underline{v}}}^{n} & \equiv \int d \mathbf{x} \hat{\psi}^{\dagger}(\mathbf{x}) V_{\underline{v}}^{n}(\mathbf{x}) \hat{\psi}(\mathbf{x}) \\
\widehat{H}_{\mathrm{e}-\mathrm{b}} & =\sum_{n, \underline{\underline{\gamma}}} \hat{\gamma}_{\underline{\underline{v}}} \hat{Q}_{\underline{\underline{v}}}^{n}
\end{aligned}
$$

Hamiltonian and propagators

Total Hamiltonian

$$
\begin{aligned}
\hat{H}_{\mathrm{e}} & =\int d \mathbf{x} \hat{\psi}^{\dagger}(\mathbf{x}) h_{e}(\mathbf{x}) \hat{\psi}(\mathbf{x}) \\
\widehat{H}_{\mathrm{b}} & =\frac{1}{2} \sum_{v} \Omega_{v}\left(\widehat{P}_{v}^{2}+\widehat{Q}_{v}^{2}\right) \\
\widehat{H}_{\mathrm{e}-\mathrm{b}} & =\sum_{n, \underline{v}} \hat{\gamma}_{\underline{v}}^{n} \widehat{Q}_{\underline{v}}^{n}
\end{aligned}
$$

Propagators

$$
\begin{aligned}
G(1,2)= & -i\left\langle\mathscr{T}\left\{\hat{\psi}(1) \hat{\Psi}^{\dagger}(2)\right\}\right\rangle \\
D_{\underline{\mu}, \underline{v}}^{m, n}\left(z_{1}, z_{2}\right)= & -i\left\langle\mathscr{T}\left\{\Delta \widehat{Q}_{\underline{\mu}}^{m}\left(z_{1}\right) \Delta \widehat{Q}_{\underline{v}}^{n}\left(z_{2}\right)\right\}\right\rangle \\
& \text { with } \quad \Delta \hat{\mathscr{O}} \equiv \hat{\mathscr{O}}-\langle\hat{\mathscr{O}}\rangle \\
& \text { and } \quad 1 \equiv\left(\mathbf{x}_{1}, z_{1}\right)
\end{aligned}
$$

EOMs for operators

$$
\begin{aligned}
i \frac{d}{d z_{1}} \hat{\psi}(1) & =\left[h_{\mathrm{e}}(1)+\sum_{n, \underline{v}} V_{\underline{\underline{v}}}^{n}\left(\mathbf{x}_{1}\right) \widehat{Q}_{\underline{\underline{v}}}^{n}\left(z_{1}\right)\right] \hat{\psi}(1) \\
{\left[\frac{d^{2}}{d z_{1}^{2}}+\Omega_{v}^{2}\right] \widehat{Q}_{v}\left(z_{1}\right) } & =-\Omega_{v} \sum_{m, \underline{\mu}} m \hat{\gamma}_{\underline{\mu} \oplus v}^{m}\left(z_{1}\right) \widehat{Q}_{\underline{\mu}}^{m-1}\left(z_{1}\right)
\end{aligned}
$$

Method of functional derivatives

Time-dependent Hamiltonian

$$
\begin{aligned}
\hat{H}_{\xi, \eta}(z) & =\hat{H}+\sum_{n, \underline{v}} \xi_{\underline{v}}^{n}(z) \widehat{Q}_{\underline{v}}^{n}+\int d \mathbf{x} \eta(\mathbf{x}, z) \hat{\rho}(\mathbf{x}) \\
\langle\hat{O}(z)\rangle_{\xi, \eta} & =\frac{\operatorname{Tr}\left\{\mathscr{T} \exp \left[-i \int_{\mathscr{C}} d \bar{z} \widehat{H}_{\xi, \eta}(\bar{z})\right] \hat{\mathscr{O}}_{\xi, \eta}(z)\right\}}{\operatorname{Tr}\left\{\mathscr{T} \exp \left[-i \int_{\mathscr{C}} d \bar{z} \widehat{H}_{\xi, \eta}(\bar{z})\right]\right\}}
\end{aligned}
$$

Electrons

Actual vs. desired form

$$
\begin{aligned}
{\left[i \frac{\partial}{\partial z_{1}}-h_{\mathrm{e}}(1)\right] G(1,2)=} & \delta(1,2)-i \sum_{n, \underline{v}} V_{\underline{v}}^{n}\left(\mathbf{x}_{1}\right) \\
& \times\left\langle\mathscr{T}\left\{\hat{\psi}(1) \widehat{Q}_{\underline{v}}^{n}\left(z_{1}\right) \hat{\psi}^{\dagger}(2)\right\}\right\rangle \\
{\left[i \frac{\partial}{\partial z_{1}}-h_{\mathrm{e}}(1)-\Phi(1)\right] G(1,2)=} & \delta(1,2)+\int d 3 \Sigma(1,3) G(3,2)
\end{aligned}
$$

Exploitation of variational derivatives

$-i\left\langle\mathscr{T} \hat{\psi}(1) \widehat{Q}_{\underline{v}}^{n}\left(z_{1}\right) \hat{\psi}^{\dagger}(2)\right\rangle=\left[i \frac{\delta}{\delta \xi_{\underline{\underline{v}}}^{n}\left(z_{1}\right)}+\left\langle\widehat{Q}_{\underline{\underline{v}}}^{n}\left(z_{1}\right)\right\rangle\right] G(1,2)$

Timeline:

P.C. Martin and J. Schwinger (1959)
L. Hedin (1965), G. Strinati (1988)
R. van Leeuwen (2004), F. Giustino (2017)

Method of functional derivatives

Time-dependent Hamiltonian

$$
\begin{aligned}
\hat{H}_{\xi, \eta}(z) & =\hat{H}+\sum_{n, \underline{\underline{1}}} \xi_{\underline{n}}^{n}(z) \hat{Q}_{\underline{v}}^{n}+\int d \mathbf{x} \eta(\mathbf{x}, z) \hat{\rho}(\mathbf{x}) \\
\langle\hat{\sigma}(z)\rangle_{\xi, \eta} & =\frac{\operatorname{Tr}\left\{\mathscr{T} \exp \left[-i \int_{\mathscr{E}} d \bar{z} \widehat{H}_{\xi, \eta}(\bar{z})\right] \hat{\sigma}_{\xi, \eta}(z)\right\}}{\operatorname{Tr}\left\{\mathscr{T} \exp \left[-i \int_{\mathscr{E}} d \bar{z} \widehat{H}_{\xi, \eta}(\bar{z})\right]\right\}}
\end{aligned}
$$

Timeline:

P.C. Martin and J. Schwinger (1959)
L. Hedin (1965), G. Strinati (1988)
R. van Leeuwen (2004), F. Giustino (2017)

In short, the perturbation framework developed by Julian is superior to the conventional scheme in that:

1) It allows for and "insists upon" the possibility for anomalous propagators. This possibility arises naturally because the theory is phrased entirely in terms of "true", rather than "bare", propagators.
2) It makes no "adiabatic" perturbative assumption, and thus allows naturally for self-consistent solutions.
3) At no stage does it entail unphysical "unlinked diagrams." Their absence does not rest on a "Wick theorem" (which does not hold for operators that do not satisfy canonical commutation relations).

Paul C. Martin, Schwinger and statistical physics, Physica 96A, 70-88 (1979)

Mean-field potentials

(a) $\Sigma^{e}(1,2)=$

Mean-field potentials

$$
\begin{aligned}
& \Phi_{\mathrm{DW}}^{n}(1)=\sum_{n, \underline{\underline{v}}} V_{\underline{v}}^{n}\left(\mathbf{x}_{1}\right)\left\langle\widehat{Q}_{\underline{\underline{v}}}^{n}\left(z_{1}\right)\right\rangle \\
& U_{\mu, v}\left(z_{1}\right)=\sum_{n, \underline{\underline{k}}} n \gamma_{\mu \oplus \underline{\kappa} \oplus v}^{n}\left(\mathbf{x}_{1}\right)\left\langle\widehat{Q}_{\underline{\kappa}}^{n-2}\left(z_{1}\right)\right\rangle
\end{aligned}
$$

The generalized BSE

Cross-channel correlations

$$
\begin{aligned}
\Gamma^{\mathrm{i-j}}(1,2 ; 3)=\Gamma_{0}^{\mathrm{i}-\mathrm{j}} & (1,2 ; 3)+K^{i-\mathrm{e}}(1,5 ; 4,2) G(4,6) \Gamma^{\mathrm{ej}}(6,7 ; 3) G(7,5) \\
& +K^{i-\mathrm{b}}(1,5 ; 4,2) D_{\phi, \eta}(4,6) \Gamma_{\eta, \xi}^{\mathrm{b-j}}(6,7 ; 3) D_{\xi, \psi}(7,5)
\end{aligned}
$$

II.B. Sunrise, Debye-Waller, Fan-Migdal

$$
\phi_{\mathrm{k}}^{\mathrm{DW}}(z)=\frac{g}{N_{k}} \sum_{\mathbf{q}}\left\langle\hat{Q}_{\mathbf{q}}(z) \hat{Q}_{-\mathrm{q}}(z)\right\rangle .
$$

$\Sigma_{\mathbf{k}}\left(z, z^{\prime}\right)=\mathrm{i} \frac{g^{2}}{N_{k}} \sum_{\mathbf{q}} G_{\mathbf{k}-\mathbf{q}}\left(z, z^{\prime}\right) D_{\mathbf{q}}^{(2)}\left(z, z^{\prime}\right)$,

$$
\begin{gathered}
u_{\mathbf{q}}(z)=g \sum_{\mathbf{k}}\left\langle\hat{c}_{\mathbf{k}}^{\dagger} \hat{c}_{\mathbf{k}}\right\rangle=-\mathrm{i} g \sum_{\mathbf{k}} G_{\mathbf{k}}\left(z, z^{+}\right), \\
\left.\Pi_{\mathbf{q}}\left(z_{1}, z_{2}\right)=1, z_{1}, z_{2}\right)=\mathrm{i} \frac{g^{2}}{N_{k}} \sum_{\mathbf{p}} D_{\mathbf{q}+\mathbf{p}}\left(z_{1}, z_{2}\right) \chi_{\mathbf{p}}\left(z_{1}, z_{2}\right)
\end{gathered}
$$

II.C. Pitfalls of non-equilibrium

Mean-field potentials

$$
\begin{aligned}
& \Phi_{\mathrm{DW}}^{n}(1)=\sum_{n, \underline{\boldsymbol{v}}} V_{\underline{\boldsymbol{v}}}^{n}\left(\mathbf{x}_{1}\right)\left\langle\widehat{Q}_{\underline{\underline{v}}}^{n}\left(z_{1}\right)\right\rangle \\
& U_{\mu, v}\left(z_{1}\right)=\sum_{n, \underline{\boldsymbol{K}}} n \gamma_{\mu \oplus \underline{\mathrm{K}} \oplus v}^{n}\left(\mathbf{x}_{1}\right)\left\langle\widehat{Q}_{\underline{\mathrm{K}}}^{n-2}\left(z_{1}\right)\right\rangle
\end{aligned}
$$

$$
\left[\frac{d^{2}}{d z_{1}^{2}}+\Omega_{v}^{2}\right] \widehat{Q}_{v}\left(z_{1}\right)=-\Omega_{v} \sum_{m, \underline{\mu}} m \hat{\gamma}_{\underline{\mu} \oplus v}^{m}\left(z_{1}\right) \widehat{Q}_{\underline{\mu}}^{m-1}\left(z_{1}\right)
$$

Mean-field electron dynamics—DW potential:

1. $m=1,2 \triangleleft$ propagation of $\langle Q\rangle$ is needed!
2. $m=1 \triangleright$ driven oscillator
3. $m=2 \curvearrowleft$ parametric oscillator

$$
k(t)=m\left(\omega_{0}^{2}+\varepsilon \cos \Omega t\right)
$$

The Mathieu oscillator

II.C. Pitfalls of non-equilibrium

Decoupling in equilibrium

$$
\begin{aligned}
D_{\underline{\mu}, \underline{\underline{v}}}^{2,2}\left(z_{1}, z_{2}\right) & =\frac{\delta\left\langle\widehat{Q}_{\underline{\mu}}^{2}\left(z_{1}\right)\right\rangle}{\delta \xi_{\underline{\underline{v}}}^{2}\left(z_{2}\right)}=i \frac{\delta D_{\underline{\mu}}\left(z_{1}, z_{1}\right)}{\delta \xi_{\underline{\underline{v}}}^{2}\left(z_{2}\right)} \\
& =-i \sum_{\zeta \underline{\xi}} \int d z d z^{\prime} D_{\mu_{1} \zeta}\left(z_{1}, z\right) \frac{\delta D_{\zeta \xi}^{-1}\left(z, z^{\prime}\right)}{\delta \xi_{\underline{v}}^{2}\left(z_{2}\right)} D_{\xi \mu_{2}}\left(z^{\prime}, z_{1}\right) \\
& \approx i D_{\mu_{1} v_{1}}\left(z_{1}, z_{2}\right) D_{v_{2} \mu_{2}}\left(z_{2}, z_{1}\right) .
\end{aligned}
$$

Decoupling out of equilibrium

$$
D_{\underline{\mu}, \underline{v}}^{2,2}\left(z_{1}, z_{2}\right)=i \frac{\delta D_{\underline{\mu}}\left(z_{1}, z_{1}\right)}{\delta \xi_{\underline{\underline{v}}}^{2}\left(z_{2}\right)}+\frac{\delta\left\{\left\langle\widehat{Q}_{\mu_{1}}\left(z_{1}\right)\right\rangle\left\langle\widehat{Q}_{\mu_{2}}\left(z_{1}\right)\right\rangle\right\}}{\delta \xi_{\underline{v}}^{2}\left(z_{2}\right)}
$$

Outlook:

1. Theory becomes too complicated when $\langle Q\rangle \neq 0$
2. Assumption $\langle Q\rangle=0$ is justified when there is no linear coupling \square used in our first implementation

III. Numerical results

1. One site, linear coupling
2. One site, quadratic coupling
3. k-space, linear coupling, relaxation

Nonequilibrium e-pl dynamics

(a)

Bosons

Bosonic EOM

$$
\begin{aligned}
-\frac{1}{\Omega_{\nu}}\left(\frac{\partial^{2}}{\partial z_{1}^{2}}+\Omega_{\nu}^{2}\right) & D_{\mu \nu}\left(z_{1}, z_{2}\right)=\delta_{\mu \nu} \delta\left(z_{1}, z_{2}\right) \\
& +\sum_{\xi} \int_{C} \mathrm{~d} z_{3} \Pi_{\mu \xi}\left(z_{1}, z_{3}\right) D_{\xi \nu}\left(z_{3}, z_{2}\right)
\end{aligned}
$$

M. Schüler, J. Berakdar, Y. Pavlyukh, Time-dependent many-body treatment of electron-boson dynamics: Application to plasmon-accompanied photoemission Phys. Rev. B 93, 054303 (2016)

$A(T, \mathscr{E})$ of $\mathrm{Mg} / \mathrm{W}(110)$

Atto-second time-delays in photoemission

Zooming into the energy range of 2 p peak
C. Lemell et al., Real-time observation of collective excitations in photoemission, Phys. Rev. B 91, 241101 (2015)

Time

2.03 .2019

Photocurrent

Linear vs. quadratic coupling

1. Two-level system, short resonant XUV pulse (44 eV)
2. Coupling to a single plasmon $(\Omega=10 \mathrm{eV}), g=5 \mathrm{eV}$
3. Transient spectral function

Linear vs. quadratic coupling

1. Two-level system, long resonant $X U V$ pulse (44 eV)
2. Coupling to a single plasmon $(\Omega=10 \mathrm{eV}, g=5 \mathrm{eV})$
3. Transient spectral function

4. No coupling
5. Autler-Townes splitting

1. Linear coupling

2. Self-consistent Fan-Migdal
3. Transient pl-satellite dynamics

4. Quadratic coupling
5. Sunrise self-energy
6. Spectral weight redistribution

Tight-binding model

TB model of ZnO (1D)

Holstein model for el-ph interactions
$\hat{H}=\sum_{\mathbf{k}} \sum_{n n^{\prime}} h_{n n^{\prime}}(\mathbf{k}, t) \hat{\mathbf{k}}_{\mathbf{k} n}^{\dagger} \hat{c}_{\mathbf{k} n^{\prime}}+g \sum_{\mathbf{k}, n} \sum_{\mathbf{q}} \hat{\mathbf{k}}_{\mathbf{k}+\mathbf{q} n^{\prime}}^{\dagger} \hat{c}_{\mathbf{k} n} \hat{Q}_{\mathbf{q}}+\frac{\omega_{0}}{2} \sum_{\mathbf{q}}\left(\hat{P}_{\mathbf{q}}^{2}+\hat{Q}_{\mathbf{q}}^{2}\right)$
Light-matter interaction by generalized Peierls substitution:

$$
h_{n n^{\prime}}(\mathbf{k}, t)=h_{n n^{\prime}}^{(0)}(\mathbf{k}-\mathbf{A}(t))-\mathbf{E}(t) \cdot \mathbf{D}_{n n^{\prime}}(\mathbf{k}-\mathbf{A}(t))
$$

Levels of approximation:
non-selfconsistent (local) Migdal

$$
\Sigma\left(z, z^{\prime}\right)=i g^{2} G_{\mathrm{loc}}\left(z, z^{\prime}\right) D^{(0)}\left(z, z^{\prime}\right)
$$

self-consistent (local) Migdal

$$
\Sigma\left(z, z^{\prime}\right)=i g^{2} G_{\mathrm{loc}}\left(z, z^{\prime}\right) D\left(z, z^{\prime}\right)
$$

Phonon window effect
J. Rameau et al., Nature Commun. 7, 13761 (2016)

Tight-binding model

$$
(\Omega=0.2 \mathrm{eV}, g=0.2 \mathrm{eV})
$$

TB model of ZnO (1D)

Holstein model for el-ph interactions
$\hat{H}=\sum_{\mathbf{k}} \sum_{n n^{\prime}} h_{n n^{\prime}}(\mathbf{k}, t) \hat{\mathbf{k}}_{\mathbf{k} n}^{\dagger} \hat{c}_{\mathbf{k} n^{\prime}}+g \sum_{\mathbf{k}, n} \sum_{\mathbf{q}} \hat{\mathbf{k}}_{\mathbf{k}+\mathbf{q} n^{\prime}}^{\dagger} \hat{c}_{\mathbf{k} n} \hat{Q}_{\mathbf{q}}+\frac{\omega_{0}}{2} \sum_{\mathbf{q}}\left(\hat{P}_{\mathbf{q}}^{2}+\hat{Q}_{\mathbf{q}}^{2}\right)$
Light-matter interaction by generalized Peierls substitution:

$$
h_{n n^{\prime}}(\mathbf{k}, t)=h_{n n^{\prime}}^{(0)}(\mathbf{k}-\mathbf{A}(t))-\mathbf{E}(t) \cdot \mathbf{D}_{n n^{\prime}}(\mathbf{k}-\mathbf{A}(t))
$$

Levels of approximation:
non-selfconsistent (local) Migdal

$$
\Sigma\left(z, z^{\prime}\right)=i g^{2} G_{\mathrm{loc}}\left(z, z^{\prime}\right) D^{(0)}\left(z, z^{\prime}\right)
$$

self-consistent (local) Migdal

$$
\Sigma\left(z, z^{\prime}\right)=i g^{2} G_{\mathrm{loc}}\left(z, z^{\prime}\right) D\left(z, z^{\prime}\right)
$$

Phonon window effect
J. Rameau et al., Nature Commun. 7, 13761 (2016)

Weak pump

Strong pump

Numerical details

Gregory quadrature

$$
\mathcal{I}(t)=\int_{0}^{t} d t^{\prime} y\left(t^{\prime}\right) \quad \text { Error } \sim \mathcal{O}\left(\Delta t^{7}\right) \quad \text { also for small } t
$$

Matsubara

$G(\tau)=G_{0}(\tau)+\int_{0}^{\beta} d \tau^{\prime} K\left(\tau-\tau^{\prime}\right) G\left(\tau^{\prime}\right) \quad$ av. error $\sim \mathcal{O}\left(\Delta \tau^{7}\right)$
Solved as integral equation using

Open source library NESSY

 available soon!

Newton's method

Kadanoff-Baym equations

$$
\left(i \partial_{z}-h(z)\right) G\left(z, z^{\prime}\right)=\delta_{C}\left(z, z^{\prime}\right)+\int_{C} d \bar{z} \Sigma(z, \bar{z}) G\left(\bar{z}, z^{\prime}\right) \text { av. error } \sim \mathcal{O}\left(\Delta t^{6}\right)
$$

Solved by Adams predictor-corrector method

Volterra integral equations

$$
G\left(z, z^{\prime}\right)=G_{0}\left(z, z^{\prime}\right)+\int_{\mathcal{C}} d \bar{z} K(z, \bar{z}) G\left(\bar{z}, z^{\prime}\right) \quad \text { av. error } \sim \mathcal{O}\left(\Delta t^{7}\right)
$$

Parallelization

Hybrid MPI (k-space) + OpenMP (time)

Conclusions

I. Quadratic electron-phonon coupling contains a lot of interesting physics
II. First calculations with sunrise self-energy
III. Plans:
A. Renormalization of constituent response functions \leadsto coupled RPA equations for $\mathrm{D}^{(2)}$ and χ
B. IR-active phonons, driving, $\langle Q(\mathrm{t})\rangle \neq 0$
C. Dynamics in k-space

Thank you for your attention

